3
0
mirror of https://github.com/Qortal/Brooklyn.git synced 2025-02-01 07:42:18 +00:00
Brooklyn/arch/x86/kvm/mmu/tdp_mmu.c

1597 lines
46 KiB
C
Raw Normal View History

2021-05-26 19:09:36 +00:00
// SPDX-License-Identifier: GPL-2.0
#include "mmu.h"
#include "mmu_internal.h"
#include "mmutrace.h"
#include "tdp_iter.h"
#include "tdp_mmu.h"
#include "spte.h"
2021-10-02 16:09:28 +00:00
#include <asm/cmpxchg.h>
#include <trace/events/kvm.h>
2021-09-23 16:59:15 +00:00
2021-10-02 16:09:28 +00:00
static bool __read_mostly tdp_mmu_enabled = true;
module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
2021-05-26 19:09:36 +00:00
/* Initializes the TDP MMU for the VM, if enabled. */
2021-10-02 16:09:28 +00:00
bool kvm_mmu_init_tdp_mmu(struct kvm *kvm)
2021-05-26 19:09:36 +00:00
{
2021-10-02 16:09:28 +00:00
if (!tdp_enabled || !READ_ONCE(tdp_mmu_enabled))
return false;
2021-05-26 19:09:36 +00:00
/* This should not be changed for the lifetime of the VM. */
kvm->arch.tdp_mmu_enabled = true;
INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
2021-10-02 16:09:28 +00:00
spin_lock_init(&kvm->arch.tdp_mmu_pages_lock);
2021-05-26 19:09:36 +00:00
INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
2021-10-02 16:09:28 +00:00
return true;
}
static __always_inline void kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm,
bool shared)
{
if (shared)
lockdep_assert_held_read(&kvm->mmu_lock);
else
lockdep_assert_held_write(&kvm->mmu_lock);
}
2021-05-26 19:09:36 +00:00
void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
{
if (!kvm->arch.tdp_mmu_enabled)
return;
2021-10-02 16:09:28 +00:00
WARN_ON(!list_empty(&kvm->arch.tdp_mmu_pages));
2021-05-26 19:09:36 +00:00
WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
2021-10-02 16:09:28 +00:00
/*
* Ensure that all the outstanding RCU callbacks to free shadow pages
* can run before the VM is torn down.
*/
rcu_barrier();
}
2021-10-02 16:09:28 +00:00
static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
gfn_t start, gfn_t end, bool can_yield, bool flush,
bool shared);
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
static void tdp_mmu_free_sp(struct kvm_mmu_page *sp)
2021-05-26 19:09:36 +00:00
{
2021-10-02 16:09:28 +00:00
free_page((unsigned long)sp->spt);
kmem_cache_free(mmu_page_header_cache, sp);
2021-09-23 16:59:15 +00:00
}
2021-09-23 16:59:15 +00:00
/*
2021-10-02 16:09:28 +00:00
* This is called through call_rcu in order to free TDP page table memory
* safely with respect to other kernel threads that may be operating on
* the memory.
* By only accessing TDP MMU page table memory in an RCU read critical
* section, and freeing it after a grace period, lockless access to that
* memory won't use it after it is freed.
2021-09-23 16:59:15 +00:00
*/
2021-10-02 16:09:28 +00:00
static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head)
{
struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page,
rcu_head);
2021-09-23 16:59:15 +00:00
2021-10-02 16:09:28 +00:00
tdp_mmu_free_sp(sp);
}
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root,
bool shared)
2021-09-23 16:59:15 +00:00
{
2021-10-02 16:09:28 +00:00
kvm_lockdep_assert_mmu_lock_held(kvm, shared);
2021-10-02 16:09:28 +00:00
if (!refcount_dec_and_test(&root->tdp_mmu_root_count))
return;
2021-10-02 16:09:28 +00:00
WARN_ON(!root->tdp_mmu_page);
2021-09-23 16:59:15 +00:00
2021-10-02 16:09:28 +00:00
spin_lock(&kvm->arch.tdp_mmu_pages_lock);
list_del_rcu(&root->link);
spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
zap_gfn_range(kvm, root, 0, -1ull, false, false, shared);
call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback);
}
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
/*
* Finds the next valid root after root (or the first valid root if root
* is NULL), takes a reference on it, and returns that next root. If root
* is not NULL, this thread should have already taken a reference on it, and
* that reference will be dropped. If no valid root is found, this
* function will return NULL.
*/
static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
struct kvm_mmu_page *prev_root,
bool shared)
2021-09-23 16:59:15 +00:00
{
2021-10-02 16:09:28 +00:00
struct kvm_mmu_page *next_root;
2021-10-02 16:09:28 +00:00
rcu_read_lock();
2021-10-02 16:09:28 +00:00
if (prev_root)
next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
&prev_root->link,
typeof(*prev_root), link);
else
next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots,
typeof(*next_root), link);
while (next_root && !kvm_tdp_mmu_get_root(kvm, next_root))
next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
&next_root->link, typeof(*next_root), link);
2021-10-02 16:09:28 +00:00
rcu_read_unlock();
2021-10-02 16:09:28 +00:00
if (prev_root)
kvm_tdp_mmu_put_root(kvm, prev_root, shared);
2021-10-02 16:09:28 +00:00
return next_root;
2021-05-26 19:09:36 +00:00
}
2021-10-02 16:09:28 +00:00
/*
* Note: this iterator gets and puts references to the roots it iterates over.
* This makes it safe to release the MMU lock and yield within the loop, but
* if exiting the loop early, the caller must drop the reference to the most
* recent root. (Unless keeping a live reference is desirable.)
*
* If shared is set, this function is operating under the MMU lock in read
* mode. In the unlikely event that this thread must free a root, the lock
* will be temporarily dropped and reacquired in write mode.
*/
#define for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared) \
for (_root = tdp_mmu_next_root(_kvm, NULL, _shared); \
_root; \
_root = tdp_mmu_next_root(_kvm, _root, _shared)) \
if (kvm_mmu_page_as_id(_root) != _as_id) { \
} else
#define for_each_tdp_mmu_root(_kvm, _root, _as_id) \
list_for_each_entry_rcu(_root, &_kvm->arch.tdp_mmu_roots, link, \
lockdep_is_held_type(&kvm->mmu_lock, 0) || \
lockdep_is_held(&kvm->arch.tdp_mmu_pages_lock)) \
if (kvm_mmu_page_as_id(_root) != _as_id) { \
} else
2021-05-26 19:09:36 +00:00
static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu,
int level)
{
union kvm_mmu_page_role role;
role = vcpu->arch.mmu->mmu_role.base;
role.level = level;
role.direct = true;
role.gpte_is_8_bytes = true;
role.access = ACC_ALL;
return role;
}
static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn,
int level)
{
struct kvm_mmu_page *sp;
sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
sp->role.word = page_role_for_level(vcpu, level).word;
sp->gfn = gfn;
sp->tdp_mmu_page = true;
2021-10-02 16:09:28 +00:00
trace_kvm_mmu_get_page(sp, true);
2021-05-26 19:09:36 +00:00
return sp;
}
2021-10-02 16:09:28 +00:00
hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
2021-05-26 19:09:36 +00:00
{
union kvm_mmu_page_role role;
struct kvm *kvm = vcpu->kvm;
struct kvm_mmu_page *root;
2021-10-02 16:09:28 +00:00
lockdep_assert_held_write(&kvm->mmu_lock);
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level);
2021-09-23 16:59:15 +00:00
2021-05-26 19:09:36 +00:00
/* Check for an existing root before allocating a new one. */
2021-10-02 16:09:28 +00:00
for_each_tdp_mmu_root(kvm, root, kvm_mmu_role_as_id(role)) {
if (root->role.word == role.word &&
kvm_tdp_mmu_get_root(kvm, root))
goto out;
2021-05-26 19:09:36 +00:00
}
root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level);
2021-10-02 16:09:28 +00:00
refcount_set(&root->tdp_mmu_root_count, 1);
2021-09-23 16:59:15 +00:00
2021-10-02 16:09:28 +00:00
spin_lock(&kvm->arch.tdp_mmu_pages_lock);
list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots);
spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
out:
2021-05-26 19:09:36 +00:00
return __pa(root->spt);
}
static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
2021-10-02 16:09:28 +00:00
u64 old_spte, u64 new_spte, int level,
bool shared);
2021-05-26 19:09:36 +00:00
static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
{
if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
return;
if (is_accessed_spte(old_spte) &&
2021-10-02 16:09:28 +00:00
(!is_shadow_present_pte(new_spte) || !is_accessed_spte(new_spte) ||
spte_to_pfn(old_spte) != spte_to_pfn(new_spte)))
2021-05-26 19:09:36 +00:00
kvm_set_pfn_accessed(spte_to_pfn(old_spte));
}
static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
u64 old_spte, u64 new_spte, int level)
{
bool pfn_changed;
struct kvm_memory_slot *slot;
if (level > PG_LEVEL_4K)
return;
pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
if ((!is_writable_pte(old_spte) || pfn_changed) &&
is_writable_pte(new_spte)) {
slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
2021-10-02 16:09:28 +00:00
mark_page_dirty_in_slot(kvm, slot, gfn);
}
}
/**
* tdp_mmu_link_page - Add a new page to the list of pages used by the TDP MMU
*
* @kvm: kvm instance
* @sp: the new page
* @account_nx: This page replaces a NX large page and should be marked for
* eventual reclaim.
*/
static void tdp_mmu_link_page(struct kvm *kvm, struct kvm_mmu_page *sp,
bool account_nx)
{
spin_lock(&kvm->arch.tdp_mmu_pages_lock);
list_add(&sp->link, &kvm->arch.tdp_mmu_pages);
if (account_nx)
account_huge_nx_page(kvm, sp);
spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
}
/**
* tdp_mmu_unlink_page - Remove page from the list of pages used by the TDP MMU
*
* @kvm: kvm instance
* @sp: the page to be removed
* @shared: This operation may not be running under the exclusive use of
* the MMU lock and the operation must synchronize with other
* threads that might be adding or removing pages.
*/
static void tdp_mmu_unlink_page(struct kvm *kvm, struct kvm_mmu_page *sp,
bool shared)
{
if (shared)
spin_lock(&kvm->arch.tdp_mmu_pages_lock);
else
lockdep_assert_held_write(&kvm->mmu_lock);
list_del(&sp->link);
if (sp->lpage_disallowed)
unaccount_huge_nx_page(kvm, sp);
if (shared)
spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
}
/**
* handle_removed_tdp_mmu_page - handle a pt removed from the TDP structure
*
* @kvm: kvm instance
* @pt: the page removed from the paging structure
* @shared: This operation may not be running under the exclusive use
* of the MMU lock and the operation must synchronize with other
* threads that might be modifying SPTEs.
*
* Given a page table that has been removed from the TDP paging structure,
* iterates through the page table to clear SPTEs and free child page tables.
*
* Note that pt is passed in as a tdp_ptep_t, but it does not need RCU
* protection. Since this thread removed it from the paging structure,
* this thread will be responsible for ensuring the page is freed. Hence the
* early rcu_dereferences in the function.
*/
static void handle_removed_tdp_mmu_page(struct kvm *kvm, tdp_ptep_t pt,
bool shared)
{
struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt));
int level = sp->role.level;
gfn_t base_gfn = sp->gfn;
u64 old_child_spte;
u64 *sptep;
gfn_t gfn;
int i;
trace_kvm_mmu_prepare_zap_page(sp);
tdp_mmu_unlink_page(kvm, sp, shared);
for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
sptep = rcu_dereference(pt) + i;
gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level);
if (shared) {
/*
* Set the SPTE to a nonpresent value that other
* threads will not overwrite. If the SPTE was
* already marked as removed then another thread
* handling a page fault could overwrite it, so
* set the SPTE until it is set from some other
* value to the removed SPTE value.
*/
for (;;) {
old_child_spte = xchg(sptep, REMOVED_SPTE);
if (!is_removed_spte(old_child_spte))
break;
cpu_relax();
}
} else {
/*
* If the SPTE is not MMU-present, there is no backing
* page associated with the SPTE and so no side effects
* that need to be recorded, and exclusive ownership of
* mmu_lock ensures the SPTE can't be made present.
* Note, zapping MMIO SPTEs is also unnecessary as they
* are guarded by the memslots generation, not by being
* unreachable.
*/
old_child_spte = READ_ONCE(*sptep);
if (!is_shadow_present_pte(old_child_spte))
continue;
/*
* Marking the SPTE as a removed SPTE is not
* strictly necessary here as the MMU lock will
* stop other threads from concurrently modifying
* this SPTE. Using the removed SPTE value keeps
* the two branches consistent and simplifies
* the function.
*/
WRITE_ONCE(*sptep, REMOVED_SPTE);
}
handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn,
old_child_spte, REMOVED_SPTE, level,
shared);
2021-05-26 19:09:36 +00:00
}
2021-10-02 16:09:28 +00:00
kvm_flush_remote_tlbs_with_address(kvm, gfn,
KVM_PAGES_PER_HPAGE(level + 1));
call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
2021-05-26 19:09:36 +00:00
}
/**
2021-10-02 16:09:28 +00:00
* __handle_changed_spte - handle bookkeeping associated with an SPTE change
2021-05-26 19:09:36 +00:00
* @kvm: kvm instance
* @as_id: the address space of the paging structure the SPTE was a part of
* @gfn: the base GFN that was mapped by the SPTE
* @old_spte: The value of the SPTE before the change
* @new_spte: The value of the SPTE after the change
* @level: the level of the PT the SPTE is part of in the paging structure
2021-10-02 16:09:28 +00:00
* @shared: This operation may not be running under the exclusive use of
* the MMU lock and the operation must synchronize with other
* threads that might be modifying SPTEs.
2021-05-26 19:09:36 +00:00
*
* Handle bookkeeping that might result from the modification of a SPTE.
* This function must be called for all TDP SPTE modifications.
*/
static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
2021-10-02 16:09:28 +00:00
u64 old_spte, u64 new_spte, int level,
bool shared)
2021-05-26 19:09:36 +00:00
{
bool was_present = is_shadow_present_pte(old_spte);
bool is_present = is_shadow_present_pte(new_spte);
bool was_leaf = was_present && is_last_spte(old_spte, level);
bool is_leaf = is_present && is_last_spte(new_spte, level);
bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
WARN_ON(level > PT64_ROOT_MAX_LEVEL);
WARN_ON(level < PG_LEVEL_4K);
WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
/*
* If this warning were to trigger it would indicate that there was a
* missing MMU notifier or a race with some notifier handler.
* A present, leaf SPTE should never be directly replaced with another
2021-10-02 16:09:28 +00:00
* present leaf SPTE pointing to a different PFN. A notifier handler
2021-05-26 19:09:36 +00:00
* should be zapping the SPTE before the main MM's page table is
* changed, or the SPTE should be zeroed, and the TLBs flushed by the
* thread before replacement.
*/
if (was_leaf && is_leaf && pfn_changed) {
pr_err("Invalid SPTE change: cannot replace a present leaf\n"
"SPTE with another present leaf SPTE mapping a\n"
"different PFN!\n"
"as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
as_id, gfn, old_spte, new_spte, level);
/*
* Crash the host to prevent error propagation and guest data
2021-10-02 16:09:28 +00:00
* corruption.
2021-05-26 19:09:36 +00:00
*/
BUG();
}
if (old_spte == new_spte)
return;
2021-10-02 16:09:28 +00:00
trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
2021-05-26 19:09:36 +00:00
/*
* The only times a SPTE should be changed from a non-present to
* non-present state is when an MMIO entry is installed/modified/
* removed. In that case, there is nothing to do here.
*/
if (!was_present && !is_present) {
/*
2021-10-02 16:09:28 +00:00
* If this change does not involve a MMIO SPTE or removed SPTE,
* it is unexpected. Log the change, though it should not
* impact the guest since both the former and current SPTEs
* are nonpresent.
2021-05-26 19:09:36 +00:00
*/
2021-10-02 16:09:28 +00:00
if (WARN_ON(!is_mmio_spte(old_spte) &&
!is_mmio_spte(new_spte) &&
!is_removed_spte(new_spte)))
2021-05-26 19:09:36 +00:00
pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
"should not be replaced with another,\n"
"different nonpresent SPTE, unless one or both\n"
2021-10-02 16:09:28 +00:00
"are MMIO SPTEs, or the new SPTE is\n"
"a temporary removed SPTE.\n"
2021-05-26 19:09:36 +00:00
"as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
as_id, gfn, old_spte, new_spte, level);
return;
}
2021-10-02 16:09:28 +00:00
if (is_leaf != was_leaf)
kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1);
2021-05-26 19:09:36 +00:00
if (was_leaf && is_dirty_spte(old_spte) &&
2021-10-02 16:09:28 +00:00
(!is_present || !is_dirty_spte(new_spte) || pfn_changed))
2021-05-26 19:09:36 +00:00
kvm_set_pfn_dirty(spte_to_pfn(old_spte));
/*
* Recursively handle child PTs if the change removed a subtree from
* the paging structure.
*/
2021-10-02 16:09:28 +00:00
if (was_present && !was_leaf && (pfn_changed || !is_present))
handle_removed_tdp_mmu_page(kvm,
spte_to_child_pt(old_spte, level), shared);
}
static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
u64 old_spte, u64 new_spte, int level,
bool shared)
{
__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level,
shared);
handle_changed_spte_acc_track(old_spte, new_spte, level);
handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
new_spte, level);
}
/*
* tdp_mmu_set_spte_atomic_no_dirty_log - Set a TDP MMU SPTE atomically
* and handle the associated bookkeeping, but do not mark the page dirty
* in KVM's dirty bitmaps.
*
* @kvm: kvm instance
* @iter: a tdp_iter instance currently on the SPTE that should be set
* @new_spte: The value the SPTE should be set to
* Returns: true if the SPTE was set, false if it was not. If false is returned,
* this function will have no side-effects.
*/
static inline bool tdp_mmu_set_spte_atomic_no_dirty_log(struct kvm *kvm,
struct tdp_iter *iter,
u64 new_spte)
{
lockdep_assert_held_read(&kvm->mmu_lock);
/*
* Do not change removed SPTEs. Only the thread that froze the SPTE
* may modify it.
*/
if (is_removed_spte(iter->old_spte))
return false;
/*
* Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and
* does not hold the mmu_lock.
*/
if (cmpxchg64(rcu_dereference(iter->sptep), iter->old_spte,
new_spte) != iter->old_spte)
return false;
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
__handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte,
new_spte, iter->level, true);
handle_changed_spte_acc_track(iter->old_spte, new_spte, iter->level);
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
return true;
}
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
/*
* tdp_mmu_map_set_spte_atomic - Set a leaf TDP MMU SPTE atomically to resolve a
* TDP page fault.
*
* @vcpu: The vcpu instance that took the TDP page fault.
* @iter: a tdp_iter instance currently on the SPTE that should be set
* @new_spte: The value the SPTE should be set to
*
* Returns: true if the SPTE was set, false if it was not. If false is returned,
* this function will have no side-effects.
*/
static inline bool tdp_mmu_map_set_spte_atomic(struct kvm_vcpu *vcpu,
struct tdp_iter *iter,
u64 new_spte)
{
struct kvm *kvm = vcpu->kvm;
if (!tdp_mmu_set_spte_atomic_no_dirty_log(kvm, iter, new_spte))
return false;
2021-10-02 16:09:28 +00:00
/*
* Use kvm_vcpu_gfn_to_memslot() instead of going through
* handle_changed_spte_dirty_log() to leverage vcpu->last_used_slot.
*/
if (is_writable_pte(new_spte)) {
struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, iter->gfn);
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
if (slot && kvm_slot_dirty_track_enabled(slot)) {
/* Enforced by kvm_mmu_hugepage_adjust. */
WARN_ON_ONCE(iter->level > PG_LEVEL_4K);
mark_page_dirty_in_slot(kvm, slot, iter->gfn);
}
2021-09-23 16:59:15 +00:00
}
2021-10-02 16:09:28 +00:00
return true;
2021-05-26 19:09:36 +00:00
}
2021-10-02 16:09:28 +00:00
static inline bool tdp_mmu_zap_spte_atomic(struct kvm *kvm,
struct tdp_iter *iter)
2021-05-26 19:09:36 +00:00
{
2021-10-02 16:09:28 +00:00
/*
* Freeze the SPTE by setting it to a special,
* non-present value. This will stop other threads from
* immediately installing a present entry in its place
* before the TLBs are flushed.
*/
if (!tdp_mmu_set_spte_atomic_no_dirty_log(kvm, iter, REMOVED_SPTE))
return false;
kvm_flush_remote_tlbs_with_address(kvm, iter->gfn,
KVM_PAGES_PER_HPAGE(iter->level));
/*
* No other thread can overwrite the removed SPTE as they
* must either wait on the MMU lock or use
* tdp_mmu_set_spte_atomic which will not overwrite the
* special removed SPTE value. No bookkeeping is needed
* here since the SPTE is going from non-present
* to non-present.
*/
WRITE_ONCE(*rcu_dereference(iter->sptep), 0);
return true;
2021-05-26 19:09:36 +00:00
}
2021-10-02 16:09:28 +00:00
/*
* __tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping
* @kvm: kvm instance
* @iter: a tdp_iter instance currently on the SPTE that should be set
* @new_spte: The value the SPTE should be set to
* @record_acc_track: Notify the MM subsystem of changes to the accessed state
* of the page. Should be set unless handling an MMU
* notifier for access tracking. Leaving record_acc_track
* unset in that case prevents page accesses from being
* double counted.
* @record_dirty_log: Record the page as dirty in the dirty bitmap if
* appropriate for the change being made. Should be set
* unless performing certain dirty logging operations.
* Leaving record_dirty_log unset in that case prevents page
* writes from being double counted.
*/
2021-05-26 19:09:36 +00:00
static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
u64 new_spte, bool record_acc_track,
bool record_dirty_log)
{
2021-10-02 16:09:28 +00:00
lockdep_assert_held_write(&kvm->mmu_lock);
/*
* No thread should be using this function to set SPTEs to the
* temporary removed SPTE value.
* If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic
* should be used. If operating under the MMU lock in write mode, the
* use of the removed SPTE should not be necessary.
*/
WARN_ON(is_removed_spte(iter->old_spte));
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
WRITE_ONCE(*rcu_dereference(iter->sptep), new_spte);
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
__handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte,
new_spte, iter->level, false);
2021-05-26 19:09:36 +00:00
if (record_acc_track)
handle_changed_spte_acc_track(iter->old_spte, new_spte,
iter->level);
if (record_dirty_log)
2021-10-02 16:09:28 +00:00
handle_changed_spte_dirty_log(kvm, iter->as_id, iter->gfn,
2021-05-26 19:09:36 +00:00
iter->old_spte, new_spte,
iter->level);
}
static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
u64 new_spte)
{
__tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
}
static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
struct tdp_iter *iter,
u64 new_spte)
{
__tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
}
static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
struct tdp_iter *iter,
u64 new_spte)
{
__tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
}
#define tdp_root_for_each_pte(_iter, _root, _start, _end) \
for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end)
#define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \
tdp_root_for_each_pte(_iter, _root, _start, _end) \
if (!is_shadow_present_pte(_iter.old_spte) || \
!is_last_spte(_iter.old_spte, _iter.level)) \
continue; \
else
#define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \
for_each_tdp_pte(_iter, __va(_mmu->root_hpa), \
_mmu->shadow_root_level, _start, _end)
/*
* Yield if the MMU lock is contended or this thread needs to return control
* to the scheduler.
*
* If this function should yield and flush is set, it will perform a remote
* TLB flush before yielding.
*
* If this function yields, it will also reset the tdp_iter's walk over the
* paging structure and the calling function should skip to the next
* iteration to allow the iterator to continue its traversal from the
* paging structure root.
*
* Return true if this function yielded and the iterator's traversal was reset.
* Return false if a yield was not needed.
*/
static inline bool tdp_mmu_iter_cond_resched(struct kvm *kvm,
2021-10-02 16:09:28 +00:00
struct tdp_iter *iter, bool flush,
bool shared)
2021-05-26 19:09:36 +00:00
{
/* Ensure forward progress has been made before yielding. */
if (iter->next_last_level_gfn == iter->yielded_gfn)
return false;
2021-10-02 16:09:28 +00:00
if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
rcu_read_unlock();
2021-05-26 19:09:36 +00:00
if (flush)
kvm_flush_remote_tlbs(kvm);
2021-10-02 16:09:28 +00:00
if (shared)
cond_resched_rwlock_read(&kvm->mmu_lock);
else
cond_resched_rwlock_write(&kvm->mmu_lock);
rcu_read_lock();
2021-05-26 19:09:36 +00:00
WARN_ON(iter->gfn > iter->next_last_level_gfn);
2021-10-02 16:09:28 +00:00
tdp_iter_restart(iter);
2021-05-26 19:09:36 +00:00
return true;
}
return false;
}
/*
* Tears down the mappings for the range of gfns, [start, end), and frees the
* non-root pages mapping GFNs strictly within that range. Returns true if
* SPTEs have been cleared and a TLB flush is needed before releasing the
* MMU lock.
2021-10-02 16:09:28 +00:00
*
2021-05-26 19:09:36 +00:00
* If can_yield is true, will release the MMU lock and reschedule if the
* scheduler needs the CPU or there is contention on the MMU lock. If this
* function cannot yield, it will not release the MMU lock or reschedule and
* the caller must ensure it does not supply too large a GFN range, or the
2021-10-02 16:09:28 +00:00
* operation can cause a soft lockup.
*
* If shared is true, this thread holds the MMU lock in read mode and must
* account for the possibility that other threads are modifying the paging
* structures concurrently. If shared is false, this thread should hold the
* MMU lock in write mode.
2021-05-26 19:09:36 +00:00
*/
static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
2021-10-02 16:09:28 +00:00
gfn_t start, gfn_t end, bool can_yield, bool flush,
bool shared)
2021-05-26 19:09:36 +00:00
{
2021-10-02 16:09:28 +00:00
gfn_t max_gfn_host = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
bool zap_all = (start == 0 && end >= max_gfn_host);
2021-05-26 19:09:36 +00:00
struct tdp_iter iter;
2021-10-02 16:09:28 +00:00
/*
* No need to try to step down in the iterator when zapping all SPTEs,
* zapping the top-level non-leaf SPTEs will recurse on their children.
*/
int min_level = zap_all ? root->role.level : PG_LEVEL_4K;
/*
* Bound the walk at host.MAXPHYADDR, guest accesses beyond that will
* hit a #PF(RSVD) and never get to an EPT Violation/Misconfig / #NPF,
* and so KVM will never install a SPTE for such addresses.
*/
end = min(end, max_gfn_host);
kvm_lockdep_assert_mmu_lock_held(kvm, shared);
rcu_read_lock();
for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
min_level, start, end) {
retry:
2021-05-26 19:09:36 +00:00
if (can_yield &&
2021-10-02 16:09:28 +00:00
tdp_mmu_iter_cond_resched(kvm, &iter, flush, shared)) {
2021-05-26 19:09:36 +00:00
flush = false;
continue;
}
if (!is_shadow_present_pte(iter.old_spte))
continue;
/*
* If this is a non-last-level SPTE that covers a larger range
* than should be zapped, continue, and zap the mappings at a
2021-10-02 16:09:28 +00:00
* lower level, except when zapping all SPTEs.
2021-05-26 19:09:36 +00:00
*/
2021-10-02 16:09:28 +00:00
if (!zap_all &&
(iter.gfn < start ||
2021-05-26 19:09:36 +00:00
iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) &&
!is_last_spte(iter.old_spte, iter.level))
continue;
2021-10-02 16:09:28 +00:00
if (!shared) {
tdp_mmu_set_spte(kvm, &iter, 0);
flush = true;
} else if (!tdp_mmu_zap_spte_atomic(kvm, &iter)) {
/*
* The iter must explicitly re-read the SPTE because
* the atomic cmpxchg failed.
*/
iter.old_spte = READ_ONCE(*rcu_dereference(iter.sptep));
goto retry;
}
2021-05-26 19:09:36 +00:00
}
2021-10-02 16:09:28 +00:00
rcu_read_unlock();
2021-05-26 19:09:36 +00:00
return flush;
}
/*
* Tears down the mappings for the range of gfns, [start, end), and frees the
* non-root pages mapping GFNs strictly within that range. Returns true if
* SPTEs have been cleared and a TLB flush is needed before releasing the
* MMU lock.
*/
2021-10-02 16:09:28 +00:00
bool __kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, int as_id, gfn_t start,
gfn_t end, bool can_yield, bool flush)
2021-05-26 19:09:36 +00:00
{
struct kvm_mmu_page *root;
2021-10-02 16:09:28 +00:00
for_each_tdp_mmu_root_yield_safe(kvm, root, as_id, false)
flush = zap_gfn_range(kvm, root, start, end, can_yield, flush,
false);
2021-05-26 19:09:36 +00:00
return flush;
}
void kvm_tdp_mmu_zap_all(struct kvm *kvm)
{
2021-10-02 16:09:28 +00:00
bool flush = false;
int i;
for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, 0, -1ull, flush);
if (flush)
kvm_flush_remote_tlbs(kvm);
}
static struct kvm_mmu_page *next_invalidated_root(struct kvm *kvm,
struct kvm_mmu_page *prev_root)
{
struct kvm_mmu_page *next_root;
if (prev_root)
next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
&prev_root->link,
typeof(*prev_root), link);
else
next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots,
typeof(*next_root), link);
while (next_root && !(next_root->role.invalid &&
refcount_read(&next_root->tdp_mmu_root_count)))
next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
&next_root->link,
typeof(*next_root), link);
return next_root;
}
/*
* Since kvm_tdp_mmu_zap_all_fast has acquired a reference to each
* invalidated root, they will not be freed until this function drops the
* reference. Before dropping that reference, tear down the paging
* structure so that whichever thread does drop the last reference
* only has to do a trivial amount of work. Since the roots are invalid,
* no new SPTEs should be created under them.
*/
void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm)
{
struct kvm_mmu_page *next_root;
struct kvm_mmu_page *root;
bool flush = false;
lockdep_assert_held_read(&kvm->mmu_lock);
rcu_read_lock();
root = next_invalidated_root(kvm, NULL);
while (root) {
next_root = next_invalidated_root(kvm, root);
rcu_read_unlock();
flush = zap_gfn_range(kvm, root, 0, -1ull, true, flush, true);
/*
* Put the reference acquired in
* kvm_tdp_mmu_invalidate_roots
*/
kvm_tdp_mmu_put_root(kvm, root, true);
root = next_root;
rcu_read_lock();
}
rcu_read_unlock();
2021-05-26 19:09:36 +00:00
if (flush)
kvm_flush_remote_tlbs(kvm);
}
2021-10-02 16:09:28 +00:00
/*
* Mark each TDP MMU root as invalid so that other threads
* will drop their references and allow the root count to
* go to 0.
*
* Also take a reference on all roots so that this thread
* can do the bulk of the work required to free the roots
* once they are invalidated. Without this reference, a
* vCPU thread might drop the last reference to a root and
* get stuck with tearing down the entire paging structure.
*
* Roots which have a zero refcount should be skipped as
* they're already being torn down.
* Already invalid roots should be referenced again so that
* they aren't freed before kvm_tdp_mmu_zap_all_fast is
* done with them.
*
* This has essentially the same effect for the TDP MMU
* as updating mmu_valid_gen does for the shadow MMU.
*/
void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm)
{
struct kvm_mmu_page *root;
lockdep_assert_held_write(&kvm->mmu_lock);
list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link)
if (refcount_inc_not_zero(&root->tdp_mmu_root_count))
root->role.invalid = true;
}
2021-05-26 19:09:36 +00:00
/*
* Installs a last-level SPTE to handle a TDP page fault.
* (NPT/EPT violation/misconfiguration)
*/
static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write,
int map_writable,
struct tdp_iter *iter,
kvm_pfn_t pfn, bool prefault)
{
u64 new_spte;
int ret = RET_PF_FIXED;
2021-05-26 19:09:36 +00:00
int make_spte_ret = 0;
2021-10-02 16:09:28 +00:00
if (unlikely(is_noslot_pfn(pfn)))
2021-05-26 19:09:36 +00:00
new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
2021-10-02 16:09:28 +00:00
else
2021-05-26 19:09:36 +00:00
make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn,
pfn, iter->old_spte, prefault, true,
map_writable, !shadow_accessed_mask,
&new_spte);
if (new_spte == iter->old_spte)
ret = RET_PF_SPURIOUS;
2021-10-02 16:09:28 +00:00
else if (!tdp_mmu_map_set_spte_atomic(vcpu, iter, new_spte))
return RET_PF_RETRY;
2021-05-26 19:09:36 +00:00
/*
* If the page fault was caused by a write but the page is write
* protected, emulation is needed. If the emulation was skipped,
* the vCPU would have the same fault again.
*/
if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
if (write)
ret = RET_PF_EMULATE;
kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
}
/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
2021-10-02 16:09:28 +00:00
if (unlikely(is_mmio_spte(new_spte))) {
trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn,
new_spte);
2021-05-26 19:09:36 +00:00
ret = RET_PF_EMULATE;
2021-10-02 16:09:28 +00:00
} else {
trace_kvm_mmu_set_spte(iter->level, iter->gfn,
rcu_dereference(iter->sptep));
}
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
/*
* Increase pf_fixed in both RET_PF_EMULATE and RET_PF_FIXED to be
* consistent with legacy MMU behavior.
*/
if (ret != RET_PF_SPURIOUS)
2021-05-26 19:09:36 +00:00
vcpu->stat.pf_fixed++;
return ret;
}
/*
* Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
* page tables and SPTEs to translate the faulting guest physical address.
*/
int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
int map_writable, int max_level, kvm_pfn_t pfn,
bool prefault)
{
bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
bool write = error_code & PFERR_WRITE_MASK;
bool exec = error_code & PFERR_FETCH_MASK;
bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
struct kvm_mmu *mmu = vcpu->arch.mmu;
struct tdp_iter iter;
struct kvm_mmu_page *sp;
u64 *child_pt;
u64 new_spte;
int ret;
gfn_t gfn = gpa >> PAGE_SHIFT;
int level;
int req_level;
level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
huge_page_disallowed, &req_level);
trace_kvm_mmu_spte_requested(gpa, level, pfn);
2021-10-02 16:09:28 +00:00
rcu_read_lock();
2021-05-26 19:09:36 +00:00
tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
if (nx_huge_page_workaround_enabled)
disallowed_hugepage_adjust(iter.old_spte, gfn,
iter.level, &pfn, &level);
if (iter.level == level)
break;
/*
* If there is an SPTE mapping a large page at a higher level
* than the target, that SPTE must be cleared and replaced
* with a non-leaf SPTE.
*/
if (is_shadow_present_pte(iter.old_spte) &&
is_large_pte(iter.old_spte)) {
2021-10-02 16:09:28 +00:00
if (!tdp_mmu_zap_spte_atomic(vcpu->kvm, &iter))
break;
2021-05-26 19:09:36 +00:00
/*
* The iter must explicitly re-read the spte here
* because the new value informs the !present
* path below.
*/
2021-10-02 16:09:28 +00:00
iter.old_spte = READ_ONCE(*rcu_dereference(iter.sptep));
2021-05-26 19:09:36 +00:00
}
if (!is_shadow_present_pte(iter.old_spte)) {
2021-10-02 16:09:28 +00:00
/*
* If SPTE has been frozen by another thread, just
* give up and retry, avoiding unnecessary page table
* allocation and free.
*/
if (is_removed_spte(iter.old_spte))
break;
sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level - 1);
2021-05-26 19:09:36 +00:00
child_pt = sp->spt;
2021-10-02 16:09:28 +00:00
2021-05-26 19:09:36 +00:00
new_spte = make_nonleaf_spte(child_pt,
!shadow_accessed_mask);
2021-10-02 16:09:28 +00:00
if (tdp_mmu_set_spte_atomic_no_dirty_log(vcpu->kvm, &iter, new_spte)) {
tdp_mmu_link_page(vcpu->kvm, sp,
huge_page_disallowed &&
req_level >= iter.level);
2021-09-23 16:59:15 +00:00
2021-10-02 16:09:28 +00:00
trace_kvm_mmu_get_page(sp, true);
} else {
tdp_mmu_free_sp(sp);
break;
}
2021-05-26 19:09:36 +00:00
}
}
2021-10-02 16:09:28 +00:00
if (iter.level != level) {
rcu_read_unlock();
2021-05-26 19:09:36 +00:00
return RET_PF_RETRY;
2021-10-02 16:09:28 +00:00
}
2021-05-26 19:09:36 +00:00
ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter,
pfn, prefault);
2021-10-02 16:09:28 +00:00
rcu_read_unlock();
2021-05-26 19:09:36 +00:00
return ret;
}
2021-10-02 16:09:28 +00:00
bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range,
bool flush)
2021-05-26 19:09:36 +00:00
{
struct kvm_mmu_page *root;
2021-10-02 16:09:28 +00:00
for_each_tdp_mmu_root(kvm, root, range->slot->as_id)
flush |= zap_gfn_range(kvm, root, range->start, range->end,
range->may_block, flush, false);
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
return flush;
2021-05-26 19:09:36 +00:00
}
2021-10-02 16:09:28 +00:00
typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter,
struct kvm_gfn_range *range);
2021-10-02 16:09:28 +00:00
static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm,
struct kvm_gfn_range *range,
tdp_handler_t handler)
2021-09-23 16:59:15 +00:00
{
2021-10-02 16:09:28 +00:00
struct kvm_mmu_page *root;
struct tdp_iter iter;
bool ret = false;
rcu_read_lock();
/*
* Don't support rescheduling, none of the MMU notifiers that funnel
* into this helper allow blocking; it'd be dead, wasteful code.
*/
for_each_tdp_mmu_root(kvm, root, range->slot->as_id) {
tdp_root_for_each_leaf_pte(iter, root, range->start, range->end)
ret |= handler(kvm, &iter, range);
}
rcu_read_unlock();
return ret;
2021-05-26 19:09:36 +00:00
}
/*
* Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
* if any of the GFNs in the range have been accessed.
*/
2021-10-02 16:09:28 +00:00
static bool age_gfn_range(struct kvm *kvm, struct tdp_iter *iter,
struct kvm_gfn_range *range)
2021-05-26 19:09:36 +00:00
{
u64 new_spte = 0;
2021-10-02 16:09:28 +00:00
/* If we have a non-accessed entry we don't need to change the pte. */
if (!is_accessed_spte(iter->old_spte))
return false;
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
new_spte = iter->old_spte;
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
if (spte_ad_enabled(new_spte)) {
new_spte &= ~shadow_accessed_mask;
} else {
/*
* Capture the dirty status of the page, so that it doesn't get
* lost when the SPTE is marked for access tracking.
*/
if (is_writable_pte(new_spte))
kvm_set_pfn_dirty(spte_to_pfn(new_spte));
2021-09-23 16:59:15 +00:00
2021-10-02 16:09:28 +00:00
new_spte = mark_spte_for_access_track(new_spte);
2021-09-23 16:59:15 +00:00
}
2021-10-02 16:09:28 +00:00
tdp_mmu_set_spte_no_acc_track(kvm, iter, new_spte);
return true;
2021-05-26 19:09:36 +00:00
}
2021-10-02 16:09:28 +00:00
bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
2021-05-26 19:09:36 +00:00
{
2021-10-02 16:09:28 +00:00
return kvm_tdp_mmu_handle_gfn(kvm, range, age_gfn_range);
2021-05-26 19:09:36 +00:00
}
2021-10-02 16:09:28 +00:00
static bool test_age_gfn(struct kvm *kvm, struct tdp_iter *iter,
struct kvm_gfn_range *range)
2021-05-26 19:09:36 +00:00
{
2021-10-02 16:09:28 +00:00
return is_accessed_spte(iter->old_spte);
2021-05-26 19:09:36 +00:00
}
2021-10-02 16:09:28 +00:00
bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
2021-05-26 19:09:36 +00:00
{
2021-10-02 16:09:28 +00:00
return kvm_tdp_mmu_handle_gfn(kvm, range, test_age_gfn);
2021-05-26 19:09:36 +00:00
}
2021-10-02 16:09:28 +00:00
static bool set_spte_gfn(struct kvm *kvm, struct tdp_iter *iter,
struct kvm_gfn_range *range)
2021-05-26 19:09:36 +00:00
{
u64 new_spte;
2021-09-23 16:59:15 +00:00
2021-10-02 16:09:28 +00:00
/* Huge pages aren't expected to be modified without first being zapped. */
WARN_ON(pte_huge(range->pte) || range->start + 1 != range->end);
2021-09-23 16:59:15 +00:00
2021-10-02 16:09:28 +00:00
if (iter->level != PG_LEVEL_4K ||
!is_shadow_present_pte(iter->old_spte))
return false;
2021-09-23 16:59:15 +00:00
2021-10-02 16:09:28 +00:00
/*
* Note, when changing a read-only SPTE, it's not strictly necessary to
* zero the SPTE before setting the new PFN, but doing so preserves the
* invariant that the PFN of a present * leaf SPTE can never change.
* See __handle_changed_spte().
*/
tdp_mmu_set_spte(kvm, iter, 0);
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
if (!pte_write(range->pte)) {
new_spte = kvm_mmu_changed_pte_notifier_make_spte(iter->old_spte,
pte_pfn(range->pte));
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
tdp_mmu_set_spte(kvm, iter, new_spte);
2021-05-26 19:09:36 +00:00
}
2021-10-02 16:09:28 +00:00
return true;
2021-05-26 19:09:36 +00:00
}
2021-10-02 16:09:28 +00:00
/*
* Handle the changed_pte MMU notifier for the TDP MMU.
* data is a pointer to the new pte_t mapping the HVA specified by the MMU
* notifier.
* Returns non-zero if a flush is needed before releasing the MMU lock.
*/
bool kvm_tdp_mmu_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
2021-05-26 19:09:36 +00:00
{
2021-10-02 16:09:28 +00:00
bool flush = kvm_tdp_mmu_handle_gfn(kvm, range, set_spte_gfn);
/* FIXME: return 'flush' instead of flushing here. */
if (flush)
kvm_flush_remote_tlbs_with_address(kvm, range->start, 1);
return false;
2021-05-26 19:09:36 +00:00
}
/*
2021-10-02 16:09:28 +00:00
* Remove write access from all SPTEs at or above min_level that map GFNs
* [start, end). Returns true if an SPTE has been changed and the TLBs need to
* be flushed.
2021-05-26 19:09:36 +00:00
*/
static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
gfn_t start, gfn_t end, int min_level)
{
struct tdp_iter iter;
u64 new_spte;
bool spte_set = false;
2021-10-02 16:09:28 +00:00
rcu_read_lock();
2021-05-26 19:09:36 +00:00
BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
min_level, start, end) {
2021-10-02 16:09:28 +00:00
retry:
if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
2021-05-26 19:09:36 +00:00
continue;
if (!is_shadow_present_pte(iter.old_spte) ||
2021-10-02 16:09:28 +00:00
!is_last_spte(iter.old_spte, iter.level) ||
!(iter.old_spte & PT_WRITABLE_MASK))
2021-05-26 19:09:36 +00:00
continue;
new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
2021-10-02 16:09:28 +00:00
if (!tdp_mmu_set_spte_atomic_no_dirty_log(kvm, &iter,
new_spte)) {
/*
* The iter must explicitly re-read the SPTE because
* the atomic cmpxchg failed.
*/
iter.old_spte = READ_ONCE(*rcu_dereference(iter.sptep));
goto retry;
}
2021-05-26 19:09:36 +00:00
spte_set = true;
}
2021-10-02 16:09:28 +00:00
rcu_read_unlock();
2021-05-26 19:09:36 +00:00
return spte_set;
}
/*
* Remove write access from all the SPTEs mapping GFNs in the memslot. Will
* only affect leaf SPTEs down to min_level.
* Returns true if an SPTE has been changed and the TLBs need to be flushed.
*/
2021-10-02 16:09:28 +00:00
bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm,
const struct kvm_memory_slot *slot, int min_level)
2021-05-26 19:09:36 +00:00
{
struct kvm_mmu_page *root;
bool spte_set = false;
2021-10-02 16:09:28 +00:00
lockdep_assert_held_read(&kvm->mmu_lock);
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
for_each_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
2021-05-26 19:09:36 +00:00
spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
slot->base_gfn + slot->npages, min_level);
return spte_set;
}
/*
* Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
* AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
* If AD bits are not enabled, this will require clearing the writable bit on
* each SPTE. Returns true if an SPTE has been changed and the TLBs need to
* be flushed.
*/
static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
gfn_t start, gfn_t end)
{
struct tdp_iter iter;
u64 new_spte;
bool spte_set = false;
2021-10-02 16:09:28 +00:00
rcu_read_lock();
2021-05-26 19:09:36 +00:00
tdp_root_for_each_leaf_pte(iter, root, start, end) {
2021-10-02 16:09:28 +00:00
retry:
if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
2021-05-26 19:09:36 +00:00
continue;
if (spte_ad_need_write_protect(iter.old_spte)) {
if (is_writable_pte(iter.old_spte))
new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
else
continue;
} else {
if (iter.old_spte & shadow_dirty_mask)
new_spte = iter.old_spte & ~shadow_dirty_mask;
else
continue;
}
2021-10-02 16:09:28 +00:00
if (!tdp_mmu_set_spte_atomic_no_dirty_log(kvm, &iter,
new_spte)) {
/*
* The iter must explicitly re-read the SPTE because
* the atomic cmpxchg failed.
*/
iter.old_spte = READ_ONCE(*rcu_dereference(iter.sptep));
goto retry;
}
2021-05-26 19:09:36 +00:00
spte_set = true;
}
2021-10-02 16:09:28 +00:00
rcu_read_unlock();
2021-05-26 19:09:36 +00:00
return spte_set;
}
/*
* Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
* AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
* If AD bits are not enabled, this will require clearing the writable bit on
* each SPTE. Returns true if an SPTE has been changed and the TLBs need to
* be flushed.
*/
2021-10-02 16:09:28 +00:00
bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm,
const struct kvm_memory_slot *slot)
2021-05-26 19:09:36 +00:00
{
struct kvm_mmu_page *root;
bool spte_set = false;
2021-10-02 16:09:28 +00:00
lockdep_assert_held_read(&kvm->mmu_lock);
2021-05-26 19:09:36 +00:00
2021-10-02 16:09:28 +00:00
for_each_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
2021-05-26 19:09:36 +00:00
spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
slot->base_gfn + slot->npages);
return spte_set;
}
/*
* Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
* set in mask, starting at gfn. The given memslot is expected to contain all
* the GFNs represented by set bits in the mask. If AD bits are enabled,
* clearing the dirty status will involve clearing the dirty bit on each SPTE
* or, if AD bits are not enabled, clearing the writable bit on each SPTE.
*/
static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
gfn_t gfn, unsigned long mask, bool wrprot)
{
struct tdp_iter iter;
u64 new_spte;
2021-10-02 16:09:28 +00:00
rcu_read_lock();
2021-05-26 19:09:36 +00:00
tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
gfn + BITS_PER_LONG) {
if (!mask)
break;
if (iter.level > PG_LEVEL_4K ||
!(mask & (1UL << (iter.gfn - gfn))))
continue;
2021-10-02 16:09:28 +00:00
mask &= ~(1UL << (iter.gfn - gfn));
2021-05-26 19:09:36 +00:00
if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
if (is_writable_pte(iter.old_spte))
new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
else
continue;
} else {
if (iter.old_spte & shadow_dirty_mask)
new_spte = iter.old_spte & ~shadow_dirty_mask;
else
continue;
}
tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
2021-09-23 16:59:15 +00:00
}
2021-10-02 16:09:28 +00:00
rcu_read_unlock();
2021-05-26 19:09:36 +00:00
}
/*
* Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
* set in mask, starting at gfn. The given memslot is expected to contain all
* the GFNs represented by set bits in the mask. If AD bits are enabled,
* clearing the dirty status will involve clearing the dirty bit on each SPTE
* or, if AD bits are not enabled, clearing the writable bit on each SPTE.
*/
void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn, unsigned long mask,
bool wrprot)
{
struct kvm_mmu_page *root;
2021-10-02 16:09:28 +00:00
lockdep_assert_held_write(&kvm->mmu_lock);
for_each_tdp_mmu_root(kvm, root, slot->as_id)
2021-05-26 19:09:36 +00:00
clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
}
/*
* Clear leaf entries which could be replaced by large mappings, for
* GFNs within the slot.
*/
2021-10-02 16:09:28 +00:00
static bool zap_collapsible_spte_range(struct kvm *kvm,
2021-05-26 19:09:36 +00:00
struct kvm_mmu_page *root,
2021-10-02 16:09:28 +00:00
const struct kvm_memory_slot *slot,
bool flush)
2021-05-26 19:09:36 +00:00
{
2021-10-02 16:09:28 +00:00
gfn_t start = slot->base_gfn;
gfn_t end = start + slot->npages;
2021-05-26 19:09:36 +00:00
struct tdp_iter iter;
kvm_pfn_t pfn;
2021-10-02 16:09:28 +00:00
rcu_read_lock();
2021-05-26 19:09:36 +00:00
tdp_root_for_each_pte(iter, root, start, end) {
2021-10-02 16:09:28 +00:00
retry:
if (tdp_mmu_iter_cond_resched(kvm, &iter, flush, true)) {
flush = false;
2021-05-26 19:09:36 +00:00
continue;
}
if (!is_shadow_present_pte(iter.old_spte) ||
!is_last_spte(iter.old_spte, iter.level))
continue;
pfn = spte_to_pfn(iter.old_spte);
if (kvm_is_reserved_pfn(pfn) ||
2021-10-02 16:09:28 +00:00
iter.level >= kvm_mmu_max_mapping_level(kvm, slot, iter.gfn,
pfn, PG_LEVEL_NUM))
2021-05-26 19:09:36 +00:00
continue;
2021-10-02 16:09:28 +00:00
if (!tdp_mmu_zap_spte_atomic(kvm, &iter)) {
/*
* The iter must explicitly re-read the SPTE because
* the atomic cmpxchg failed.
*/
iter.old_spte = READ_ONCE(*rcu_dereference(iter.sptep));
goto retry;
}
flush = true;
2021-09-23 16:59:15 +00:00
}
2021-10-02 16:09:28 +00:00
rcu_read_unlock();
return flush;
2021-05-26 19:09:36 +00:00
}
/*
* Clear non-leaf entries (and free associated page tables) which could
* be replaced by large mappings, for GFNs within the slot.
*/
2021-10-02 16:09:28 +00:00
bool kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
const struct kvm_memory_slot *slot,
bool flush)
2021-05-26 19:09:36 +00:00
{
struct kvm_mmu_page *root;
2021-10-02 16:09:28 +00:00
lockdep_assert_held_read(&kvm->mmu_lock);
2021-10-02 16:09:28 +00:00
for_each_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
flush = zap_collapsible_spte_range(kvm, root, slot, flush);
return flush;
2021-05-26 19:09:36 +00:00
}
/*
* Removes write access on the last level SPTE mapping this GFN and unsets the
2021-10-02 16:09:28 +00:00
* MMU-writable bit to ensure future writes continue to be intercepted.
2021-05-26 19:09:36 +00:00
* Returns true if an SPTE was set and a TLB flush is needed.
*/
static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
2021-10-02 16:09:28 +00:00
gfn_t gfn, int min_level)
2021-05-26 19:09:36 +00:00
{
struct tdp_iter iter;
u64 new_spte;
bool spte_set = false;
2021-10-02 16:09:28 +00:00
BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
rcu_read_lock();
for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
min_level, gfn, gfn + 1) {
if (!is_shadow_present_pte(iter.old_spte) ||
!is_last_spte(iter.old_spte, iter.level))
continue;
2021-05-26 19:09:36 +00:00
if (!is_writable_pte(iter.old_spte))
break;
new_spte = iter.old_spte &
2021-10-02 16:09:28 +00:00
~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
2021-05-26 19:09:36 +00:00
tdp_mmu_set_spte(kvm, &iter, new_spte);
spte_set = true;
}
2021-10-02 16:09:28 +00:00
rcu_read_unlock();
2021-05-26 19:09:36 +00:00
return spte_set;
}
/*
* Removes write access on the last level SPTE mapping this GFN and unsets the
2021-10-02 16:09:28 +00:00
* MMU-writable bit to ensure future writes continue to be intercepted.
2021-05-26 19:09:36 +00:00
* Returns true if an SPTE was set and a TLB flush is needed.
*/
bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
2021-10-02 16:09:28 +00:00
struct kvm_memory_slot *slot, gfn_t gfn,
int min_level)
2021-05-26 19:09:36 +00:00
{
struct kvm_mmu_page *root;
bool spte_set = false;
2021-10-02 16:09:28 +00:00
lockdep_assert_held_write(&kvm->mmu_lock);
for_each_tdp_mmu_root(kvm, root, slot->as_id)
spte_set |= write_protect_gfn(kvm, root, gfn, min_level);
2021-05-26 19:09:36 +00:00
return spte_set;
}
/*
* Return the level of the lowest level SPTE added to sptes.
* That SPTE may be non-present.
2021-10-02 16:09:28 +00:00
*
* Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
2021-05-26 19:09:36 +00:00
*/
int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
int *root_level)
{
struct tdp_iter iter;
struct kvm_mmu *mmu = vcpu->arch.mmu;
gfn_t gfn = addr >> PAGE_SHIFT;
int leaf = -1;
*root_level = vcpu->arch.mmu->shadow_root_level;
tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
leaf = iter.level;
2021-10-02 16:09:28 +00:00
sptes[leaf] = iter.old_spte;
2021-05-26 19:09:36 +00:00
}
return leaf;
}
2021-10-02 16:09:28 +00:00
/*
* Returns the last level spte pointer of the shadow page walk for the given
* gpa, and sets *spte to the spte value. This spte may be non-preset. If no
* walk could be performed, returns NULL and *spte does not contain valid data.
*
* Contract:
* - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
* - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end.
*
* WARNING: This function is only intended to be called during fast_page_fault.
*/
u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, u64 addr,
u64 *spte)
{
struct tdp_iter iter;
struct kvm_mmu *mmu = vcpu->arch.mmu;
gfn_t gfn = addr >> PAGE_SHIFT;
tdp_ptep_t sptep = NULL;
tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
*spte = iter.old_spte;
sptep = iter.sptep;
}
/*
* Perform the rcu_dereference to get the raw spte pointer value since
* we are passing it up to fast_page_fault, which is shared with the
* legacy MMU and thus does not retain the TDP MMU-specific __rcu
* annotation.
*
* This is safe since fast_page_fault obeys the contracts of this
* function as well as all TDP MMU contracts around modifying SPTEs
* outside of mmu_lock.
*/
return rcu_dereference(sptep);
}