// SPDX-License-Identifier: GPL-2.0-only /* * BCM283x / BCM271x Unicam Capture Driver * * Copyright (C) 2017-2020 - Raspberry Pi (Trading) Ltd. * * Dave Stevenson * * Based on TI am437x driver by * Benoit Parrot * Lad, Prabhakar * * and TI CAL camera interface driver by * Benoit Parrot * * * There are two camera drivers in the kernel for BCM283x - this one * and bcm2835-camera (currently in staging). * * This driver directly controls the Unicam peripheral - there is no * involvement with the VideoCore firmware. Unicam receives CSI-2 or * CCP2 data and writes it into SDRAM. * The only potential processing options are to repack Bayer data into an * alternate format, and applying windowing. * The repacking does not shift the data, so can repack V4L2_PIX_FMT_Sxxxx10P * to V4L2_PIX_FMT_Sxxxx10, or V4L2_PIX_FMT_Sxxxx12P to V4L2_PIX_FMT_Sxxxx12, * but not generically up to V4L2_PIX_FMT_Sxxxx16. The driver will add both * formats where the relevant formats are defined, and will automatically * configure the repacking as required. * Support for windowing may be added later. * * It should be possible to connect this driver to any sensor with a * suitable output interface and V4L2 subdevice driver. * * bcm2835-camera uses the VideoCore firmware to control the sensor, * Unicam, ISP, and all tuner control loops. Fully processed frames are * delivered to the driver by the firmware. It only has sensor drivers * for Omnivision OV5647, and Sony IMX219 sensors. * * The two drivers are mutually exclusive for the same Unicam instance. * The VideoCore firmware checks the device tree configuration during boot. * If it finds device tree nodes called csi0 or csi1 it will block the * firmware from accessing the peripheral, and bcm2835-camera will * not be able to stream data. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define v4l2_async_notifier_add_subdev __v4l2_async_notifier_add_subdev #include "vc4-regs-unicam.h" #define UNICAM_MODULE_NAME "unicam" #define UNICAM_VERSION "0.1.0" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Debug level 0-3"); #define unicam_dbg(level, dev, fmt, arg...) \ v4l2_dbg(level, debug, &(dev)->v4l2_dev, fmt, ##arg) #define unicam_info(dev, fmt, arg...) \ v4l2_info(&(dev)->v4l2_dev, fmt, ##arg) #define unicam_err(dev, fmt, arg...) \ v4l2_err(&(dev)->v4l2_dev, fmt, ##arg) /* * Unicam must request a minimum of 250Mhz from the VPU clock. * Otherwise the input FIFOs overrun and cause image corruption. */ #define MIN_VPU_CLOCK_RATE (250 * 1000 * 1000) /* * To protect against a dodgy sensor driver never returning an error from * enum_mbus_code, set a maximum index value to be used. */ #define MAX_ENUM_MBUS_CODE 128 /* * Stride is a 16 bit register, but also has to be a multiple of 32. */ #define BPL_ALIGNMENT 32 #define MAX_BYTESPERLINE ((1 << 16) - BPL_ALIGNMENT) /* * Max width is therefore determined by the max stride divided by * the number of bits per pixel. Take 32bpp as a * worst case. * No imposed limit on the height, so adopt a square image for want * of anything better. */ #define MAX_WIDTH (MAX_BYTESPERLINE / 4) #define MAX_HEIGHT MAX_WIDTH /* Define a nominal minimum image size */ #define MIN_WIDTH 16 #define MIN_HEIGHT 16 /* Default size of the embedded buffer */ #define UNICAM_EMBEDDED_SIZE 8192 /* * Size of the dummy buffer. Can be any size really, but the DMA * allocation works in units of page sizes. */ #define DUMMY_BUF_SIZE (PAGE_SIZE) enum pad_types { IMAGE_PAD, METADATA_PAD, MAX_NODES }; /* * struct unicam_fmt - Unicam media bus format information * @pixelformat: V4L2 pixel format FCC identifier. 0 if n/a. * @repacked_fourcc: V4L2 pixel format FCC identifier if the data is expanded * out to 16bpp. 0 if n/a. * @code: V4L2 media bus format code. * @depth: Bits per pixel as delivered from the source. * @csi_dt: CSI data type. * @check_variants: Flag to denote that there are multiple mediabus formats * still in the list that could match this V4L2 format. */ struct unicam_fmt { u32 fourcc; u32 repacked_fourcc; u32 code; u8 depth; u8 csi_dt; u8 check_variants; }; static const struct unicam_fmt formats[] = { /* YUV Formats */ { .fourcc = V4L2_PIX_FMT_YUYV, .code = MEDIA_BUS_FMT_YUYV8_2X8, .depth = 16, .csi_dt = 0x1e, .check_variants = 1, }, { .fourcc = V4L2_PIX_FMT_UYVY, .code = MEDIA_BUS_FMT_UYVY8_2X8, .depth = 16, .csi_dt = 0x1e, .check_variants = 1, }, { .fourcc = V4L2_PIX_FMT_YVYU, .code = MEDIA_BUS_FMT_YVYU8_2X8, .depth = 16, .csi_dt = 0x1e, .check_variants = 1, }, { .fourcc = V4L2_PIX_FMT_VYUY, .code = MEDIA_BUS_FMT_VYUY8_2X8, .depth = 16, .csi_dt = 0x1e, .check_variants = 1, }, { .fourcc = V4L2_PIX_FMT_YUYV, .code = MEDIA_BUS_FMT_YUYV8_1X16, .depth = 16, .csi_dt = 0x1e, }, { .fourcc = V4L2_PIX_FMT_UYVY, .code = MEDIA_BUS_FMT_UYVY8_1X16, .depth = 16, .csi_dt = 0x1e, }, { .fourcc = V4L2_PIX_FMT_YVYU, .code = MEDIA_BUS_FMT_YVYU8_1X16, .depth = 16, .csi_dt = 0x1e, }, { .fourcc = V4L2_PIX_FMT_VYUY, .code = MEDIA_BUS_FMT_VYUY8_1X16, .depth = 16, .csi_dt = 0x1e, }, { /* RGB Formats */ .fourcc = V4L2_PIX_FMT_RGB565, /* gggbbbbb rrrrrggg */ .code = MEDIA_BUS_FMT_RGB565_2X8_LE, .depth = 16, .csi_dt = 0x22, }, { .fourcc = V4L2_PIX_FMT_RGB565X, /* rrrrrggg gggbbbbb */ .code = MEDIA_BUS_FMT_RGB565_2X8_BE, .depth = 16, .csi_dt = 0x22 }, { .fourcc = V4L2_PIX_FMT_RGB555, /* gggbbbbb arrrrrgg */ .code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_LE, .depth = 16, .csi_dt = 0x21, }, { .fourcc = V4L2_PIX_FMT_RGB555X, /* arrrrrgg gggbbbbb */ .code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE, .depth = 16, .csi_dt = 0x21, }, { .fourcc = V4L2_PIX_FMT_RGB24, /* rgb */ .code = MEDIA_BUS_FMT_RGB888_1X24, .depth = 24, .csi_dt = 0x24, }, { .fourcc = V4L2_PIX_FMT_BGR24, /* bgr */ .code = MEDIA_BUS_FMT_BGR888_1X24, .depth = 24, .csi_dt = 0x24, }, { .fourcc = V4L2_PIX_FMT_RGB32, /* argb */ .code = MEDIA_BUS_FMT_ARGB8888_1X32, .depth = 32, .csi_dt = 0x0, }, { /* Bayer Formats */ .fourcc = V4L2_PIX_FMT_SBGGR8, .code = MEDIA_BUS_FMT_SBGGR8_1X8, .depth = 8, .csi_dt = 0x2a, }, { .fourcc = V4L2_PIX_FMT_SGBRG8, .code = MEDIA_BUS_FMT_SGBRG8_1X8, .depth = 8, .csi_dt = 0x2a, }, { .fourcc = V4L2_PIX_FMT_SGRBG8, .code = MEDIA_BUS_FMT_SGRBG8_1X8, .depth = 8, .csi_dt = 0x2a, }, { .fourcc = V4L2_PIX_FMT_SRGGB8, .code = MEDIA_BUS_FMT_SRGGB8_1X8, .depth = 8, .csi_dt = 0x2a, }, { .fourcc = V4L2_PIX_FMT_SBGGR10P, .repacked_fourcc = V4L2_PIX_FMT_SBGGR10, .code = MEDIA_BUS_FMT_SBGGR10_1X10, .depth = 10, .csi_dt = 0x2b, }, { .fourcc = V4L2_PIX_FMT_SGBRG10P, .repacked_fourcc = V4L2_PIX_FMT_SGBRG10, .code = MEDIA_BUS_FMT_SGBRG10_1X10, .depth = 10, .csi_dt = 0x2b, }, { .fourcc = V4L2_PIX_FMT_SGRBG10P, .repacked_fourcc = V4L2_PIX_FMT_SGRBG10, .code = MEDIA_BUS_FMT_SGRBG10_1X10, .depth = 10, .csi_dt = 0x2b, }, { .fourcc = V4L2_PIX_FMT_SRGGB10P, .repacked_fourcc = V4L2_PIX_FMT_SRGGB10, .code = MEDIA_BUS_FMT_SRGGB10_1X10, .depth = 10, .csi_dt = 0x2b, }, { .fourcc = V4L2_PIX_FMT_SBGGR12P, .repacked_fourcc = V4L2_PIX_FMT_SBGGR12, .code = MEDIA_BUS_FMT_SBGGR12_1X12, .depth = 12, .csi_dt = 0x2c, }, { .fourcc = V4L2_PIX_FMT_SGBRG12P, .repacked_fourcc = V4L2_PIX_FMT_SGBRG12, .code = MEDIA_BUS_FMT_SGBRG12_1X12, .depth = 12, .csi_dt = 0x2c, }, { .fourcc = V4L2_PIX_FMT_SGRBG12P, .repacked_fourcc = V4L2_PIX_FMT_SGRBG12, .code = MEDIA_BUS_FMT_SGRBG12_1X12, .depth = 12, .csi_dt = 0x2c, }, { .fourcc = V4L2_PIX_FMT_SRGGB12P, .repacked_fourcc = V4L2_PIX_FMT_SRGGB12, .code = MEDIA_BUS_FMT_SRGGB12_1X12, .depth = 12, .csi_dt = 0x2c, }, { .fourcc = V4L2_PIX_FMT_SBGGR14P, .repacked_fourcc = V4L2_PIX_FMT_SBGGR14, .code = MEDIA_BUS_FMT_SBGGR14_1X14, .depth = 14, .csi_dt = 0x2d, }, { .fourcc = V4L2_PIX_FMT_SGBRG14P, .repacked_fourcc = V4L2_PIX_FMT_SGBRG14, .code = MEDIA_BUS_FMT_SGBRG14_1X14, .depth = 14, .csi_dt = 0x2d, }, { .fourcc = V4L2_PIX_FMT_SGRBG14P, .repacked_fourcc = V4L2_PIX_FMT_SGRBG14, .code = MEDIA_BUS_FMT_SGRBG14_1X14, .depth = 14, .csi_dt = 0x2d, }, { .fourcc = V4L2_PIX_FMT_SRGGB14P, .repacked_fourcc = V4L2_PIX_FMT_SRGGB14, .code = MEDIA_BUS_FMT_SRGGB14_1X14, .depth = 14, .csi_dt = 0x2d, }, { /* * 16 bit Bayer formats could be supported, but there is no CSI2 * data_type defined for raw 16, and no sensors that produce it at * present. */ /* Greyscale formats */ .fourcc = V4L2_PIX_FMT_GREY, .code = MEDIA_BUS_FMT_Y8_1X8, .depth = 8, .csi_dt = 0x2a, }, { .fourcc = V4L2_PIX_FMT_Y10P, .repacked_fourcc = V4L2_PIX_FMT_Y10, .code = MEDIA_BUS_FMT_Y10_1X10, .depth = 10, .csi_dt = 0x2b, }, { .fourcc = V4L2_PIX_FMT_Y12P, .repacked_fourcc = V4L2_PIX_FMT_Y12, .code = MEDIA_BUS_FMT_Y12_1X12, .depth = 12, .csi_dt = 0x2c, }, { .fourcc = V4L2_PIX_FMT_Y14P, .repacked_fourcc = V4L2_PIX_FMT_Y14, .code = MEDIA_BUS_FMT_Y14_1X14, .depth = 14, .csi_dt = 0x2d, }, /* Embedded data format */ { .fourcc = V4L2_META_FMT_SENSOR_DATA, .code = MEDIA_BUS_FMT_SENSOR_DATA, .depth = 8, } }; struct unicam_buffer { struct vb2_v4l2_buffer vb; struct list_head list; }; static inline struct unicam_buffer *to_unicam_buffer(struct vb2_buffer *vb) { return container_of(vb, struct unicam_buffer, vb.vb2_buf); } struct unicam_node { bool registered; int open; bool streaming; unsigned int pad_id; /* Pointer pointing to current v4l2_buffer */ struct unicam_buffer *cur_frm; /* Pointer pointing to next v4l2_buffer */ struct unicam_buffer *next_frm; /* video capture */ const struct unicam_fmt *fmt; /* Used to store current pixel format */ struct v4l2_format v_fmt; /* Used to store current mbus frame format */ struct v4l2_mbus_framefmt m_fmt; /* Buffer queue used in video-buf */ struct vb2_queue buffer_queue; /* Queue of filled frames */ struct list_head dma_queue; /* IRQ lock for DMA queue */ spinlock_t dma_queue_lock; /* lock used to access this structure */ struct mutex lock; /* Identifies video device for this channel */ struct video_device video_dev; /* Pointer to the parent handle */ struct unicam_device *dev; struct media_pad pad; unsigned int embedded_lines; /* * Dummy buffer intended to be used by unicam * if we have no other queued buffers to swap to. */ void *dummy_buf_cpu_addr; dma_addr_t dummy_buf_dma_addr; }; struct unicam_device { struct kref kref; /* V4l2 specific parameters */ struct v4l2_async_subdev asd; /* peripheral base address */ void __iomem *base; /* clock gating base address */ void __iomem *clk_gate_base; /* lp clock handle */ struct clk *clock; /* vpu clock handle */ struct clk *vpu_clock; /* vpu clock request */ struct clk_request *vpu_req; /* clock status for error handling */ bool clocks_enabled; /* V4l2 device */ struct v4l2_device v4l2_dev; struct media_device mdev; /* parent device */ struct platform_device *pdev; /* subdevice async Notifier */ struct v4l2_async_notifier notifier; unsigned int sequence; /* ptr to sub device */ struct v4l2_subdev *sensor; /* Pad config for the sensor */ struct v4l2_subdev_state *sensor_state; enum v4l2_mbus_type bus_type; /* * Stores bus.mipi_csi2.flags for CSI2 sensors, or * bus.mipi_csi1.strobe for CCP2. */ unsigned int bus_flags; unsigned int max_data_lanes; unsigned int active_data_lanes; bool sensor_embedded_data; struct unicam_node node[MAX_NODES]; struct v4l2_ctrl_handler ctrl_handler; }; static inline struct unicam_device * to_unicam_device(struct v4l2_device *v4l2_dev) { return container_of(v4l2_dev, struct unicam_device, v4l2_dev); } /* Hardware access */ static inline void clk_write(struct unicam_device *dev, u32 val) { writel(val | 0x5a000000, dev->clk_gate_base); } static inline u32 reg_read(struct unicam_device *dev, u32 offset) { return readl(dev->base + offset); } static inline void reg_write(struct unicam_device *dev, u32 offset, u32 val) { writel(val, dev->base + offset); } static inline int get_field(u32 value, u32 mask) { return (value & mask) >> __ffs(mask); } static inline void set_field(u32 *valp, u32 field, u32 mask) { u32 val = *valp; val &= ~mask; val |= (field << __ffs(mask)) & mask; *valp = val; } static inline u32 reg_read_field(struct unicam_device *dev, u32 offset, u32 mask) { return get_field(reg_read(dev, offset), mask); } static inline void reg_write_field(struct unicam_device *dev, u32 offset, u32 field, u32 mask) { u32 val = reg_read(dev, offset); set_field(&val, field, mask); reg_write(dev, offset, val); } /* Power management functions */ static inline int unicam_runtime_get(struct unicam_device *dev) { return pm_runtime_get_sync(&dev->pdev->dev); } static inline void unicam_runtime_put(struct unicam_device *dev) { pm_runtime_put_sync(&dev->pdev->dev); } /* Format setup functions */ static const struct unicam_fmt *find_format_by_code(u32 code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(formats); i++) { if (formats[i].code == code) return &formats[i]; } return NULL; } static int check_mbus_format(struct unicam_device *dev, const struct unicam_fmt *format) { unsigned int i; int ret = 0; for (i = 0; !ret && i < MAX_ENUM_MBUS_CODE; i++) { struct v4l2_subdev_mbus_code_enum mbus_code = { .index = i, .pad = IMAGE_PAD, .which = V4L2_SUBDEV_FORMAT_ACTIVE, }; ret = v4l2_subdev_call(dev->sensor, pad, enum_mbus_code, NULL, &mbus_code); if (!ret && mbus_code.code == format->code) return 1; } return 0; } static const struct unicam_fmt *find_format_by_pix(struct unicam_device *dev, u32 pixelformat) { unsigned int i; for (i = 0; i < ARRAY_SIZE(formats); i++) { if (formats[i].fourcc == pixelformat || formats[i].repacked_fourcc == pixelformat) { if (formats[i].check_variants && !check_mbus_format(dev, &formats[i])) continue; return &formats[i]; } } return NULL; } static unsigned int bytes_per_line(u32 width, const struct unicam_fmt *fmt, u32 v4l2_fourcc) { if (v4l2_fourcc == fmt->repacked_fourcc) /* Repacking always goes to 16bpp */ return ALIGN(width << 1, BPL_ALIGNMENT); else return ALIGN((width * fmt->depth) >> 3, BPL_ALIGNMENT); } static int __subdev_get_format(struct unicam_device *dev, struct v4l2_mbus_framefmt *fmt, int pad_id) { struct v4l2_subdev_format sd_fmt = { .which = V4L2_SUBDEV_FORMAT_ACTIVE, .pad = pad_id }; int ret; ret = v4l2_subdev_call(dev->sensor, pad, get_fmt, dev->sensor_state, &sd_fmt); if (ret < 0) return ret; *fmt = sd_fmt.format; unicam_dbg(1, dev, "%s %dx%d code:%04x\n", __func__, fmt->width, fmt->height, fmt->code); return 0; } static int __subdev_set_format(struct unicam_device *dev, struct v4l2_mbus_framefmt *fmt, int pad_id) { struct v4l2_subdev_format sd_fmt = { .which = V4L2_SUBDEV_FORMAT_ACTIVE, .pad = pad_id }; int ret; sd_fmt.format = *fmt; ret = v4l2_subdev_call(dev->sensor, pad, set_fmt, dev->sensor_state, &sd_fmt); if (ret < 0) return ret; *fmt = sd_fmt.format; if (pad_id == IMAGE_PAD) unicam_dbg(1, dev, "%s %dx%d code:%04x\n", __func__, fmt->width, fmt->height, fmt->code); else unicam_dbg(1, dev, "%s Embedded data code:%04x\n", __func__, sd_fmt.format.code); return 0; } static int unicam_calc_format_size_bpl(struct unicam_device *dev, const struct unicam_fmt *fmt, struct v4l2_format *f) { unsigned int min_bytesperline; v4l_bound_align_image(&f->fmt.pix.width, MIN_WIDTH, MAX_WIDTH, 2, &f->fmt.pix.height, MIN_HEIGHT, MAX_HEIGHT, 0, 0); min_bytesperline = bytes_per_line(f->fmt.pix.width, fmt, f->fmt.pix.pixelformat); if (f->fmt.pix.bytesperline > min_bytesperline && f->fmt.pix.bytesperline <= MAX_BYTESPERLINE) f->fmt.pix.bytesperline = ALIGN(f->fmt.pix.bytesperline, BPL_ALIGNMENT); else f->fmt.pix.bytesperline = min_bytesperline; f->fmt.pix.sizeimage = f->fmt.pix.height * f->fmt.pix.bytesperline; unicam_dbg(3, dev, "%s: fourcc: %08X size: %dx%d bpl:%d img_size:%d\n", __func__, f->fmt.pix.pixelformat, f->fmt.pix.width, f->fmt.pix.height, f->fmt.pix.bytesperline, f->fmt.pix.sizeimage); return 0; } static int unicam_reset_format(struct unicam_node *node) { struct unicam_device *dev = node->dev; struct v4l2_mbus_framefmt mbus_fmt; int ret; if (dev->sensor_embedded_data || node->pad_id != METADATA_PAD) { ret = __subdev_get_format(dev, &mbus_fmt, node->pad_id); if (ret) { unicam_err(dev, "Failed to get_format - ret %d\n", ret); return ret; } if (mbus_fmt.code != node->fmt->code) { unicam_err(dev, "code mismatch - fmt->code %08x, mbus_fmt.code %08x\n", node->fmt->code, mbus_fmt.code); return ret; } } if (node->pad_id == IMAGE_PAD) { v4l2_fill_pix_format(&node->v_fmt.fmt.pix, &mbus_fmt); node->v_fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; unicam_calc_format_size_bpl(dev, node->fmt, &node->v_fmt); } else { node->v_fmt.type = V4L2_BUF_TYPE_META_CAPTURE; node->v_fmt.fmt.meta.dataformat = V4L2_META_FMT_SENSOR_DATA; if (dev->sensor_embedded_data) { node->v_fmt.fmt.meta.buffersize = mbus_fmt.width * mbus_fmt.height; node->embedded_lines = mbus_fmt.height; } else { node->v_fmt.fmt.meta.buffersize = UNICAM_EMBEDDED_SIZE; node->embedded_lines = 1; } } node->m_fmt = mbus_fmt; return 0; } static void unicam_wr_dma_addr(struct unicam_device *dev, dma_addr_t dmaaddr, unsigned int buffer_size, int pad_id) { dma_addr_t endaddr = dmaaddr + buffer_size; if (pad_id == IMAGE_PAD) { reg_write(dev, UNICAM_IBSA0, dmaaddr); reg_write(dev, UNICAM_IBEA0, endaddr); } else { reg_write(dev, UNICAM_DBSA0, dmaaddr); reg_write(dev, UNICAM_DBEA0, endaddr); } } static unsigned int unicam_get_lines_done(struct unicam_device *dev) { dma_addr_t start_addr, cur_addr; unsigned int stride = dev->node[IMAGE_PAD].v_fmt.fmt.pix.bytesperline; struct unicam_buffer *frm = dev->node[IMAGE_PAD].cur_frm; if (!frm) return 0; start_addr = vb2_dma_contig_plane_dma_addr(&frm->vb.vb2_buf, 0); cur_addr = reg_read(dev, UNICAM_IBWP); return (unsigned int)(cur_addr - start_addr) / stride; } static void unicam_schedule_next_buffer(struct unicam_node *node) { struct unicam_device *dev = node->dev; struct unicam_buffer *buf; unsigned int size; dma_addr_t addr; buf = list_first_entry(&node->dma_queue, struct unicam_buffer, list); node->next_frm = buf; list_del(&buf->list); addr = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0); size = (node->pad_id == IMAGE_PAD) ? node->v_fmt.fmt.pix.sizeimage : node->v_fmt.fmt.meta.buffersize; unicam_wr_dma_addr(dev, addr, size, node->pad_id); } static void unicam_schedule_dummy_buffer(struct unicam_node *node) { struct unicam_device *dev = node->dev; unicam_dbg(3, dev, "Scheduling dummy buffer for node %d\n", node->pad_id); unicam_wr_dma_addr(dev, node->dummy_buf_dma_addr, DUMMY_BUF_SIZE, node->pad_id); node->next_frm = NULL; } static void unicam_process_buffer_complete(struct unicam_node *node, unsigned int sequence) { node->cur_frm->vb.field = node->m_fmt.field; node->cur_frm->vb.sequence = sequence; vb2_buffer_done(&node->cur_frm->vb.vb2_buf, VB2_BUF_STATE_DONE); } static void unicam_queue_event_sof(struct unicam_device *unicam) { struct v4l2_event event = { .type = V4L2_EVENT_FRAME_SYNC, .u.frame_sync.frame_sequence = unicam->sequence, }; v4l2_event_queue(&unicam->node[IMAGE_PAD].video_dev, &event); } /* * unicam_isr : ISR handler for unicam capture * @irq: irq number * @dev_id: dev_id ptr * * It changes status of the captured buffer, takes next buffer from the queue * and sets its address in unicam registers */ static irqreturn_t unicam_isr(int irq, void *dev) { struct unicam_device *unicam = dev; unsigned int lines_done = unicam_get_lines_done(dev); unsigned int sequence = unicam->sequence; unsigned int i; u32 ista, sta; bool fe; u64 ts; sta = reg_read(unicam, UNICAM_STA); /* Write value back to clear the interrupts */ reg_write(unicam, UNICAM_STA, sta); ista = reg_read(unicam, UNICAM_ISTA); /* Write value back to clear the interrupts */ reg_write(unicam, UNICAM_ISTA, ista); unicam_dbg(3, unicam, "ISR: ISTA: 0x%X, STA: 0x%X, sequence %d, lines done %d", ista, sta, sequence, lines_done); if (!(sta & (UNICAM_IS | UNICAM_PI0))) return IRQ_HANDLED; /* * Look for either the Frame End interrupt or the Packet Capture status * to signal a frame end. */ fe = (ista & UNICAM_FEI || sta & UNICAM_PI0); /* * We must run the frame end handler first. If we have a valid next_frm * and we get a simultaneout FE + FS interrupt, running the FS handler * first would null out the next_frm ptr and we would have lost the * buffer forever. */ if (fe) { /* * Ensure we have swapped buffers already as we can't * stop the peripheral. If no buffer is available, use a * dummy buffer to dump out frames until we get a new buffer * to use. */ for (i = 0; i < ARRAY_SIZE(unicam->node); i++) { if (!unicam->node[i].streaming) continue; /* * If cur_frm == next_frm, it means we have not had * a chance to swap buffers, likely due to having * multiple interrupts occurring simultaneously (like FE * + FS + LS). In this case, we cannot signal the buffer * as complete, as the HW will reuse that buffer. */ if (unicam->node[i].cur_frm && unicam->node[i].cur_frm != unicam->node[i].next_frm) unicam_process_buffer_complete(&unicam->node[i], sequence); unicam->node[i].cur_frm = unicam->node[i].next_frm; } unicam->sequence++; } if (ista & UNICAM_FSI) { /* * Timestamp is to be when the first data byte was captured, * aka frame start. */ ts = ktime_get_ns(); for (i = 0; i < ARRAY_SIZE(unicam->node); i++) { if (!unicam->node[i].streaming) continue; if (unicam->node[i].cur_frm) unicam->node[i].cur_frm->vb.vb2_buf.timestamp = ts; /* * Set the next frame output to go to a dummy frame * if we have not managed to obtain another frame * from the queue. */ unicam_schedule_dummy_buffer(&unicam->node[i]); } unicam_queue_event_sof(unicam); } /* * Cannot swap buffer at frame end, there may be a race condition * where the HW does not actually swap it if the new frame has * already started. */ if (ista & (UNICAM_FSI | UNICAM_LCI) && !fe) { for (i = 0; i < ARRAY_SIZE(unicam->node); i++) { if (!unicam->node[i].streaming) continue; spin_lock(&unicam->node[i].dma_queue_lock); if (!list_empty(&unicam->node[i].dma_queue) && !unicam->node[i].next_frm) unicam_schedule_next_buffer(&unicam->node[i]); spin_unlock(&unicam->node[i].dma_queue_lock); } } if (reg_read(unicam, UNICAM_ICTL) & UNICAM_FCM) { /* Switch out of trigger mode if selected */ reg_write_field(unicam, UNICAM_ICTL, 1, UNICAM_TFC); reg_write_field(unicam, UNICAM_ICTL, 0, UNICAM_FCM); } return IRQ_HANDLED; } static int unicam_querycap(struct file *file, void *priv, struct v4l2_capability *cap) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; strscpy(cap->driver, UNICAM_MODULE_NAME, sizeof(cap->driver)); strscpy(cap->card, UNICAM_MODULE_NAME, sizeof(cap->card)); snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s", dev_name(&dev->pdev->dev)); cap->capabilities |= V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_META_CAPTURE; return 0; } static int unicam_enum_fmt_vid_cap(struct file *file, void *priv, struct v4l2_fmtdesc *f) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; unsigned int index = 0; unsigned int i; int ret = 0; if (node->pad_id != IMAGE_PAD) return -EINVAL; for (i = 0; !ret && i < MAX_ENUM_MBUS_CODE; i++) { struct v4l2_subdev_mbus_code_enum mbus_code = { .index = i, .pad = IMAGE_PAD, .which = V4L2_SUBDEV_FORMAT_ACTIVE, }; const struct unicam_fmt *fmt; ret = v4l2_subdev_call(dev->sensor, pad, enum_mbus_code, NULL, &mbus_code); if (ret < 0) { unicam_dbg(2, dev, "subdev->enum_mbus_code idx %d returned %d - index invalid\n", i, ret); return -EINVAL; } fmt = find_format_by_code(mbus_code.code); if (fmt) { if (fmt->fourcc) { if (index == f->index) { f->pixelformat = fmt->fourcc; break; } index++; } if (fmt->repacked_fourcc) { if (index == f->index) { f->pixelformat = fmt->repacked_fourcc; break; } index++; } } } return 0; } static int unicam_g_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct v4l2_mbus_framefmt mbus_fmt = {0}; struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; const struct unicam_fmt *fmt = NULL; int ret; if (node->pad_id != IMAGE_PAD) return -EINVAL; /* * If a flip has occurred in the sensor, the fmt code might have * changed. So we will need to re-fetch the format from the subdevice. */ ret = __subdev_get_format(dev, &mbus_fmt, node->pad_id); if (ret) return -EINVAL; /* Find the V4L2 format from mbus code. We must match a known format. */ fmt = find_format_by_code(mbus_fmt.code); if (!fmt) return -EINVAL; if (node->fmt != fmt) { /* * The sensor format has changed so the pixelformat needs to * be updated. Try and retain the packed/unpacked choice if * at all possible. */ if (node->fmt->repacked_fourcc == node->v_fmt.fmt.pix.pixelformat) /* Using the repacked format */ node->v_fmt.fmt.pix.pixelformat = fmt->repacked_fourcc; else /* Using the native format */ node->v_fmt.fmt.pix.pixelformat = fmt->fourcc; node->fmt = fmt; } *f = node->v_fmt; return 0; } static const struct unicam_fmt * get_first_supported_format(struct unicam_device *dev) { struct v4l2_subdev_mbus_code_enum mbus_code; const struct unicam_fmt *fmt = NULL; unsigned int i; int ret = 0; for (i = 0; ret != -EINVAL && ret != -ENOIOCTLCMD; ++i) { memset(&mbus_code, 0, sizeof(mbus_code)); mbus_code.index = i; mbus_code.pad = IMAGE_PAD; mbus_code.which = V4L2_SUBDEV_FORMAT_ACTIVE; ret = v4l2_subdev_call(dev->sensor, pad, enum_mbus_code, NULL, &mbus_code); if (ret < 0) { unicam_dbg(2, dev, "subdev->enum_mbus_code idx %u returned %d - continue\n", i, ret); continue; } unicam_dbg(2, dev, "subdev %s: code: 0x%08x idx: %u\n", dev->sensor->name, mbus_code.code, i); fmt = find_format_by_code(mbus_code.code); unicam_dbg(2, dev, "fmt 0x%08x returned as %p, V4L2 FOURCC 0x%08x, csi_dt 0x%02x\n", mbus_code.code, fmt, fmt ? fmt->fourcc : 0, fmt ? fmt->csi_dt : 0); if (fmt) return fmt; } return NULL; } static int unicam_try_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; struct v4l2_subdev_format sd_fmt = { .which = V4L2_SUBDEV_FORMAT_TRY, .pad = IMAGE_PAD }; struct v4l2_mbus_framefmt *mbus_fmt = &sd_fmt.format; const struct unicam_fmt *fmt; int ret; if (node->pad_id != IMAGE_PAD) return -EINVAL; fmt = find_format_by_pix(dev, f->fmt.pix.pixelformat); if (!fmt) { /* * Pixel format not supported by unicam. Choose the first * supported format, and let the sensor choose something else. */ unicam_dbg(3, dev, "Fourcc format (0x%08x) not found. Use first format.\n", f->fmt.pix.pixelformat); fmt = &formats[0]; f->fmt.pix.pixelformat = fmt->fourcc; } v4l2_fill_mbus_format(mbus_fmt, &f->fmt.pix, fmt->code); /* * No support for receiving interlaced video, so never * request it from the sensor subdev. */ mbus_fmt->field = V4L2_FIELD_NONE; ret = v4l2_subdev_call(dev->sensor, pad, set_fmt, dev->sensor_state, &sd_fmt); if (ret && ret != -ENOIOCTLCMD && ret != -ENODEV) return ret; if (mbus_fmt->field != V4L2_FIELD_NONE) unicam_info(dev, "Sensor trying to send interlaced video - results may be unpredictable\n"); v4l2_fill_pix_format(&f->fmt.pix, &sd_fmt.format); if (mbus_fmt->code != fmt->code) { /* Sensor has returned an alternate format */ fmt = find_format_by_code(mbus_fmt->code); if (!fmt) { /* * The alternate format is one unicam can't support. * Find the first format that is supported by both, and * then set that. */ fmt = get_first_supported_format(dev); mbus_fmt->code = fmt->code; ret = v4l2_subdev_call(dev->sensor, pad, set_fmt, dev->sensor_state, &sd_fmt); if (ret && ret != -ENOIOCTLCMD && ret != -ENODEV) return ret; if (mbus_fmt->field != V4L2_FIELD_NONE) unicam_info(dev, "Sensor trying to send interlaced video - results may be unpredictable\n"); v4l2_fill_pix_format(&f->fmt.pix, &sd_fmt.format); if (mbus_fmt->code != fmt->code) { /* * We've set a format that the sensor reports * as being supported, but it refuses to set it. * Not much else we can do. * Assume that the sensor driver may accept the * format when it is set (rather than tried). */ unicam_err(dev, "Sensor won't accept default format, and Unicam can't support sensor default\n"); } } if (fmt->fourcc) f->fmt.pix.pixelformat = fmt->fourcc; else f->fmt.pix.pixelformat = fmt->repacked_fourcc; } return unicam_calc_format_size_bpl(dev, fmt, f); } static int unicam_s_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; struct vb2_queue *q = &node->buffer_queue; struct v4l2_mbus_framefmt mbus_fmt = {0}; const struct unicam_fmt *fmt; int ret; if (vb2_is_busy(q)) return -EBUSY; ret = unicam_try_fmt_vid_cap(file, priv, f); if (ret < 0) return ret; fmt = find_format_by_pix(dev, f->fmt.pix.pixelformat); if (!fmt) { /* * Unknown pixel format - adopt a default. * This shouldn't happen as try_fmt should have resolved any * issues first. */ fmt = get_first_supported_format(dev); if (!fmt) /* * It shouldn't be possible to get here with no * supported formats */ return -EINVAL; f->fmt.pix.pixelformat = fmt->fourcc; return -EINVAL; } v4l2_fill_mbus_format(&mbus_fmt, &f->fmt.pix, fmt->code); ret = __subdev_set_format(dev, &mbus_fmt, node->pad_id); if (ret) { unicam_dbg(3, dev, "%s __subdev_set_format failed %d\n", __func__, ret); return ret; } /* Just double check nothing has gone wrong */ if (mbus_fmt.code != fmt->code) { unicam_dbg(3, dev, "%s subdev changed format on us, this should not happen\n", __func__); return -EINVAL; } node->fmt = fmt; node->v_fmt.fmt.pix.pixelformat = f->fmt.pix.pixelformat; node->v_fmt.fmt.pix.bytesperline = f->fmt.pix.bytesperline; unicam_reset_format(node); unicam_dbg(3, dev, "%s %dx%d, mbus_fmt 0x%08X, V4L2 pix 0x%08X.\n", __func__, node->v_fmt.fmt.pix.width, node->v_fmt.fmt.pix.height, mbus_fmt.code, node->v_fmt.fmt.pix.pixelformat); *f = node->v_fmt; return 0; } static int unicam_enum_fmt_meta_cap(struct file *file, void *priv, struct v4l2_fmtdesc *f) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; const struct unicam_fmt *fmt; u32 code; int ret = 0; if (node->pad_id != METADATA_PAD || f->index != 0) return -EINVAL; if (dev->sensor_embedded_data) { struct v4l2_subdev_mbus_code_enum mbus_code = { .index = f->index, .which = V4L2_SUBDEV_FORMAT_ACTIVE, .pad = METADATA_PAD, }; ret = v4l2_subdev_call(dev->sensor, pad, enum_mbus_code, NULL, &mbus_code); if (ret < 0) { unicam_dbg(2, dev, "subdev->enum_mbus_code idx 0 returned %d - index invalid\n", ret); return -EINVAL; } code = mbus_code.code; } else { code = MEDIA_BUS_FMT_SENSOR_DATA; } fmt = find_format_by_code(code); if (fmt) f->pixelformat = fmt->fourcc; return 0; } static int unicam_g_fmt_meta_cap(struct file *file, void *priv, struct v4l2_format *f) { struct unicam_node *node = video_drvdata(file); if (node->pad_id != METADATA_PAD) return -EINVAL; *f = node->v_fmt; return 0; } static int unicam_queue_setup(struct vb2_queue *vq, unsigned int *nbuffers, unsigned int *nplanes, unsigned int sizes[], struct device *alloc_devs[]) { struct unicam_node *node = vb2_get_drv_priv(vq); struct unicam_device *dev = node->dev; unsigned int size = node->pad_id == IMAGE_PAD ? node->v_fmt.fmt.pix.sizeimage : node->v_fmt.fmt.meta.buffersize; if (vq->num_buffers + *nbuffers < 3) *nbuffers = 3 - vq->num_buffers; if (*nplanes) { if (sizes[0] < size) { unicam_err(dev, "sizes[0] %i < size %u\n", sizes[0], size); return -EINVAL; } size = sizes[0]; } *nplanes = 1; sizes[0] = size; return 0; } static int unicam_buffer_prepare(struct vb2_buffer *vb) { struct unicam_node *node = vb2_get_drv_priv(vb->vb2_queue); struct unicam_device *dev = node->dev; struct unicam_buffer *buf = to_unicam_buffer(vb); unsigned long size; if (WARN_ON(!node->fmt)) return -EINVAL; size = node->pad_id == IMAGE_PAD ? node->v_fmt.fmt.pix.sizeimage : node->v_fmt.fmt.meta.buffersize; if (vb2_plane_size(vb, 0) < size) { unicam_err(dev, "data will not fit into plane (%lu < %lu)\n", vb2_plane_size(vb, 0), size); return -EINVAL; } vb2_set_plane_payload(&buf->vb.vb2_buf, 0, size); return 0; } static void unicam_buffer_queue(struct vb2_buffer *vb) { struct unicam_node *node = vb2_get_drv_priv(vb->vb2_queue); struct unicam_buffer *buf = to_unicam_buffer(vb); unsigned long flags; spin_lock_irqsave(&node->dma_queue_lock, flags); list_add_tail(&buf->list, &node->dma_queue); spin_unlock_irqrestore(&node->dma_queue_lock, flags); } static void unicam_set_packing_config(struct unicam_device *dev) { u32 pack, unpack; u32 val; if (dev->node[IMAGE_PAD].v_fmt.fmt.pix.pixelformat == dev->node[IMAGE_PAD].fmt->fourcc) { unpack = UNICAM_PUM_NONE; pack = UNICAM_PPM_NONE; } else { switch (dev->node[IMAGE_PAD].fmt->depth) { case 8: unpack = UNICAM_PUM_UNPACK8; break; case 10: unpack = UNICAM_PUM_UNPACK10; break; case 12: unpack = UNICAM_PUM_UNPACK12; break; case 14: unpack = UNICAM_PUM_UNPACK14; break; case 16: unpack = UNICAM_PUM_UNPACK16; break; default: unpack = UNICAM_PUM_NONE; break; } /* Repacking is always to 16bpp */ pack = UNICAM_PPM_PACK16; } val = 0; set_field(&val, unpack, UNICAM_PUM_MASK); set_field(&val, pack, UNICAM_PPM_MASK); reg_write(dev, UNICAM_IPIPE, val); } static void unicam_cfg_image_id(struct unicam_device *dev) { if (dev->bus_type == V4L2_MBUS_CSI2_DPHY) { /* CSI2 mode, hardcode VC 0 for now. */ reg_write(dev, UNICAM_IDI0, (0 << 6) | dev->node[IMAGE_PAD].fmt->csi_dt); } else { /* CCP2 mode */ reg_write(dev, UNICAM_IDI0, 0x80 | dev->node[IMAGE_PAD].fmt->csi_dt); } } static void unicam_enable_ed(struct unicam_device *dev) { u32 val = reg_read(dev, UNICAM_DCS); set_field(&val, 2, UNICAM_EDL_MASK); /* Do not wrap at the end of the embedded data buffer */ set_field(&val, 0, UNICAM_DBOB); reg_write(dev, UNICAM_DCS, val); } static void unicam_start_rx(struct unicam_device *dev, dma_addr_t *addr) { int line_int_freq = dev->node[IMAGE_PAD].v_fmt.fmt.pix.height >> 2; unsigned int size, i; u32 val; if (line_int_freq < 128) line_int_freq = 128; /* Enable lane clocks */ val = 1; for (i = 0; i < dev->active_data_lanes; i++) val = val << 2 | 1; clk_write(dev, val); /* Basic init */ reg_write(dev, UNICAM_CTRL, UNICAM_MEM); /* Enable analogue control, and leave in reset. */ val = UNICAM_AR; set_field(&val, 7, UNICAM_CTATADJ_MASK); set_field(&val, 7, UNICAM_PTATADJ_MASK); reg_write(dev, UNICAM_ANA, val); usleep_range(1000, 2000); /* Come out of reset */ reg_write_field(dev, UNICAM_ANA, 0, UNICAM_AR); /* Peripheral reset */ reg_write_field(dev, UNICAM_CTRL, 1, UNICAM_CPR); reg_write_field(dev, UNICAM_CTRL, 0, UNICAM_CPR); reg_write_field(dev, UNICAM_CTRL, 0, UNICAM_CPE); /* Enable Rx control. */ val = reg_read(dev, UNICAM_CTRL); if (dev->bus_type == V4L2_MBUS_CSI2_DPHY) { set_field(&val, UNICAM_CPM_CSI2, UNICAM_CPM_MASK); set_field(&val, UNICAM_DCM_STROBE, UNICAM_DCM_MASK); } else { set_field(&val, UNICAM_CPM_CCP2, UNICAM_CPM_MASK); set_field(&val, dev->bus_flags, UNICAM_DCM_MASK); } /* Packet framer timeout */ set_field(&val, 0xf, UNICAM_PFT_MASK); set_field(&val, 128, UNICAM_OET_MASK); reg_write(dev, UNICAM_CTRL, val); reg_write(dev, UNICAM_IHWIN, 0); reg_write(dev, UNICAM_IVWIN, 0); /* AXI bus access QoS setup */ val = reg_read(dev, UNICAM_PRI); set_field(&val, 0, UNICAM_BL_MASK); set_field(&val, 0, UNICAM_BS_MASK); set_field(&val, 0xe, UNICAM_PP_MASK); set_field(&val, 8, UNICAM_NP_MASK); set_field(&val, 2, UNICAM_PT_MASK); set_field(&val, 1, UNICAM_PE); reg_write(dev, UNICAM_PRI, val); reg_write_field(dev, UNICAM_ANA, 0, UNICAM_DDL); /* Always start in trigger frame capture mode (UNICAM_FCM set) */ val = UNICAM_FSIE | UNICAM_FEIE | UNICAM_FCM | UNICAM_IBOB; set_field(&val, line_int_freq, UNICAM_LCIE_MASK); reg_write(dev, UNICAM_ICTL, val); reg_write(dev, UNICAM_STA, UNICAM_STA_MASK_ALL); reg_write(dev, UNICAM_ISTA, UNICAM_ISTA_MASK_ALL); /* tclk_term_en */ reg_write_field(dev, UNICAM_CLT, 2, UNICAM_CLT1_MASK); /* tclk_settle */ reg_write_field(dev, UNICAM_CLT, 6, UNICAM_CLT2_MASK); /* td_term_en */ reg_write_field(dev, UNICAM_DLT, 2, UNICAM_DLT1_MASK); /* ths_settle */ reg_write_field(dev, UNICAM_DLT, 6, UNICAM_DLT2_MASK); /* trx_enable */ reg_write_field(dev, UNICAM_DLT, 0, UNICAM_DLT3_MASK); reg_write_field(dev, UNICAM_CTRL, 0, UNICAM_SOE); /* Packet compare setup - required to avoid missing frame ends */ val = 0; set_field(&val, 1, UNICAM_PCE); set_field(&val, 1, UNICAM_GI); set_field(&val, 1, UNICAM_CPH); set_field(&val, 0, UNICAM_PCVC_MASK); set_field(&val, 1, UNICAM_PCDT_MASK); reg_write(dev, UNICAM_CMP0, val); /* Enable clock lane and set up terminations */ val = 0; if (dev->bus_type == V4L2_MBUS_CSI2_DPHY) { /* CSI2 */ set_field(&val, 1, UNICAM_CLE); set_field(&val, 1, UNICAM_CLLPE); if (dev->bus_flags & V4L2_MBUS_CSI2_CONTINUOUS_CLOCK) { set_field(&val, 1, UNICAM_CLTRE); set_field(&val, 1, UNICAM_CLHSE); } } else { /* CCP2 */ set_field(&val, 1, UNICAM_CLE); set_field(&val, 1, UNICAM_CLHSE); set_field(&val, 1, UNICAM_CLTRE); } reg_write(dev, UNICAM_CLK, val); /* * Enable required data lanes with appropriate terminations. * The same value needs to be written to UNICAM_DATn registers for * the active lanes, and 0 for inactive ones. */ val = 0; if (dev->bus_type == V4L2_MBUS_CSI2_DPHY) { /* CSI2 */ set_field(&val, 1, UNICAM_DLE); set_field(&val, 1, UNICAM_DLLPE); if (dev->bus_flags & V4L2_MBUS_CSI2_CONTINUOUS_CLOCK) { set_field(&val, 1, UNICAM_DLTRE); set_field(&val, 1, UNICAM_DLHSE); } } else { /* CCP2 */ set_field(&val, 1, UNICAM_DLE); set_field(&val, 1, UNICAM_DLHSE); set_field(&val, 1, UNICAM_DLTRE); } reg_write(dev, UNICAM_DAT0, val); if (dev->active_data_lanes == 1) val = 0; reg_write(dev, UNICAM_DAT1, val); if (dev->max_data_lanes > 2) { /* * Registers UNICAM_DAT2 and UNICAM_DAT3 only valid if the * instance supports more than 2 data lanes. */ if (dev->active_data_lanes == 2) val = 0; reg_write(dev, UNICAM_DAT2, val); if (dev->active_data_lanes == 3) val = 0; reg_write(dev, UNICAM_DAT3, val); } reg_write(dev, UNICAM_IBLS, dev->node[IMAGE_PAD].v_fmt.fmt.pix.bytesperline); size = dev->node[IMAGE_PAD].v_fmt.fmt.pix.sizeimage; unicam_wr_dma_addr(dev, addr[IMAGE_PAD], size, IMAGE_PAD); unicam_set_packing_config(dev); unicam_cfg_image_id(dev); val = reg_read(dev, UNICAM_MISC); set_field(&val, 1, UNICAM_FL0); set_field(&val, 1, UNICAM_FL1); reg_write(dev, UNICAM_MISC, val); if (dev->node[METADATA_PAD].streaming && dev->sensor_embedded_data) { size = dev->node[METADATA_PAD].v_fmt.fmt.meta.buffersize; unicam_enable_ed(dev); unicam_wr_dma_addr(dev, addr[METADATA_PAD], size, METADATA_PAD); } /* Enable peripheral */ reg_write_field(dev, UNICAM_CTRL, 1, UNICAM_CPE); /* Load image pointers */ reg_write_field(dev, UNICAM_ICTL, 1, UNICAM_LIP_MASK); /* Load embedded data buffer pointers if needed */ if (dev->node[METADATA_PAD].streaming && dev->sensor_embedded_data) reg_write_field(dev, UNICAM_DCS, 1, UNICAM_LDP); /* * Enable trigger only for the first frame to * sync correctly to the FS from the source. */ reg_write_field(dev, UNICAM_ICTL, 1, UNICAM_TFC); } static void unicam_disable(struct unicam_device *dev) { /* Analogue lane control disable */ reg_write_field(dev, UNICAM_ANA, 1, UNICAM_DDL); /* Stop the output engine */ reg_write_field(dev, UNICAM_CTRL, 1, UNICAM_SOE); /* Disable the data lanes. */ reg_write(dev, UNICAM_DAT0, 0); reg_write(dev, UNICAM_DAT1, 0); if (dev->max_data_lanes > 2) { reg_write(dev, UNICAM_DAT2, 0); reg_write(dev, UNICAM_DAT3, 0); } /* Peripheral reset */ reg_write_field(dev, UNICAM_CTRL, 1, UNICAM_CPR); usleep_range(50, 100); reg_write_field(dev, UNICAM_CTRL, 0, UNICAM_CPR); /* Disable peripheral */ reg_write_field(dev, UNICAM_CTRL, 0, UNICAM_CPE); /* Clear ED setup */ reg_write(dev, UNICAM_DCS, 0); /* Disable all lane clocks */ clk_write(dev, 0); } static void unicam_return_buffers(struct unicam_node *node, enum vb2_buffer_state state) { struct unicam_buffer *buf, *tmp; unsigned long flags; spin_lock_irqsave(&node->dma_queue_lock, flags); list_for_each_entry_safe(buf, tmp, &node->dma_queue, list) { list_del(&buf->list); vb2_buffer_done(&buf->vb.vb2_buf, state); } if (node->cur_frm) vb2_buffer_done(&node->cur_frm->vb.vb2_buf, state); if (node->next_frm && node->cur_frm != node->next_frm) vb2_buffer_done(&node->next_frm->vb.vb2_buf, state); node->cur_frm = NULL; node->next_frm = NULL; spin_unlock_irqrestore(&node->dma_queue_lock, flags); } static int unicam_start_streaming(struct vb2_queue *vq, unsigned int count) { struct unicam_node *node = vb2_get_drv_priv(vq); struct unicam_device *dev = node->dev; dma_addr_t buffer_addr[MAX_NODES] = { 0 }; unsigned long flags; unsigned int i; int ret; node->streaming = true; if (!(dev->node[IMAGE_PAD].open && dev->node[IMAGE_PAD].streaming && (!dev->node[METADATA_PAD].open || dev->node[METADATA_PAD].streaming))) { /* * Metadata pad must be enabled before image pad if it is * wanted. */ unicam_dbg(3, dev, "Not all nodes are streaming yet."); return 0; } dev->sequence = 0; ret = unicam_runtime_get(dev); if (ret < 0) { unicam_dbg(3, dev, "unicam_runtime_get failed\n"); goto err_streaming; } dev->active_data_lanes = dev->max_data_lanes; if (dev->bus_type == V4L2_MBUS_CSI2_DPHY) { struct v4l2_mbus_config mbus_config = { 0 }; ret = v4l2_subdev_call(dev->sensor, pad, get_mbus_config, 0, &mbus_config); if (ret < 0 && ret != -ENOIOCTLCMD) { unicam_dbg(3, dev, "g_mbus_config failed\n"); goto err_pm_put; } dev->active_data_lanes = (mbus_config.flags & V4L2_MBUS_CSI2_LANE_MASK) >> __ffs(V4L2_MBUS_CSI2_LANE_MASK); if (!dev->active_data_lanes) dev->active_data_lanes = dev->max_data_lanes; if (dev->active_data_lanes > dev->max_data_lanes) { unicam_err(dev, "Device has requested %u data lanes, which is >%u configured in DT\n", dev->active_data_lanes, dev->max_data_lanes); ret = -EINVAL; goto err_pm_put; } } unicam_dbg(1, dev, "Running with %u data lanes\n", dev->active_data_lanes); dev->vpu_req = clk_request_start(dev->vpu_clock, MIN_VPU_CLOCK_RATE); if (!dev->vpu_req) { unicam_err(dev, "failed to set up VPU clock\n"); goto err_pm_put; } ret = clk_prepare_enable(dev->vpu_clock); if (ret) { unicam_err(dev, "Failed to enable VPU clock: %d\n", ret); goto err_pm_put; } ret = clk_set_rate(dev->clock, 100 * 1000 * 1000); if (ret) { unicam_err(dev, "failed to set up CSI clock\n"); goto err_vpu_clock; } ret = clk_prepare_enable(dev->clock); if (ret) { unicam_err(dev, "Failed to enable CSI clock: %d\n", ret); goto err_vpu_clock; } for (i = 0; i < ARRAY_SIZE(dev->node); i++) { struct unicam_buffer *buf; if (!dev->node[i].streaming) continue; spin_lock_irqsave(&dev->node[i].dma_queue_lock, flags); buf = list_first_entry(&dev->node[i].dma_queue, struct unicam_buffer, list); dev->node[i].cur_frm = buf; dev->node[i].next_frm = buf; list_del(&buf->list); spin_unlock_irqrestore(&dev->node[i].dma_queue_lock, flags); buffer_addr[i] = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0); } unicam_start_rx(dev, buffer_addr); ret = v4l2_subdev_call(dev->sensor, video, s_stream, 1); if (ret < 0) { unicam_err(dev, "stream on failed in subdev\n"); goto err_disable_unicam; } dev->clocks_enabled = true; return 0; err_disable_unicam: unicam_disable(dev); clk_disable_unprepare(dev->clock); err_vpu_clock: clk_request_done(dev->vpu_req); clk_disable_unprepare(dev->vpu_clock); err_pm_put: unicam_runtime_put(dev); err_streaming: unicam_return_buffers(node, VB2_BUF_STATE_QUEUED); node->streaming = false; return ret; } static void unicam_stop_streaming(struct vb2_queue *vq) { struct unicam_node *node = vb2_get_drv_priv(vq); struct unicam_device *dev = node->dev; node->streaming = false; if (node->pad_id == IMAGE_PAD) { /* * Stop streaming the sensor and disable the peripheral. * We cannot continue streaming embedded data with the * image pad disabled. */ if (v4l2_subdev_call(dev->sensor, video, s_stream, 0) < 0) unicam_err(dev, "stream off failed in subdev\n"); unicam_disable(dev); if (dev->clocks_enabled) { clk_request_done(dev->vpu_req); clk_disable_unprepare(dev->vpu_clock); clk_disable_unprepare(dev->clock); dev->clocks_enabled = false; } unicam_runtime_put(dev); } else if (node->pad_id == METADATA_PAD) { /* * Allow the hardware to spin in the dummy buffer. * This is only really needed if the embedded data pad is * disabled before the image pad. */ unicam_wr_dma_addr(dev, node->dummy_buf_dma_addr, DUMMY_BUF_SIZE, METADATA_PAD); } /* Clear all queued buffers for the node */ unicam_return_buffers(node, VB2_BUF_STATE_ERROR); } static int unicam_enum_input(struct file *file, void *priv, struct v4l2_input *inp) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; int ret; if (inp->index != 0) return -EINVAL; inp->type = V4L2_INPUT_TYPE_CAMERA; if (v4l2_subdev_has_op(dev->sensor, video, s_dv_timings)) { inp->capabilities = V4L2_IN_CAP_DV_TIMINGS; inp->std = 0; } else if (v4l2_subdev_has_op(dev->sensor, video, s_std)) { inp->capabilities = V4L2_IN_CAP_STD; if (v4l2_subdev_call(dev->sensor, video, g_tvnorms, &inp->std) < 0) inp->std = V4L2_STD_ALL; } else { inp->capabilities = 0; inp->std = 0; } if (v4l2_subdev_has_op(dev->sensor, video, g_input_status)) { ret = v4l2_subdev_call(dev->sensor, video, g_input_status, &inp->status); if (ret < 0) return ret; } snprintf(inp->name, sizeof(inp->name), "Camera 0"); return 0; } static int unicam_g_input(struct file *file, void *priv, unsigned int *i) { *i = 0; return 0; } static int unicam_s_input(struct file *file, void *priv, unsigned int i) { /* * FIXME: Ideally we would like to be able to query the source * subdevice for information over the input connectors it supports, * and map that through in to a call to video_ops->s_routing. * There is no infrastructure support for defining that within * devicetree at present. Until that is implemented we can't * map a user physical connector number to s_routing input number. */ if (i > 0) return -EINVAL; return 0; } static int unicam_querystd(struct file *file, void *priv, v4l2_std_id *std) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; return v4l2_subdev_call(dev->sensor, video, querystd, std); } static int unicam_g_std(struct file *file, void *priv, v4l2_std_id *std) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; return v4l2_subdev_call(dev->sensor, video, g_std, std); } static int unicam_s_std(struct file *file, void *priv, v4l2_std_id std) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; int ret; v4l2_std_id current_std; ret = v4l2_subdev_call(dev->sensor, video, g_std, ¤t_std); if (ret) return ret; if (std == current_std) return 0; if (vb2_is_busy(&node->buffer_queue)) return -EBUSY; ret = v4l2_subdev_call(dev->sensor, video, s_std, std); /* Force recomputation of bytesperline */ node->v_fmt.fmt.pix.bytesperline = 0; unicam_reset_format(node); return ret; } static int unicam_s_edid(struct file *file, void *priv, struct v4l2_edid *edid) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; return v4l2_subdev_call(dev->sensor, pad, set_edid, edid); } static int unicam_g_edid(struct file *file, void *priv, struct v4l2_edid *edid) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; return v4l2_subdev_call(dev->sensor, pad, get_edid, edid); } static int unicam_s_selection(struct file *file, void *priv, struct v4l2_selection *sel) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; struct v4l2_subdev_selection sdsel = { .which = V4L2_SUBDEV_FORMAT_ACTIVE, .target = sel->target, .flags = sel->flags, .r = sel->r, }; if (sel->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; return v4l2_subdev_call(dev->sensor, pad, set_selection, NULL, &sdsel); } static int unicam_g_selection(struct file *file, void *priv, struct v4l2_selection *sel) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; struct v4l2_subdev_selection sdsel = { .which = V4L2_SUBDEV_FORMAT_ACTIVE, .target = sel->target, }; int ret; if (sel->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; ret = v4l2_subdev_call(dev->sensor, pad, get_selection, NULL, &sdsel); if (!ret) sel->r = sdsel.r; return ret; } static int unicam_enum_framesizes(struct file *file, void *priv, struct v4l2_frmsizeenum *fsize) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; const struct unicam_fmt *fmt; struct v4l2_subdev_frame_size_enum fse; int ret; /* check for valid format */ fmt = find_format_by_pix(dev, fsize->pixel_format); if (!fmt) { unicam_dbg(3, dev, "Invalid pixel code: %x\n", fsize->pixel_format); return -EINVAL; } fse.code = fmt->code; fse.which = V4L2_SUBDEV_FORMAT_ACTIVE; fse.index = fsize->index; fse.pad = node->pad_id; ret = v4l2_subdev_call(dev->sensor, pad, enum_frame_size, NULL, &fse); if (ret) return ret; unicam_dbg(1, dev, "%s: index: %d code: %x W:[%d,%d] H:[%d,%d]\n", __func__, fse.index, fse.code, fse.min_width, fse.max_width, fse.min_height, fse.max_height); fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE; fsize->discrete.width = fse.max_width; fsize->discrete.height = fse.max_height; return 0; } static int unicam_enum_frameintervals(struct file *file, void *priv, struct v4l2_frmivalenum *fival) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; const struct unicam_fmt *fmt; struct v4l2_subdev_frame_interval_enum fie = { .index = fival->index, .width = fival->width, .height = fival->height, .which = V4L2_SUBDEV_FORMAT_ACTIVE, }; int ret; fmt = find_format_by_pix(dev, fival->pixel_format); if (!fmt) return -EINVAL; fie.code = fmt->code; ret = v4l2_subdev_call(dev->sensor, pad, enum_frame_interval, NULL, &fie); if (ret) return ret; fival->type = V4L2_FRMIVAL_TYPE_DISCRETE; fival->discrete = fie.interval; return 0; } static int unicam_g_parm(struct file *file, void *fh, struct v4l2_streamparm *a) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; return v4l2_g_parm_cap(video_devdata(file), dev->sensor, a); } static int unicam_s_parm(struct file *file, void *fh, struct v4l2_streamparm *a) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; return v4l2_s_parm_cap(video_devdata(file), dev->sensor, a); } static int unicam_g_dv_timings(struct file *file, void *priv, struct v4l2_dv_timings *timings) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; return v4l2_subdev_call(dev->sensor, video, g_dv_timings, timings); } static int unicam_s_dv_timings(struct file *file, void *priv, struct v4l2_dv_timings *timings) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; struct v4l2_dv_timings current_timings; int ret; ret = v4l2_subdev_call(dev->sensor, video, g_dv_timings, ¤t_timings); if (ret < 0) return ret; if (v4l2_match_dv_timings(timings, ¤t_timings, 0, false)) return 0; if (vb2_is_busy(&node->buffer_queue)) return -EBUSY; ret = v4l2_subdev_call(dev->sensor, video, s_dv_timings, timings); /* Force recomputation of bytesperline */ node->v_fmt.fmt.pix.bytesperline = 0; unicam_reset_format(node); return ret; } static int unicam_query_dv_timings(struct file *file, void *priv, struct v4l2_dv_timings *timings) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; return v4l2_subdev_call(dev->sensor, video, query_dv_timings, timings); } static int unicam_enum_dv_timings(struct file *file, void *priv, struct v4l2_enum_dv_timings *timings) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; return v4l2_subdev_call(dev->sensor, pad, enum_dv_timings, timings); } static int unicam_dv_timings_cap(struct file *file, void *priv, struct v4l2_dv_timings_cap *cap) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; return v4l2_subdev_call(dev->sensor, pad, dv_timings_cap, cap); } static int unicam_subscribe_event(struct v4l2_fh *fh, const struct v4l2_event_subscription *sub) { switch (sub->type) { case V4L2_EVENT_FRAME_SYNC: return v4l2_event_subscribe(fh, sub, 2, NULL); case V4L2_EVENT_SOURCE_CHANGE: return v4l2_event_subscribe(fh, sub, 4, NULL); } return v4l2_ctrl_subscribe_event(fh, sub); } static int unicam_log_status(struct file *file, void *fh) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; u32 reg; /* status for sub devices */ v4l2_device_call_all(&dev->v4l2_dev, 0, core, log_status); unicam_info(dev, "-----Receiver status-----\n"); unicam_info(dev, "V4L2 width/height: %ux%u\n", node->v_fmt.fmt.pix.width, node->v_fmt.fmt.pix.height); unicam_info(dev, "Mediabus format: %08x\n", node->fmt->code); unicam_info(dev, "V4L2 format: %08x\n", node->v_fmt.fmt.pix.pixelformat); reg = reg_read(dev, UNICAM_IPIPE); unicam_info(dev, "Unpacking/packing: %u / %u\n", get_field(reg, UNICAM_PUM_MASK), get_field(reg, UNICAM_PPM_MASK)); unicam_info(dev, "----Live data----\n"); unicam_info(dev, "Programmed stride: %4u\n", reg_read(dev, UNICAM_IBLS)); unicam_info(dev, "Detected resolution: %ux%u\n", reg_read(dev, UNICAM_IHSTA), reg_read(dev, UNICAM_IVSTA)); unicam_info(dev, "Write pointer: %08x\n", reg_read(dev, UNICAM_IBWP)); return 0; } static void unicam_notify(struct v4l2_subdev *sd, unsigned int notification, void *arg) { struct unicam_device *dev = to_unicam_device(sd->v4l2_dev); switch (notification) { case V4L2_DEVICE_NOTIFY_EVENT: v4l2_event_queue(&dev->node[IMAGE_PAD].video_dev, arg); break; default: break; } } static const struct vb2_ops unicam_video_qops = { .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, .queue_setup = unicam_queue_setup, .buf_prepare = unicam_buffer_prepare, .buf_queue = unicam_buffer_queue, .start_streaming = unicam_start_streaming, .stop_streaming = unicam_stop_streaming, }; /* * unicam_v4l2_open : This function is based on the v4l2_fh_open helper * function. It has been augmented to handle sensor subdevice power management, */ static int unicam_v4l2_open(struct file *file) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; int ret; mutex_lock(&node->lock); ret = v4l2_fh_open(file); if (ret) { unicam_err(dev, "v4l2_fh_open failed\n"); goto unlock; } node->open++; if (!v4l2_fh_is_singular_file(file)) goto unlock; ret = v4l2_subdev_call(dev->sensor, core, s_power, 1); if (ret < 0 && ret != -ENOIOCTLCMD) { v4l2_fh_release(file); node->open--; goto unlock; } ret = 0; unlock: mutex_unlock(&node->lock); return ret; } static int unicam_v4l2_release(struct file *file) { struct unicam_node *node = video_drvdata(file); struct unicam_device *dev = node->dev; struct v4l2_subdev *sd = dev->sensor; bool fh_singular; int ret; mutex_lock(&node->lock); fh_singular = v4l2_fh_is_singular_file(file); ret = _vb2_fop_release(file, NULL); if (fh_singular) v4l2_subdev_call(sd, core, s_power, 0); node->open--; mutex_unlock(&node->lock); return ret; } /* unicam capture driver file operations */ static const struct v4l2_file_operations unicam_fops = { .owner = THIS_MODULE, .open = unicam_v4l2_open, .release = unicam_v4l2_release, .read = vb2_fop_read, .poll = vb2_fop_poll, .unlocked_ioctl = video_ioctl2, .mmap = vb2_fop_mmap, }; /* unicam capture ioctl operations */ static const struct v4l2_ioctl_ops unicam_ioctl_ops = { .vidioc_querycap = unicam_querycap, .vidioc_enum_fmt_vid_cap = unicam_enum_fmt_vid_cap, .vidioc_g_fmt_vid_cap = unicam_g_fmt_vid_cap, .vidioc_s_fmt_vid_cap = unicam_s_fmt_vid_cap, .vidioc_try_fmt_vid_cap = unicam_try_fmt_vid_cap, .vidioc_enum_fmt_meta_cap = unicam_enum_fmt_meta_cap, .vidioc_g_fmt_meta_cap = unicam_g_fmt_meta_cap, .vidioc_s_fmt_meta_cap = unicam_g_fmt_meta_cap, .vidioc_try_fmt_meta_cap = unicam_g_fmt_meta_cap, .vidioc_enum_input = unicam_enum_input, .vidioc_g_input = unicam_g_input, .vidioc_s_input = unicam_s_input, .vidioc_querystd = unicam_querystd, .vidioc_s_std = unicam_s_std, .vidioc_g_std = unicam_g_std, .vidioc_g_edid = unicam_g_edid, .vidioc_s_edid = unicam_s_edid, .vidioc_enum_framesizes = unicam_enum_framesizes, .vidioc_enum_frameintervals = unicam_enum_frameintervals, .vidioc_g_selection = unicam_g_selection, .vidioc_s_selection = unicam_s_selection, .vidioc_g_parm = unicam_g_parm, .vidioc_s_parm = unicam_s_parm, .vidioc_s_dv_timings = unicam_s_dv_timings, .vidioc_g_dv_timings = unicam_g_dv_timings, .vidioc_query_dv_timings = unicam_query_dv_timings, .vidioc_enum_dv_timings = unicam_enum_dv_timings, .vidioc_dv_timings_cap = unicam_dv_timings_cap, .vidioc_reqbufs = vb2_ioctl_reqbufs, .vidioc_create_bufs = vb2_ioctl_create_bufs, .vidioc_prepare_buf = vb2_ioctl_prepare_buf, .vidioc_querybuf = vb2_ioctl_querybuf, .vidioc_qbuf = vb2_ioctl_qbuf, .vidioc_dqbuf = vb2_ioctl_dqbuf, .vidioc_expbuf = vb2_ioctl_expbuf, .vidioc_streamon = vb2_ioctl_streamon, .vidioc_streamoff = vb2_ioctl_streamoff, .vidioc_log_status = unicam_log_status, .vidioc_subscribe_event = unicam_subscribe_event, .vidioc_unsubscribe_event = v4l2_event_unsubscribe, }; static int unicam_async_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *subdev, struct v4l2_async_subdev *asd) { struct unicam_device *unicam = to_unicam_device(notifier->v4l2_dev); if (unicam->sensor) { unicam_info(unicam, "Rejecting subdev %s (Already set!!)", subdev->name); return 0; } unicam->sensor = subdev; unicam_dbg(1, unicam, "Using sensor %s for capture\n", subdev->name); return 0; } static void unicam_release(struct kref *kref) { struct unicam_device *unicam = container_of(kref, struct unicam_device, kref); v4l2_ctrl_handler_free(&unicam->ctrl_handler); media_device_cleanup(&unicam->mdev); if (unicam->sensor_state) v4l2_subdev_free_state(unicam->sensor_state); kfree(unicam); } static void unicam_put(struct unicam_device *unicam) { kref_put(&unicam->kref, unicam_release); } static void unicam_get(struct unicam_device *unicam) { kref_get(&unicam->kref); } static void unicam_node_release(struct video_device *vdev) { struct unicam_node *node = video_get_drvdata(vdev); unicam_put(node->dev); } static int register_node(struct unicam_device *unicam, struct unicam_node *node, enum v4l2_buf_type type, int pad_id) { struct video_device *vdev; struct vb2_queue *q; struct v4l2_mbus_framefmt mbus_fmt = {0}; const struct unicam_fmt *fmt; int ret; if (pad_id == IMAGE_PAD) { ret = __subdev_get_format(unicam, &mbus_fmt, pad_id); if (ret) { unicam_err(unicam, "Failed to get_format - ret %d\n", ret); return ret; } fmt = find_format_by_code(mbus_fmt.code); if (!fmt) { /* * Find the first format that the sensor and unicam both * support */ fmt = get_first_supported_format(unicam); if (!fmt) /* No compatible formats */ return -EINVAL; mbus_fmt.code = fmt->code; ret = __subdev_set_format(unicam, &mbus_fmt, pad_id); if (ret) return -EINVAL; } if (mbus_fmt.field != V4L2_FIELD_NONE) { /* Interlaced not supported - disable it now. */ mbus_fmt.field = V4L2_FIELD_NONE; ret = __subdev_set_format(unicam, &mbus_fmt, pad_id); if (ret) return -EINVAL; } node->v_fmt.fmt.pix.pixelformat = fmt->fourcc ? fmt->fourcc : fmt->repacked_fourcc; } else { /* Fix this node format as embedded data. */ fmt = find_format_by_code(MEDIA_BUS_FMT_SENSOR_DATA); node->v_fmt.fmt.meta.dataformat = fmt->fourcc; } node->dev = unicam; node->pad_id = pad_id; node->fmt = fmt; /* Read current subdev format */ unicam_reset_format(node); if (v4l2_subdev_has_op(unicam->sensor, video, s_std)) { v4l2_std_id tvnorms; if (WARN_ON(!v4l2_subdev_has_op(unicam->sensor, video, g_tvnorms))) /* * Subdevice should not advertise s_std but not * g_tvnorms */ return -EINVAL; ret = v4l2_subdev_call(unicam->sensor, video, g_tvnorms, &tvnorms); if (WARN_ON(ret)) return -EINVAL; node->video_dev.tvnorms |= tvnorms; } spin_lock_init(&node->dma_queue_lock); mutex_init(&node->lock); vdev = &node->video_dev; if (pad_id == IMAGE_PAD) { /* Add controls from the subdevice */ ret = v4l2_ctrl_add_handler(&unicam->ctrl_handler, unicam->sensor->ctrl_handler, NULL, true); if (ret < 0) return ret; /* * If the sensor subdevice has any controls, associate the node * with the ctrl handler to allow access from userland. */ if (!list_empty(&unicam->ctrl_handler.ctrls)) vdev->ctrl_handler = &unicam->ctrl_handler; } q = &node->buffer_queue; q->type = type; q->io_modes = VB2_MMAP | VB2_DMABUF | VB2_READ; q->drv_priv = node; q->ops = &unicam_video_qops; q->mem_ops = &vb2_dma_contig_memops; q->buf_struct_size = sizeof(struct unicam_buffer); q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; q->lock = &node->lock; q->min_buffers_needed = 1; q->dev = &unicam->pdev->dev; ret = vb2_queue_init(q); if (ret) { unicam_err(unicam, "vb2_queue_init() failed\n"); return ret; } INIT_LIST_HEAD(&node->dma_queue); vdev->release = unicam_node_release; vdev->fops = &unicam_fops; vdev->ioctl_ops = &unicam_ioctl_ops; vdev->v4l2_dev = &unicam->v4l2_dev; vdev->vfl_dir = VFL_DIR_RX; vdev->queue = q; vdev->lock = &node->lock; vdev->device_caps = (pad_id == IMAGE_PAD) ? V4L2_CAP_VIDEO_CAPTURE : V4L2_CAP_META_CAPTURE; vdev->device_caps |= V4L2_CAP_READWRITE | V4L2_CAP_STREAMING; /* Define the device names */ snprintf(vdev->name, sizeof(vdev->name), "%s-%s", UNICAM_MODULE_NAME, pad_id == IMAGE_PAD ? "image" : "embedded"); video_set_drvdata(vdev, node); if (pad_id == IMAGE_PAD) vdev->entity.flags |= MEDIA_ENT_FL_DEFAULT; node->pad.flags = MEDIA_PAD_FL_SINK; media_entity_pads_init(&vdev->entity, 1, &node->pad); node->dummy_buf_cpu_addr = dma_alloc_coherent(&unicam->pdev->dev, DUMMY_BUF_SIZE, &node->dummy_buf_dma_addr, GFP_KERNEL); if (!node->dummy_buf_cpu_addr) { unicam_err(unicam, "Unable to allocate dummy buffer.\n"); return -ENOMEM; } if (pad_id == METADATA_PAD || !v4l2_subdev_has_op(unicam->sensor, video, s_std)) { v4l2_disable_ioctl(&node->video_dev, VIDIOC_S_STD); v4l2_disable_ioctl(&node->video_dev, VIDIOC_G_STD); v4l2_disable_ioctl(&node->video_dev, VIDIOC_ENUMSTD); } if (pad_id == METADATA_PAD || !v4l2_subdev_has_op(unicam->sensor, video, querystd)) v4l2_disable_ioctl(&node->video_dev, VIDIOC_QUERYSTD); if (pad_id == METADATA_PAD || !v4l2_subdev_has_op(unicam->sensor, video, s_dv_timings)) { v4l2_disable_ioctl(&node->video_dev, VIDIOC_S_EDID); v4l2_disable_ioctl(&node->video_dev, VIDIOC_G_EDID); v4l2_disable_ioctl(&node->video_dev, VIDIOC_DV_TIMINGS_CAP); v4l2_disable_ioctl(&node->video_dev, VIDIOC_G_DV_TIMINGS); v4l2_disable_ioctl(&node->video_dev, VIDIOC_S_DV_TIMINGS); v4l2_disable_ioctl(&node->video_dev, VIDIOC_ENUM_DV_TIMINGS); v4l2_disable_ioctl(&node->video_dev, VIDIOC_QUERY_DV_TIMINGS); } if (pad_id == METADATA_PAD || !v4l2_subdev_has_op(unicam->sensor, pad, enum_frame_interval)) v4l2_disable_ioctl(&node->video_dev, VIDIOC_ENUM_FRAMEINTERVALS); if (pad_id == METADATA_PAD || !v4l2_subdev_has_op(unicam->sensor, video, g_frame_interval)) v4l2_disable_ioctl(&node->video_dev, VIDIOC_G_PARM); if (pad_id == METADATA_PAD || !v4l2_subdev_has_op(unicam->sensor, video, s_frame_interval)) v4l2_disable_ioctl(&node->video_dev, VIDIOC_S_PARM); if (pad_id == METADATA_PAD || !v4l2_subdev_has_op(unicam->sensor, pad, enum_frame_size)) v4l2_disable_ioctl(&node->video_dev, VIDIOC_ENUM_FRAMESIZES); if (node->pad_id == METADATA_PAD || !v4l2_subdev_has_op(unicam->sensor, pad, set_selection)) v4l2_disable_ioctl(&node->video_dev, VIDIOC_S_SELECTION); if (node->pad_id == METADATA_PAD || !v4l2_subdev_has_op(unicam->sensor, pad, get_selection)) v4l2_disable_ioctl(&node->video_dev, VIDIOC_G_SELECTION); ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1); if (ret) { unicam_err(unicam, "Unable to register video device %s\n", vdev->name); return ret; } /* * Acquire a reference to unicam, which will be released when the video * device will be unregistered and userspace will have closed all open * file handles. */ unicam_get(unicam); node->registered = true; if (pad_id != METADATA_PAD || unicam->sensor_embedded_data) { ret = media_create_pad_link(&unicam->sensor->entity, pad_id, &node->video_dev.entity, 0, MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); if (ret) unicam_err(unicam, "Unable to create pad link for %s\n", vdev->name); } return ret; } static void unregister_nodes(struct unicam_device *unicam) { unsigned int i; for (i = 0; i < ARRAY_SIZE(unicam->node); i++) { struct unicam_node *node = &unicam->node[i]; if (node->dummy_buf_cpu_addr) { dma_free_coherent(&unicam->pdev->dev, DUMMY_BUF_SIZE, node->dummy_buf_cpu_addr, node->dummy_buf_dma_addr); } if (node->registered) { node->registered = false; video_unregister_device(&node->video_dev); } } } static int unicam_probe_complete(struct unicam_device *unicam) { int ret; unicam->v4l2_dev.notify = unicam_notify; unicam->sensor_state = v4l2_subdev_alloc_state(unicam->sensor); if (!unicam->sensor_state) return -ENOMEM; unicam->sensor_embedded_data = (unicam->sensor->entity.num_pads >= 2); ret = register_node(unicam, &unicam->node[IMAGE_PAD], V4L2_BUF_TYPE_VIDEO_CAPTURE, IMAGE_PAD); if (ret) { unicam_err(unicam, "Unable to register image video device.\n"); goto unregister; } ret = register_node(unicam, &unicam->node[METADATA_PAD], V4L2_BUF_TYPE_META_CAPTURE, METADATA_PAD); if (ret) { unicam_err(unicam, "Unable to register metadata video device.\n"); goto unregister; } ret = v4l2_device_register_ro_subdev_nodes(&unicam->v4l2_dev); if (ret) { unicam_err(unicam, "Unable to register subdev nodes.\n"); goto unregister; } /* * Release the initial reference, all references are now owned by the * video devices. */ unicam_put(unicam); return 0; unregister: unregister_nodes(unicam); unicam_put(unicam); return ret; } static int unicam_async_complete(struct v4l2_async_notifier *notifier) { struct unicam_device *unicam = to_unicam_device(notifier->v4l2_dev); return unicam_probe_complete(unicam); } static const struct v4l2_async_notifier_operations unicam_async_ops = { .bound = unicam_async_bound, .complete = unicam_async_complete, }; static int of_unicam_connect_subdevs(struct unicam_device *dev) { struct platform_device *pdev = dev->pdev; struct v4l2_fwnode_endpoint ep = { }; struct device_node *ep_node; struct device_node *sensor_node; unsigned int lane; int ret = -EINVAL; if (of_property_read_u32(pdev->dev.of_node, "brcm,num-data-lanes", &dev->max_data_lanes) < 0) { unicam_err(dev, "number of data lanes not set\n"); return -EINVAL; } /* Get the local endpoint and remote device. */ ep_node = of_graph_get_next_endpoint(pdev->dev.of_node, NULL); if (!ep_node) { unicam_dbg(3, dev, "can't get next endpoint\n"); return -EINVAL; } unicam_dbg(3, dev, "ep_node is %pOF\n", ep_node); sensor_node = of_graph_get_remote_port_parent(ep_node); if (!sensor_node) { unicam_dbg(3, dev, "can't get remote parent\n"); goto cleanup_exit; } unicam_dbg(1, dev, "found subdevice %pOF\n", sensor_node); /* Parse the local endpoint and validate its configuration. */ v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), &ep); unicam_dbg(3, dev, "parsed local endpoint, bus_type %u\n", ep.bus_type); dev->bus_type = ep.bus_type; switch (ep.bus_type) { case V4L2_MBUS_CSI2_DPHY: switch (ep.bus.mipi_csi2.num_data_lanes) { case 1: case 2: case 4: break; default: unicam_err(dev, "subdevice %pOF: %u data lanes not supported\n", sensor_node, ep.bus.mipi_csi2.num_data_lanes); goto cleanup_exit; } for (lane = 0; lane < ep.bus.mipi_csi2.num_data_lanes; lane++) { if (ep.bus.mipi_csi2.data_lanes[lane] != lane + 1) { unicam_err(dev, "subdevice %pOF: data lanes reordering not supported\n", sensor_node); goto cleanup_exit; } } if (ep.bus.mipi_csi2.num_data_lanes > dev->max_data_lanes) { unicam_err(dev, "subdevice requires %u data lanes when %u are supported\n", ep.bus.mipi_csi2.num_data_lanes, dev->max_data_lanes); } dev->max_data_lanes = ep.bus.mipi_csi2.num_data_lanes; dev->bus_flags = ep.bus.mipi_csi2.flags; break; case V4L2_MBUS_CCP2: if (ep.bus.mipi_csi1.clock_lane != 0 || ep.bus.mipi_csi1.data_lane != 1) { unicam_err(dev, "subdevice %pOF: unsupported lanes configuration\n", sensor_node); goto cleanup_exit; } dev->max_data_lanes = 1; dev->bus_flags = ep.bus.mipi_csi1.strobe; break; default: /* Unsupported bus type */ unicam_err(dev, "subdevice %pOF: unsupported bus type %u\n", sensor_node, ep.bus_type); goto cleanup_exit; } unicam_dbg(3, dev, "subdevice %pOF: %s bus, %u data lanes, flags=0x%08x\n", sensor_node, dev->bus_type == V4L2_MBUS_CSI2_DPHY ? "CSI-2" : "CCP2", dev->max_data_lanes, dev->bus_flags); /* Initialize and register the async notifier. */ v4l2_async_notifier_init(&dev->notifier); dev->notifier.ops = &unicam_async_ops; dev->asd.match_type = V4L2_ASYNC_MATCH_FWNODE; dev->asd.match.fwnode = of_fwnode_handle(sensor_node); ret = v4l2_async_notifier_add_subdev(&dev->notifier, &dev->asd); if (ret) { unicam_err(dev, "Error adding subdevice: %d\n", ret); goto cleanup_exit; } ret = v4l2_async_notifier_register(&dev->v4l2_dev, &dev->notifier); if (ret) { unicam_err(dev, "Error registering async notifier: %d\n", ret); ret = -EINVAL; } cleanup_exit: of_node_put(sensor_node); of_node_put(ep_node); return ret; } static int unicam_probe(struct platform_device *pdev) { struct unicam_device *unicam; int ret; unicam = kzalloc(sizeof(*unicam), GFP_KERNEL); if (!unicam) return -ENOMEM; kref_init(&unicam->kref); unicam->pdev = pdev; unicam->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(unicam->base)) { unicam_err(unicam, "Failed to get main io block\n"); ret = PTR_ERR(unicam->base); goto err_unicam_put; } unicam->clk_gate_base = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(unicam->clk_gate_base)) { unicam_err(unicam, "Failed to get 2nd io block\n"); ret = PTR_ERR(unicam->clk_gate_base); goto err_unicam_put; } unicam->clock = devm_clk_get(&pdev->dev, "lp"); if (IS_ERR(unicam->clock)) { unicam_err(unicam, "Failed to get lp clock\n"); ret = PTR_ERR(unicam->clock); goto err_unicam_put; } unicam->vpu_clock = devm_clk_get(&pdev->dev, "vpu"); if (IS_ERR(unicam->vpu_clock)) { unicam_err(unicam, "Failed to get vpu clock\n"); ret = PTR_ERR(unicam->vpu_clock); goto err_unicam_put; } ret = platform_get_irq(pdev, 0); if (ret <= 0) { dev_err(&pdev->dev, "No IRQ resource\n"); ret = -EINVAL; goto err_unicam_put; } ret = devm_request_irq(&pdev->dev, ret, unicam_isr, 0, "unicam_capture0", unicam); if (ret) { dev_err(&pdev->dev, "Unable to request interrupt\n"); ret = -EINVAL; goto err_unicam_put; } unicam->mdev.dev = &pdev->dev; strscpy(unicam->mdev.model, UNICAM_MODULE_NAME, sizeof(unicam->mdev.model)); strscpy(unicam->mdev.serial, "", sizeof(unicam->mdev.serial)); snprintf(unicam->mdev.bus_info, sizeof(unicam->mdev.bus_info), "platform:%s", dev_name(&pdev->dev)); unicam->mdev.hw_revision = 0; media_device_init(&unicam->mdev); unicam->v4l2_dev.mdev = &unicam->mdev; ret = v4l2_device_register(&pdev->dev, &unicam->v4l2_dev); if (ret) { unicam_err(unicam, "Unable to register v4l2 device.\n"); goto err_unicam_put; } ret = media_device_register(&unicam->mdev); if (ret < 0) { unicam_err(unicam, "Unable to register media-controller device.\n"); goto err_v4l2_unregister; } /* Reserve space for the controls */ ret = v4l2_ctrl_handler_init(&unicam->ctrl_handler, 16); if (ret < 0) goto err_media_unregister; /* set the driver data in platform device */ platform_set_drvdata(pdev, unicam); ret = of_unicam_connect_subdevs(unicam); if (ret) { dev_err(&pdev->dev, "Failed to connect subdevs\n"); goto err_media_unregister; } /* Enable the block power domain */ pm_runtime_enable(&pdev->dev); return 0; err_media_unregister: media_device_unregister(&unicam->mdev); err_v4l2_unregister: v4l2_device_unregister(&unicam->v4l2_dev); err_unicam_put: unicam_put(unicam); return ret; } static int unicam_remove(struct platform_device *pdev) { struct unicam_device *unicam = platform_get_drvdata(pdev); unicam_dbg(2, unicam, "%s\n", __func__); v4l2_async_notifier_unregister(&unicam->notifier); v4l2_device_unregister(&unicam->v4l2_dev); media_device_unregister(&unicam->mdev); unregister_nodes(unicam); pm_runtime_disable(&pdev->dev); return 0; } static const struct of_device_id unicam_of_match[] = { { .compatible = "brcm,bcm2835-unicam", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, unicam_of_match); static struct platform_driver unicam_driver = { .probe = unicam_probe, .remove = unicam_remove, .driver = { .name = UNICAM_MODULE_NAME, .of_match_table = of_match_ptr(unicam_of_match), }, }; module_platform_driver(unicam_driver); MODULE_AUTHOR("Dave Stevenson "); MODULE_DESCRIPTION("BCM2835 Unicam driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(UNICAM_VERSION);