mirror of
https://github.com/Qortal/Brooklyn.git
synced 2025-02-01 07:42:18 +00:00
363 lines
13 KiB
C++
363 lines
13 KiB
C++
//
|
|
// Copyright © 2017 Arm Ltd. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
#include "InferenceTestImage.hpp"
|
|
|
|
#include <armnn/utility/Assert.hpp>
|
|
#include <armnn/utility/IgnoreUnused.hpp>
|
|
#include <armnn/utility/NumericCast.hpp>
|
|
|
|
#include <fmt/format.h>
|
|
|
|
#include <array>
|
|
|
|
#define STB_IMAGE_IMPLEMENTATION
|
|
#include <stb/stb_image.h>
|
|
|
|
#define STB_IMAGE_RESIZE_IMPLEMENTATION
|
|
#include <stb/stb_image_resize.h>
|
|
|
|
#define STB_IMAGE_WRITE_IMPLEMENTATION
|
|
#include <stb/stb_image_write.h>
|
|
|
|
namespace
|
|
{
|
|
|
|
unsigned int GetImageChannelIndex(ImageChannelLayout channelLayout, ImageChannel channel)
|
|
{
|
|
switch (channelLayout)
|
|
{
|
|
case ImageChannelLayout::Rgb:
|
|
return static_cast<unsigned int>(channel);
|
|
case ImageChannelLayout::Bgr:
|
|
return 2u - static_cast<unsigned int>(channel);
|
|
default:
|
|
throw UnknownImageChannelLayout(fmt::format("Unknown layout {}", static_cast<int>(channelLayout)));
|
|
}
|
|
}
|
|
|
|
inline float Lerp(float a, float b, float w)
|
|
{
|
|
return w * b + (1.f - w) * a;
|
|
}
|
|
|
|
inline void PutData(std::vector<float> & data,
|
|
const unsigned int width,
|
|
const unsigned int x,
|
|
const unsigned int y,
|
|
const unsigned int c,
|
|
float value)
|
|
{
|
|
data[(3*((y*width)+x)) + c] = value;
|
|
}
|
|
|
|
std::vector<float> ResizeBilinearAndNormalize(const InferenceTestImage & image,
|
|
const unsigned int outputWidth,
|
|
const unsigned int outputHeight,
|
|
const float scale,
|
|
const std::array<float, 3>& mean,
|
|
const std::array<float, 3>& stddev)
|
|
{
|
|
std::vector<float> out;
|
|
out.resize(outputWidth * outputHeight * 3);
|
|
|
|
// We follow the definition of TensorFlow and AndroidNN: the top-left corner of a texel in the output
|
|
// image is projected into the input image to figure out the interpolants and weights. Note that this
|
|
// will yield different results than if projecting the centre of output texels.
|
|
|
|
const unsigned int inputWidth = image.GetWidth();
|
|
const unsigned int inputHeight = image.GetHeight();
|
|
|
|
// How much to scale pixel coordinates in the output image to get the corresponding pixel coordinates
|
|
// in the input image.
|
|
const float scaleY = armnn::numeric_cast<float>(inputHeight) / armnn::numeric_cast<float>(outputHeight);
|
|
const float scaleX = armnn::numeric_cast<float>(inputWidth) / armnn::numeric_cast<float>(outputWidth);
|
|
|
|
uint8_t rgb_x0y0[3];
|
|
uint8_t rgb_x1y0[3];
|
|
uint8_t rgb_x0y1[3];
|
|
uint8_t rgb_x1y1[3];
|
|
|
|
for (unsigned int y = 0; y < outputHeight; ++y)
|
|
{
|
|
// Corresponding real-valued height coordinate in input image.
|
|
const float iy = armnn::numeric_cast<float>(y) * scaleY;
|
|
|
|
// Discrete height coordinate of top-left texel (in the 2x2 texel area used for interpolation).
|
|
const float fiy = floorf(iy);
|
|
const unsigned int y0 = armnn::numeric_cast<unsigned int>(fiy);
|
|
|
|
// Interpolation weight (range [0,1])
|
|
const float yw = iy - fiy;
|
|
|
|
for (unsigned int x = 0; x < outputWidth; ++x)
|
|
{
|
|
// Real-valued and discrete width coordinates in input image.
|
|
const float ix = armnn::numeric_cast<float>(x) * scaleX;
|
|
const float fix = floorf(ix);
|
|
const unsigned int x0 = armnn::numeric_cast<unsigned int>(fix);
|
|
|
|
// Interpolation weight (range [0,1]).
|
|
const float xw = ix - fix;
|
|
|
|
// Discrete width/height coordinates of texels below and to the right of (x0, y0).
|
|
const unsigned int x1 = std::min(x0 + 1, inputWidth - 1u);
|
|
const unsigned int y1 = std::min(y0 + 1, inputHeight - 1u);
|
|
|
|
std::tie(rgb_x0y0[0], rgb_x0y0[1], rgb_x0y0[2]) = image.GetPixelAs3Channels(x0, y0);
|
|
std::tie(rgb_x1y0[0], rgb_x1y0[1], rgb_x1y0[2]) = image.GetPixelAs3Channels(x1, y0);
|
|
std::tie(rgb_x0y1[0], rgb_x0y1[1], rgb_x0y1[2]) = image.GetPixelAs3Channels(x0, y1);
|
|
std::tie(rgb_x1y1[0], rgb_x1y1[1], rgb_x1y1[2]) = image.GetPixelAs3Channels(x1, y1);
|
|
|
|
for (unsigned c=0; c<3; ++c)
|
|
{
|
|
const float ly0 = Lerp(float(rgb_x0y0[c]), float(rgb_x1y0[c]), xw);
|
|
const float ly1 = Lerp(float(rgb_x0y1[c]), float(rgb_x1y1[c]), xw);
|
|
const float l = Lerp(ly0, ly1, yw);
|
|
PutData(out, outputWidth, x, y, c, ((l / scale) - mean[c]) / stddev[c]);
|
|
}
|
|
}
|
|
}
|
|
return out;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
InferenceTestImage::InferenceTestImage(char const* filePath)
|
|
: m_Width(0u)
|
|
, m_Height(0u)
|
|
, m_NumChannels(0u)
|
|
{
|
|
int width;
|
|
int height;
|
|
int channels;
|
|
|
|
using StbImageDataPtr = std::unique_ptr<unsigned char, decltype(&stbi_image_free)>;
|
|
StbImageDataPtr stbData(stbi_load(filePath, &width, &height, &channels, 0), &stbi_image_free);
|
|
|
|
if (stbData == nullptr)
|
|
{
|
|
throw InferenceTestImageLoadFailed(fmt::format("Could not load the image at {}", filePath));
|
|
}
|
|
|
|
if (width == 0 || height == 0)
|
|
{
|
|
throw InferenceTestImageLoadFailed(fmt::format("Could not load empty image at {}", filePath));
|
|
}
|
|
|
|
m_Width = armnn::numeric_cast<unsigned int>(width);
|
|
m_Height = armnn::numeric_cast<unsigned int>(height);
|
|
m_NumChannels = armnn::numeric_cast<unsigned int>(channels);
|
|
|
|
const unsigned int sizeInBytes = GetSizeInBytes();
|
|
m_Data.resize(sizeInBytes);
|
|
memcpy(m_Data.data(), stbData.get(), sizeInBytes);
|
|
}
|
|
|
|
std::tuple<uint8_t, uint8_t, uint8_t> InferenceTestImage::GetPixelAs3Channels(unsigned int x, unsigned int y) const
|
|
{
|
|
if (x >= m_Width || y >= m_Height)
|
|
{
|
|
throw InferenceTestImageOutOfBoundsAccess(fmt::format("Attempted out of bounds image access. "
|
|
"Requested ({0}, {1}). Maximum valid coordinates ({2}, {3}).", x, y, (m_Width - 1), (m_Height - 1)));
|
|
}
|
|
|
|
const unsigned int pixelOffset = x * GetNumChannels() + y * GetWidth() * GetNumChannels();
|
|
const uint8_t* const pixelData = m_Data.data() + pixelOffset;
|
|
ARMNN_ASSERT(pixelData <= (m_Data.data() + GetSizeInBytes()));
|
|
|
|
std::array<uint8_t, 3> outPixelData;
|
|
outPixelData.fill(0);
|
|
|
|
const unsigned int maxChannelsInPixel = std::min(GetNumChannels(), static_cast<unsigned int>(outPixelData.size()));
|
|
for (unsigned int c = 0; c < maxChannelsInPixel; ++c)
|
|
{
|
|
outPixelData[c] = pixelData[c];
|
|
}
|
|
|
|
return std::make_tuple(outPixelData[0], outPixelData[1], outPixelData[2]);
|
|
}
|
|
|
|
|
|
void InferenceTestImage::StbResize(InferenceTestImage& im, const unsigned int newWidth, const unsigned int newHeight)
|
|
{
|
|
std::vector<uint8_t> newData;
|
|
newData.resize(newWidth * newHeight * im.GetNumChannels() * im.GetSingleElementSizeInBytes());
|
|
|
|
// armnn::numeric_cast<>() is used for user-provided data (protecting about overflows).
|
|
// static_cast<> is ok for internal data (assumes that, when internal data was originally provided by a user,
|
|
// a armnn::numeric_cast<>() handled the conversion).
|
|
const int nW = armnn::numeric_cast<int>(newWidth);
|
|
const int nH = armnn::numeric_cast<int>(newHeight);
|
|
|
|
const int w = static_cast<int>(im.GetWidth());
|
|
const int h = static_cast<int>(im.GetHeight());
|
|
const int numChannels = static_cast<int>(im.GetNumChannels());
|
|
|
|
const int res = stbir_resize_uint8(im.m_Data.data(), w, h, 0, newData.data(), nW, nH, 0, numChannels);
|
|
if (res == 0)
|
|
{
|
|
throw InferenceTestImageResizeFailed("The resizing operation failed");
|
|
}
|
|
|
|
im.m_Data.swap(newData);
|
|
im.m_Width = newWidth;
|
|
im.m_Height = newHeight;
|
|
}
|
|
|
|
std::vector<float> InferenceTestImage::Resize(unsigned int newWidth,
|
|
unsigned int newHeight,
|
|
const armnn::CheckLocation& location,
|
|
const ResizingMethods meth,
|
|
const std::array<float, 3>& mean,
|
|
const std::array<float, 3>& stddev,
|
|
const float scale)
|
|
{
|
|
std::vector<float> out;
|
|
if (newWidth == 0 || newHeight == 0)
|
|
{
|
|
throw InferenceTestImageResizeFailed(fmt::format("None of the dimensions passed to a resize "
|
|
"operation can be zero. Requested width: {0}. Requested height: {1}.", newWidth, newHeight));
|
|
}
|
|
|
|
switch (meth) {
|
|
case ResizingMethods::STB:
|
|
{
|
|
StbResize(*this, newWidth, newHeight);
|
|
break;
|
|
}
|
|
case ResizingMethods::BilinearAndNormalized:
|
|
{
|
|
out = ResizeBilinearAndNormalize(*this, newWidth, newHeight, scale, mean, stddev);
|
|
break;
|
|
}
|
|
default:
|
|
throw InferenceTestImageResizeFailed(fmt::format("Unknown resizing method asked ArmNN only"
|
|
" supports {STB, BilinearAndNormalized} {}",
|
|
location.AsString()));
|
|
}
|
|
return out;
|
|
}
|
|
|
|
void InferenceTestImage::Write(WriteFormat format, const char* filePath) const
|
|
{
|
|
const int w = static_cast<int>(GetWidth());
|
|
const int h = static_cast<int>(GetHeight());
|
|
const int numChannels = static_cast<int>(GetNumChannels());
|
|
int res = 0;
|
|
|
|
switch (format)
|
|
{
|
|
case WriteFormat::Png:
|
|
{
|
|
res = stbi_write_png(filePath, w, h, numChannels, m_Data.data(), 0);
|
|
break;
|
|
}
|
|
case WriteFormat::Bmp:
|
|
{
|
|
res = stbi_write_bmp(filePath, w, h, numChannels, m_Data.data());
|
|
break;
|
|
}
|
|
case WriteFormat::Tga:
|
|
{
|
|
res = stbi_write_tga(filePath, w, h, numChannels, m_Data.data());
|
|
break;
|
|
}
|
|
default:
|
|
throw InferenceTestImageWriteFailed(fmt::format("Unknown format {}", static_cast<int>(format)));
|
|
}
|
|
|
|
if (res == 0)
|
|
{
|
|
throw InferenceTestImageWriteFailed(fmt::format("An error occurred when writing to file {}",
|
|
filePath));
|
|
}
|
|
}
|
|
|
|
template <typename TProcessValueCallable>
|
|
std::vector<float> GetImageDataInArmNnLayoutAsFloats(ImageChannelLayout channelLayout,
|
|
const InferenceTestImage& image,
|
|
TProcessValueCallable processValue)
|
|
{
|
|
const unsigned int h = image.GetHeight();
|
|
const unsigned int w = image.GetWidth();
|
|
|
|
std::vector<float> imageData;
|
|
imageData.resize(h * w * 3);
|
|
|
|
for (unsigned int j = 0; j < h; ++j)
|
|
{
|
|
for (unsigned int i = 0; i < w; ++i)
|
|
{
|
|
uint8_t r, g, b;
|
|
std::tie(r, g, b) = image.GetPixelAs3Channels(i, j);
|
|
|
|
// ArmNN order: C, H, W
|
|
const unsigned int rDstIndex = GetImageChannelIndex(channelLayout, ImageChannel::R) * h * w + j * w + i;
|
|
const unsigned int gDstIndex = GetImageChannelIndex(channelLayout, ImageChannel::G) * h * w + j * w + i;
|
|
const unsigned int bDstIndex = GetImageChannelIndex(channelLayout, ImageChannel::B) * h * w + j * w + i;
|
|
|
|
imageData[rDstIndex] = processValue(ImageChannel::R, float(r));
|
|
imageData[gDstIndex] = processValue(ImageChannel::G, float(g));
|
|
imageData[bDstIndex] = processValue(ImageChannel::B, float(b));
|
|
}
|
|
}
|
|
|
|
return imageData;
|
|
}
|
|
|
|
std::vector<float> GetImageDataInArmNnLayoutAsNormalizedFloats(ImageChannelLayout layout,
|
|
const InferenceTestImage& image)
|
|
{
|
|
return GetImageDataInArmNnLayoutAsFloats(layout, image,
|
|
[](ImageChannel channel, float value)
|
|
{
|
|
armnn::IgnoreUnused(channel);
|
|
return value / 255.f;
|
|
});
|
|
}
|
|
|
|
std::vector<float> GetImageDataInArmNnLayoutAsFloatsSubtractingMean(ImageChannelLayout layout,
|
|
const InferenceTestImage& image,
|
|
const std::array<float, 3>& mean)
|
|
{
|
|
return GetImageDataInArmNnLayoutAsFloats(layout, image,
|
|
[layout, &mean](ImageChannel channel, float value)
|
|
{
|
|
const unsigned int channelIndex = GetImageChannelIndex(layout, channel);
|
|
return value - mean[channelIndex];
|
|
});
|
|
}
|
|
|
|
std::vector<float> GetImageDataAsNormalizedFloats(ImageChannelLayout layout,
|
|
const InferenceTestImage& image)
|
|
{
|
|
std::vector<float> imageData;
|
|
const unsigned int h = image.GetHeight();
|
|
const unsigned int w = image.GetWidth();
|
|
|
|
const unsigned int rDstIndex = GetImageChannelIndex(layout, ImageChannel::R);
|
|
const unsigned int gDstIndex = GetImageChannelIndex(layout, ImageChannel::G);
|
|
const unsigned int bDstIndex = GetImageChannelIndex(layout, ImageChannel::B);
|
|
|
|
imageData.resize(h * w * 3);
|
|
unsigned int offset = 0;
|
|
|
|
for (unsigned int j = 0; j < h; ++j)
|
|
{
|
|
for (unsigned int i = 0; i < w; ++i)
|
|
{
|
|
uint8_t r, g, b;
|
|
std::tie(r, g, b) = image.GetPixelAs3Channels(i, j);
|
|
|
|
imageData[offset+rDstIndex] = float(r) / 255.0f;
|
|
imageData[offset+gDstIndex] = float(g) / 255.0f;
|
|
imageData[offset+bDstIndex] = float(b) / 255.0f;
|
|
offset += 3;
|
|
}
|
|
}
|
|
|
|
return imageData;
|
|
}
|