mirror of
https://github.com/Qortal/Brooklyn.git
synced 2025-02-07 06:44:18 +00:00
800 lines
30 KiB
C++
800 lines
30 KiB
C++
//
|
|
// Copyright © 2017 Arm Ltd and Contributors. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
|
|
#pragma once
|
|
|
|
|
|
#include <armnn/ArmNN.hpp>
|
|
#include <armnn/Threadpool.hpp>
|
|
#include <armnn/Logging.hpp>
|
|
#include <armnn/utility/Timer.hpp>
|
|
#include <armnn/BackendRegistry.hpp>
|
|
#include <armnn/utility/Assert.hpp>
|
|
#include <armnn/utility/NumericCast.hpp>
|
|
|
|
#include <armnnUtils/TContainer.hpp>
|
|
|
|
#include <common/include/ProfilingGuid.hpp>
|
|
|
|
#if defined(ARMNN_SERIALIZER)
|
|
#include "armnnDeserializer/IDeserializer.hpp"
|
|
#endif
|
|
#if defined(ARMNN_TF_LITE_PARSER)
|
|
#include <armnnTfLiteParser/ITfLiteParser.hpp>
|
|
#endif
|
|
#if defined(ARMNN_ONNX_PARSER)
|
|
#include <armnnOnnxParser/IOnnxParser.hpp>
|
|
#endif
|
|
|
|
#include <armnnUtils/Filesystem.hpp>
|
|
#include <HeapProfiling.hpp>
|
|
#include <TensorIOUtils.hpp>
|
|
|
|
#include "armnn/utility/StringUtils.hpp"
|
|
#include <cxxopts/cxxopts.hpp>
|
|
#include "CxxoptsUtils.hpp"
|
|
#include <fmt/format.h>
|
|
#include <mapbox/variant.hpp>
|
|
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <fstream>
|
|
#include <map>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <type_traits>
|
|
|
|
namespace
|
|
{
|
|
|
|
inline bool CheckRequestedBackendsAreValid(const std::vector<armnn::BackendId>& backendIds,
|
|
armnn::Optional<std::string&> invalidBackendIds = armnn::EmptyOptional())
|
|
{
|
|
if (backendIds.empty())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
armnn::BackendIdSet validBackendIds = armnn::BackendRegistryInstance().GetBackendIds();
|
|
|
|
bool allValid = true;
|
|
for (const auto& backendId : backendIds)
|
|
{
|
|
if (std::find(validBackendIds.begin(), validBackendIds.end(), backendId) == validBackendIds.end())
|
|
{
|
|
allValid = false;
|
|
if (invalidBackendIds)
|
|
{
|
|
if (!invalidBackendIds.value().empty())
|
|
{
|
|
invalidBackendIds.value() += ", ";
|
|
}
|
|
invalidBackendIds.value() += backendId;
|
|
}
|
|
}
|
|
}
|
|
return allValid;
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
namespace InferenceModelInternal
|
|
{
|
|
using BindingPointInfo = armnn::BindingPointInfo;
|
|
|
|
using QuantizationParams = std::pair<float,int32_t>;
|
|
|
|
struct Params
|
|
{
|
|
std::string m_ModelPath;
|
|
std::vector<std::string> m_InputBindings;
|
|
std::vector<armnn::TensorShape> m_InputShapes;
|
|
std::vector<std::string> m_OutputBindings;
|
|
std::vector<armnn::BackendId> m_ComputeDevices;
|
|
std::string m_DynamicBackendsPath;
|
|
size_t m_SubgraphId;
|
|
bool m_IsModelBinary;
|
|
bool m_VisualizePostOptimizationModel;
|
|
bool m_EnableFp16TurboMode;
|
|
bool m_EnableBf16TurboMode;
|
|
bool m_PrintIntermediateLayers;
|
|
bool m_ParseUnsupported;
|
|
bool m_InferOutputShape;
|
|
bool m_EnableFastMath;
|
|
bool m_SaveCachedNetwork;
|
|
bool m_OutputDetailsToStdOut;
|
|
bool m_OutputDetailsOnlyToStdOut;
|
|
std::string m_CachedNetworkFilePath;
|
|
unsigned int m_NumberOfThreads;
|
|
std::string m_MLGOTuningFilePath;
|
|
bool m_AsyncEnabled;
|
|
size_t m_ThreadPoolSize;
|
|
|
|
|
|
Params()
|
|
: m_ComputeDevices{}
|
|
, m_SubgraphId(0)
|
|
, m_IsModelBinary(true)
|
|
, m_VisualizePostOptimizationModel(false)
|
|
, m_EnableFp16TurboMode(false)
|
|
, m_EnableBf16TurboMode(false)
|
|
, m_PrintIntermediateLayers(false)
|
|
, m_ParseUnsupported(false)
|
|
, m_InferOutputShape(false)
|
|
, m_EnableFastMath(false)
|
|
, m_SaveCachedNetwork(false)
|
|
, m_OutputDetailsToStdOut(false)
|
|
, m_OutputDetailsOnlyToStdOut(false)
|
|
, m_CachedNetworkFilePath("")
|
|
, m_NumberOfThreads(0)
|
|
, m_MLGOTuningFilePath("")
|
|
, m_AsyncEnabled(false)
|
|
, m_ThreadPoolSize(0)
|
|
{}
|
|
};
|
|
|
|
} // namespace InferenceModelInternal
|
|
|
|
template <typename IParser>
|
|
struct CreateNetworkImpl
|
|
{
|
|
public:
|
|
using Params = InferenceModelInternal::Params;
|
|
|
|
static armnn::INetworkPtr Create(const Params& params,
|
|
std::vector<armnn::BindingPointInfo>& inputBindings,
|
|
std::vector<armnn::BindingPointInfo>& outputBindings)
|
|
{
|
|
const std::string& modelPath = params.m_ModelPath;
|
|
|
|
// Create a network from a file on disk
|
|
auto parser(IParser::Create());
|
|
|
|
std::map<std::string, armnn::TensorShape> inputShapes;
|
|
if (!params.m_InputShapes.empty())
|
|
{
|
|
const size_t numInputShapes = params.m_InputShapes.size();
|
|
const size_t numInputBindings = params.m_InputBindings.size();
|
|
if (numInputShapes < numInputBindings)
|
|
{
|
|
throw armnn::Exception(fmt::format(
|
|
"Not every input has its tensor shape specified: expected={0}, got={1}",
|
|
numInputBindings, numInputShapes));
|
|
}
|
|
|
|
for (size_t i = 0; i < numInputShapes; i++)
|
|
{
|
|
inputShapes[params.m_InputBindings[i]] = params.m_InputShapes[i];
|
|
}
|
|
}
|
|
|
|
std::vector<std::string> requestedOutputs = params.m_OutputBindings;
|
|
armnn::INetworkPtr network{nullptr, [](armnn::INetwork *){}};
|
|
|
|
{
|
|
ARMNN_SCOPED_HEAP_PROFILING("Parsing");
|
|
// Handle text and binary input differently by calling the corresponding parser function
|
|
network = (params.m_IsModelBinary ?
|
|
parser->CreateNetworkFromBinaryFile(modelPath.c_str(), inputShapes, requestedOutputs) :
|
|
parser->CreateNetworkFromTextFile(modelPath.c_str(), inputShapes, requestedOutputs));
|
|
}
|
|
|
|
for (const std::string& inputLayerName : params.m_InputBindings)
|
|
{
|
|
inputBindings.push_back(parser->GetNetworkInputBindingInfo(inputLayerName));
|
|
}
|
|
|
|
for (const std::string& outputLayerName : params.m_OutputBindings)
|
|
{
|
|
outputBindings.push_back(parser->GetNetworkOutputBindingInfo(outputLayerName));
|
|
}
|
|
|
|
return network;
|
|
}
|
|
};
|
|
|
|
#if defined(ARMNN_SERIALIZER)
|
|
template <>
|
|
struct CreateNetworkImpl<armnnDeserializer::IDeserializer>
|
|
{
|
|
public:
|
|
using IParser = armnnDeserializer::IDeserializer;
|
|
using Params = InferenceModelInternal::Params;
|
|
|
|
static armnn::INetworkPtr Create(const Params& params,
|
|
std::vector<armnn::BindingPointInfo>& inputBindings,
|
|
std::vector<armnn::BindingPointInfo>& outputBindings)
|
|
{
|
|
auto parser(IParser::Create());
|
|
ARMNN_ASSERT(parser);
|
|
|
|
armnn::INetworkPtr network{nullptr, [](armnn::INetwork *){}};
|
|
|
|
{
|
|
ARMNN_SCOPED_HEAP_PROFILING("Parsing");
|
|
|
|
std::error_code errorCode;
|
|
fs::path pathToFile(params.m_ModelPath);
|
|
if (!fs::exists(pathToFile, errorCode))
|
|
{
|
|
throw armnn::FileNotFoundException(fmt::format("Cannot find the file ({0}) errorCode: {1} {2}",
|
|
params.m_ModelPath,
|
|
errorCode.message(),
|
|
CHECK_LOCATION().AsString()));
|
|
}
|
|
std::ifstream file(params.m_ModelPath, std::ios::binary);
|
|
|
|
network = parser->CreateNetworkFromBinary(file);
|
|
}
|
|
|
|
unsigned int subgraphId = armnn::numeric_cast<unsigned int>(params.m_SubgraphId);
|
|
|
|
for (const std::string& inputLayerName : params.m_InputBindings)
|
|
{
|
|
armnnDeserializer::BindingPointInfo inputBinding =
|
|
parser->GetNetworkInputBindingInfo(subgraphId, inputLayerName);
|
|
inputBindings.push_back(std::make_pair(inputBinding.m_BindingId, inputBinding.m_TensorInfo));
|
|
}
|
|
|
|
for (const std::string& outputLayerName : params.m_OutputBindings)
|
|
{
|
|
armnnDeserializer::BindingPointInfo outputBinding =
|
|
parser->GetNetworkOutputBindingInfo(subgraphId, outputLayerName);
|
|
outputBindings.push_back(std::make_pair(outputBinding.m_BindingId, outputBinding.m_TensorInfo));
|
|
}
|
|
|
|
return network;
|
|
}
|
|
};
|
|
#endif
|
|
|
|
#if defined(ARMNN_TF_LITE_PARSER)
|
|
template <>
|
|
struct CreateNetworkImpl<armnnTfLiteParser::ITfLiteParser>
|
|
{
|
|
public:
|
|
using IParser = armnnTfLiteParser::ITfLiteParser;
|
|
using Params = InferenceModelInternal::Params;
|
|
|
|
static armnn::INetworkPtr Create(const Params& params,
|
|
std::vector<armnn::BindingPointInfo>& inputBindings,
|
|
std::vector<armnn::BindingPointInfo>& outputBindings)
|
|
{
|
|
const std::string& modelPath = params.m_ModelPath;
|
|
|
|
// Create a network from a file on disk
|
|
IParser::TfLiteParserOptions options;
|
|
options.m_StandInLayerForUnsupported = params.m_ParseUnsupported;
|
|
options.m_InferAndValidate = params.m_InferOutputShape;
|
|
auto parser(IParser::Create(options));
|
|
|
|
armnn::INetworkPtr network{nullptr, [](armnn::INetwork *){}};
|
|
|
|
{
|
|
ARMNN_SCOPED_HEAP_PROFILING("Parsing");
|
|
network = parser->CreateNetworkFromBinaryFile(modelPath.c_str());
|
|
}
|
|
|
|
for (const std::string& inputLayerName : params.m_InputBindings)
|
|
{
|
|
armnn::BindingPointInfo inputBinding =
|
|
parser->GetNetworkInputBindingInfo(params.m_SubgraphId, inputLayerName);
|
|
inputBindings.push_back(inputBinding);
|
|
}
|
|
|
|
for (const std::string& outputLayerName : params.m_OutputBindings)
|
|
{
|
|
armnn::BindingPointInfo outputBinding =
|
|
parser->GetNetworkOutputBindingInfo(params.m_SubgraphId, outputLayerName);
|
|
outputBindings.push_back(outputBinding);
|
|
}
|
|
|
|
return network;
|
|
}
|
|
};
|
|
#endif
|
|
|
|
#if defined(ARMNN_ONNX_PARSER)
|
|
template <>
|
|
struct CreateNetworkImpl<armnnOnnxParser::IOnnxParser>
|
|
{
|
|
public:
|
|
using IParser = armnnOnnxParser::IOnnxParser;
|
|
using Params = InferenceModelInternal::Params;
|
|
using BindingPointInfo = InferenceModelInternal::BindingPointInfo;
|
|
|
|
static armnn::INetworkPtr Create(const Params& params,
|
|
std::vector<BindingPointInfo>& inputBindings,
|
|
std::vector<BindingPointInfo>& outputBindings)
|
|
{
|
|
const std::string& modelPath = params.m_ModelPath;
|
|
|
|
// Create a network from a file on disk
|
|
auto parser(IParser::Create());
|
|
|
|
armnn::INetworkPtr network{nullptr, [](armnn::INetwork *){}};
|
|
|
|
std::map<std::string, armnn::TensorShape> inputShapes;
|
|
if (!params.m_InputShapes.empty())
|
|
{
|
|
const size_t numInputShapes = params.m_InputShapes.size();
|
|
const size_t numInputBindings = params.m_InputBindings.size();
|
|
if (numInputShapes < numInputBindings)
|
|
{
|
|
throw armnn::Exception(fmt::format(
|
|
"Not every input has its tensor shape specified: expected={0}, got={1}",
|
|
numInputBindings, numInputShapes));
|
|
}
|
|
|
|
for (size_t i = 0; i < numInputShapes; i++)
|
|
{
|
|
inputShapes[params.m_InputBindings[i]] = params.m_InputShapes[i];
|
|
}
|
|
|
|
{
|
|
ARMNN_SCOPED_HEAP_PROFILING("Parsing");
|
|
network = (params.m_IsModelBinary ?
|
|
parser->CreateNetworkFromBinaryFile(modelPath.c_str(), inputShapes) :
|
|
parser->CreateNetworkFromTextFile(modelPath.c_str(), inputShapes));
|
|
}
|
|
}
|
|
|
|
else
|
|
{
|
|
ARMNN_SCOPED_HEAP_PROFILING("Parsing");
|
|
network = (params.m_IsModelBinary ?
|
|
parser->CreateNetworkFromBinaryFile(modelPath.c_str()) :
|
|
parser->CreateNetworkFromTextFile(modelPath.c_str()));
|
|
}
|
|
|
|
for (const std::string& inputLayerName : params.m_InputBindings)
|
|
{
|
|
BindingPointInfo inputBinding = parser->GetNetworkInputBindingInfo(inputLayerName);
|
|
inputBindings.push_back(inputBinding);
|
|
}
|
|
|
|
for (const std::string& outputLayerName : params.m_OutputBindings)
|
|
{
|
|
BindingPointInfo outputBinding = parser->GetNetworkOutputBindingInfo(outputLayerName);
|
|
outputBindings.push_back(outputBinding);
|
|
}
|
|
|
|
return network;
|
|
}
|
|
};
|
|
#endif
|
|
|
|
|
|
|
|
template <typename IParser, typename TDataType>
|
|
class InferenceModel
|
|
{
|
|
public:
|
|
using DataType = TDataType;
|
|
using Params = InferenceModelInternal::Params;
|
|
using QuantizationParams = InferenceModelInternal::QuantizationParams;
|
|
|
|
|
|
struct CommandLineOptions
|
|
{
|
|
std::string m_ModelDir;
|
|
std::vector<std::string> m_ComputeDevices;
|
|
std::string m_DynamicBackendsPath;
|
|
bool m_VisualizePostOptimizationModel;
|
|
bool m_EnableFp16TurboMode;
|
|
bool m_EnableBf16TurboMode;
|
|
std::string m_Labels;
|
|
|
|
std::vector<armnn::BackendId> GetComputeDevicesAsBackendIds()
|
|
{
|
|
std::vector<armnn::BackendId> backendIds;
|
|
std::copy(m_ComputeDevices.begin(), m_ComputeDevices.end(), std::back_inserter(backendIds));
|
|
return backendIds;
|
|
}
|
|
};
|
|
|
|
static void AddCommandLineOptions(cxxopts::Options& options,
|
|
CommandLineOptions& cLineOptions, std::vector<std::string>& required)
|
|
{
|
|
const std::vector<std::string> defaultComputes = { "CpuAcc", "CpuRef" };
|
|
|
|
const std::string backendsMessage = "Which device to run layers on by default. Possible choices: "
|
|
+ armnn::BackendRegistryInstance().GetBackendIdsAsString();
|
|
|
|
options
|
|
.allow_unrecognised_options()
|
|
.add_options()
|
|
("m,model-dir", "Path to directory containing model files (.prototxt/.tflite)",
|
|
cxxopts::value<std::string>(cLineOptions.m_ModelDir))
|
|
("c,compute", backendsMessage.c_str(),
|
|
cxxopts::value<std::vector<std::string>>(cLineOptions.m_ComputeDevices)->default_value("CpuRef"))
|
|
("b,dynamic-backends-path",
|
|
"Path where to load any available dynamic backend from. "
|
|
"If left empty (the default), dynamic backends will not be used.",
|
|
cxxopts::value(cLineOptions.m_DynamicBackendsPath))
|
|
("l,labels",
|
|
"Text file containing one image filename - correct label pair per line, "
|
|
"used to test the accuracy of the network.", cxxopts::value<std::string>(cLineOptions.m_Labels))
|
|
("v,visualize-optimized-model",
|
|
"Produce a dot file useful for visualizing the graph post optimization."
|
|
"The file will have the same name as the model with the .dot extention.",
|
|
cxxopts::value<bool>(cLineOptions.m_VisualizePostOptimizationModel)->default_value("false"))
|
|
("fp16-turbo-mode",
|
|
"If this option is enabled FP32 layers, weights and biases will be converted "
|
|
"to FP16 where the backend supports it.",
|
|
cxxopts::value<bool>(cLineOptions.m_EnableFp16TurboMode)->default_value("false"))
|
|
("bf16-turbo-mode",
|
|
"If this option is enabled FP32 layers, weights and biases will be converted "
|
|
"to BF16 where the backend supports it.",
|
|
cxxopts::value<bool>(cLineOptions.m_EnableBf16TurboMode)->default_value("false"));
|
|
|
|
required.emplace_back("model-dir");
|
|
}
|
|
|
|
InferenceModel(const Params& params,
|
|
bool enableProfiling,
|
|
const std::string& dynamicBackendsPath,
|
|
const std::shared_ptr<armnn::IRuntime>& runtime = nullptr)
|
|
: m_EnableProfiling(enableProfiling),
|
|
m_ProfilingDetailsMethod(armnn::ProfilingDetailsMethod::Undefined)
|
|
, m_DynamicBackendsPath(dynamicBackendsPath)
|
|
{
|
|
if (runtime)
|
|
{
|
|
m_Runtime = runtime;
|
|
}
|
|
else
|
|
{
|
|
armnn::IRuntime::CreationOptions options;
|
|
options.m_EnableGpuProfiling = m_EnableProfiling;
|
|
options.m_DynamicBackendsPath = m_DynamicBackendsPath;
|
|
m_Runtime = armnn::IRuntime::Create(options);
|
|
}
|
|
|
|
// Configure the Profiler if the the profiling details are opted for
|
|
if (params.m_OutputDetailsOnlyToStdOut)
|
|
m_ProfilingDetailsMethod = armnn::ProfilingDetailsMethod::DetailsOnly;
|
|
else if (params.m_OutputDetailsToStdOut)
|
|
m_ProfilingDetailsMethod = armnn::ProfilingDetailsMethod::DetailsWithEvents;
|
|
|
|
std::string invalidBackends;
|
|
if (!CheckRequestedBackendsAreValid(params.m_ComputeDevices, armnn::Optional<std::string&>(invalidBackends)))
|
|
{
|
|
throw armnn::Exception("Some backend IDs are invalid: " + invalidBackends);
|
|
}
|
|
|
|
armnn::IOptimizedNetworkPtr optNet{nullptr, [](armnn::IOptimizedNetwork*){}};
|
|
{
|
|
const auto parsing_start_time = armnn::GetTimeNow();
|
|
armnn::INetworkPtr network = CreateNetworkImpl<IParser>::Create(params, m_InputBindings, m_OutputBindings);
|
|
|
|
ARMNN_LOG(info) << "Network parsing time: " << std::setprecision(2)
|
|
<< std::fixed << armnn::GetTimeDuration(parsing_start_time).count() << " ms.";
|
|
|
|
ARMNN_SCOPED_HEAP_PROFILING("Optimizing");
|
|
|
|
armnn::OptimizerOptions options;
|
|
options.m_ReduceFp32ToFp16 = params.m_EnableFp16TurboMode;
|
|
options.m_ReduceFp32ToBf16 = params.m_EnableBf16TurboMode;
|
|
options.m_Debug = params.m_PrintIntermediateLayers;
|
|
options.m_shapeInferenceMethod = params.m_InferOutputShape ?
|
|
armnn::ShapeInferenceMethod::InferAndValidate : armnn::ShapeInferenceMethod::ValidateOnly;
|
|
options.m_ProfilingEnabled = m_EnableProfiling;
|
|
|
|
armnn::BackendOptions gpuAcc("GpuAcc",
|
|
{
|
|
{ "FastMathEnabled", params.m_EnableFastMath },
|
|
{ "SaveCachedNetwork", params.m_SaveCachedNetwork },
|
|
{ "CachedNetworkFilePath", params.m_CachedNetworkFilePath },
|
|
{ "MLGOTuningFilePath", params.m_MLGOTuningFilePath }
|
|
});
|
|
|
|
armnn::BackendOptions cpuAcc("CpuAcc",
|
|
{
|
|
{ "FastMathEnabled", params.m_EnableFastMath },
|
|
{ "NumberOfThreads", params.m_NumberOfThreads }
|
|
});
|
|
options.m_ModelOptions.push_back(gpuAcc);
|
|
options.m_ModelOptions.push_back(cpuAcc);
|
|
|
|
const auto optimization_start_time = armnn::GetTimeNow();
|
|
optNet = armnn::Optimize(*network, params.m_ComputeDevices, m_Runtime->GetDeviceSpec(), options);
|
|
|
|
ARMNN_LOG(info) << "Optimization time: " << std::setprecision(2)
|
|
<< std::fixed << armnn::GetTimeDuration(optimization_start_time).count() << " ms.";
|
|
|
|
if (!optNet)
|
|
{
|
|
throw armnn::Exception("Optimize returned nullptr");
|
|
}
|
|
|
|
|
|
}
|
|
|
|
if (params.m_VisualizePostOptimizationModel)
|
|
{
|
|
fs::path filename = params.m_ModelPath;
|
|
filename.replace_extension("dot");
|
|
std::fstream file(filename.c_str(), std::ios_base::out);
|
|
optNet->SerializeToDot(file);
|
|
}
|
|
|
|
armnn::Status ret;
|
|
{
|
|
ARMNN_SCOPED_HEAP_PROFILING("LoadNetwork");
|
|
|
|
const auto loading_start_time = armnn::GetTimeNow();
|
|
armnn::INetworkProperties networkProperties(params.m_AsyncEnabled,
|
|
armnn::MemorySource::Undefined,
|
|
armnn::MemorySource::Undefined,
|
|
enableProfiling,
|
|
m_ProfilingDetailsMethod);
|
|
std::string errorMessage;
|
|
ret = m_Runtime->LoadNetwork(m_NetworkIdentifier, std::move(optNet), errorMessage, networkProperties);
|
|
|
|
ARMNN_LOG(info) << "Network loading time: " << std::setprecision(2)
|
|
<< std::fixed << armnn::GetTimeDuration(loading_start_time).count() << " ms.";
|
|
|
|
if (params.m_AsyncEnabled && params.m_ThreadPoolSize > 0)
|
|
{
|
|
std::vector<std::shared_ptr<armnn::IWorkingMemHandle>> memHandles;
|
|
for (size_t i = 0; i < params.m_ThreadPoolSize; ++i)
|
|
{
|
|
memHandles.emplace_back(m_Runtime->CreateWorkingMemHandle(m_NetworkIdentifier));
|
|
}
|
|
|
|
m_Threadpool = std::make_unique<armnn::Threadpool>(params.m_ThreadPoolSize,
|
|
m_Runtime.get(),
|
|
memHandles);
|
|
}
|
|
}
|
|
|
|
if (ret == armnn::Status::Failure)
|
|
{
|
|
throw armnn::Exception("IRuntime::LoadNetwork failed");
|
|
}
|
|
}
|
|
|
|
void CheckInputIndexIsValid(unsigned int inputIndex) const
|
|
{
|
|
if (m_InputBindings.size() < inputIndex + 1)
|
|
{
|
|
throw armnn::Exception(fmt::format("Input index out of range: {}", inputIndex));
|
|
}
|
|
}
|
|
|
|
void CheckOutputIndexIsValid(unsigned int outputIndex) const
|
|
{
|
|
if (m_OutputBindings.size() < outputIndex + 1)
|
|
{
|
|
throw armnn::Exception(fmt::format("Output index out of range: {}", outputIndex));
|
|
}
|
|
}
|
|
|
|
unsigned int GetInputSize(unsigned int inputIndex = 0u) const
|
|
{
|
|
CheckInputIndexIsValid(inputIndex);
|
|
return m_InputBindings[inputIndex].second.GetNumElements();
|
|
}
|
|
|
|
unsigned int GetOutputSize(unsigned int outputIndex = 0u) const
|
|
{
|
|
CheckOutputIndexIsValid(outputIndex);
|
|
return m_OutputBindings[outputIndex].second.GetNumElements();
|
|
}
|
|
|
|
std::chrono::duration<double, std::milli> Run(
|
|
const std::vector<armnnUtils::TContainer>& inputContainers,
|
|
std::vector<armnnUtils::TContainer>& outputContainers)
|
|
{
|
|
for (unsigned int i = 0; i < outputContainers.size(); ++i)
|
|
{
|
|
const unsigned int expectedOutputDataSize = GetOutputSize(i);
|
|
|
|
mapbox::util::apply_visitor([expectedOutputDataSize, i](auto&& value)
|
|
{
|
|
const unsigned int actualOutputDataSize = armnn::numeric_cast<unsigned int>(value.size());
|
|
if (actualOutputDataSize < expectedOutputDataSize)
|
|
{
|
|
unsigned int outputIndex = i;
|
|
throw armnn::Exception(
|
|
fmt::format("Not enough data for output #{0}: expected "
|
|
"{1} elements, got {2}", outputIndex, expectedOutputDataSize, actualOutputDataSize));
|
|
}
|
|
},
|
|
outputContainers[i]);
|
|
}
|
|
|
|
std::shared_ptr<armnn::IProfiler> profiler = m_Runtime->GetProfiler(m_NetworkIdentifier);
|
|
|
|
// Start timer to record inference time in EnqueueWorkload (in milliseconds)
|
|
const auto start_time = armnn::GetTimeNow();
|
|
|
|
armnn::Status ret = m_Runtime->EnqueueWorkload(m_NetworkIdentifier,
|
|
MakeInputTensors(inputContainers),
|
|
MakeOutputTensors(outputContainers));
|
|
const auto duration = armnn::GetTimeDuration(start_time);
|
|
|
|
// if profiling is enabled print out the results
|
|
if (profiler && profiler->IsProfilingEnabled())
|
|
{
|
|
profiler->Print(std::cout);
|
|
}
|
|
|
|
if (ret == armnn::Status::Failure)
|
|
{
|
|
throw armnn::Exception("IRuntime::EnqueueWorkload failed");
|
|
}
|
|
else
|
|
{
|
|
return duration;
|
|
}
|
|
}
|
|
|
|
std::tuple<unsigned int, std::chrono::duration<double, std::milli>> RunAsync(
|
|
armnn::experimental::IWorkingMemHandle& workingMemHandleRef,
|
|
const std::vector<armnnUtils::TContainer>& inputContainers,
|
|
std::vector<armnnUtils::TContainer>& outputContainers,
|
|
unsigned int inferenceID)
|
|
{
|
|
for (unsigned int i = 0; i < outputContainers.size(); ++i)
|
|
{
|
|
const unsigned int expectedOutputDataSize = GetOutputSize(i);
|
|
|
|
mapbox::util::apply_visitor([expectedOutputDataSize, i](auto&& value)
|
|
{
|
|
const unsigned int actualOutputDataSize = armnn::numeric_cast<unsigned int>(value.size());
|
|
if (actualOutputDataSize < expectedOutputDataSize)
|
|
{
|
|
unsigned int outputIndex = i;
|
|
throw armnn::Exception(
|
|
fmt::format("Not enough data for output #{0}: expected "
|
|
"{1} elements, got {2}", outputIndex, expectedOutputDataSize, actualOutputDataSize));
|
|
}
|
|
},
|
|
outputContainers[i]);
|
|
}
|
|
|
|
std::shared_ptr<armnn::IProfiler> profiler = m_Runtime->GetProfiler(m_NetworkIdentifier);
|
|
|
|
// Start timer to record inference time in EnqueueWorkload (in milliseconds)
|
|
const auto start_time = armnn::GetTimeNow();
|
|
|
|
armnn::Status ret = m_Runtime->Execute(workingMemHandleRef,
|
|
MakeInputTensors(inputContainers),
|
|
MakeOutputTensors(outputContainers));
|
|
|
|
const auto duration = armnn::GetTimeDuration(start_time);
|
|
|
|
// if profiling is enabled print out the results
|
|
if (profiler && profiler->IsProfilingEnabled())
|
|
{
|
|
profiler->Print(std::cout);
|
|
}
|
|
|
|
if (ret == armnn::Status::Failure)
|
|
{
|
|
throw armnn::Exception(
|
|
fmt::format("IRuntime::Execute asynchronously failed for network #{0} on inference #{1}",
|
|
m_NetworkIdentifier, inferenceID));
|
|
}
|
|
else
|
|
{
|
|
return std::make_tuple(inferenceID, duration);
|
|
}
|
|
}
|
|
|
|
void RunAsync(const std::vector<armnnUtils::TContainer>& inputContainers,
|
|
std::vector<armnnUtils::TContainer>& outputContainers,
|
|
std::shared_ptr<armnn::IAsyncExecutionCallback> cb)
|
|
{
|
|
for (unsigned int i = 0; i < outputContainers.size(); ++i)
|
|
{
|
|
const unsigned int expectedOutputDataSize = GetOutputSize(i);
|
|
|
|
mapbox::util::apply_visitor([expectedOutputDataSize, i](auto&& value)
|
|
{
|
|
const unsigned int actualOutputDataSize = armnn::numeric_cast<unsigned int>(value.size());
|
|
if (actualOutputDataSize < expectedOutputDataSize)
|
|
{
|
|
unsigned int outputIndex = i;
|
|
throw armnn::Exception(
|
|
fmt::format("Not enough data for output #{0}: expected "
|
|
"{1} elements, got {2}", outputIndex, expectedOutputDataSize, actualOutputDataSize));
|
|
}
|
|
},
|
|
outputContainers[i]);
|
|
}
|
|
|
|
std::shared_ptr<armnn::IProfiler> profiler = m_Runtime->GetProfiler(m_NetworkIdentifier);
|
|
|
|
m_Threadpool->Schedule(m_NetworkIdentifier,
|
|
MakeInputTensors(inputContainers),
|
|
MakeOutputTensors(outputContainers),
|
|
armnn::QosExecPriority::Medium,
|
|
cb);
|
|
|
|
// if profiling is enabled print out the results
|
|
if (profiler && profiler->IsProfilingEnabled())
|
|
{
|
|
profiler->Print(std::cout);
|
|
}
|
|
}
|
|
|
|
const armnn::BindingPointInfo& GetInputBindingInfo(unsigned int inputIndex = 0u) const
|
|
{
|
|
CheckInputIndexIsValid(inputIndex);
|
|
return m_InputBindings[inputIndex];
|
|
}
|
|
|
|
const std::vector<armnn::BindingPointInfo>& GetInputBindingInfos() const
|
|
{
|
|
return m_InputBindings;
|
|
}
|
|
|
|
const armnn::BindingPointInfo& GetOutputBindingInfo(unsigned int outputIndex = 0u) const
|
|
{
|
|
CheckOutputIndexIsValid(outputIndex);
|
|
return m_OutputBindings[outputIndex];
|
|
}
|
|
|
|
const std::vector<armnn::BindingPointInfo>& GetOutputBindingInfos() const
|
|
{
|
|
return m_OutputBindings;
|
|
}
|
|
|
|
QuantizationParams GetQuantizationParams(unsigned int outputIndex = 0u) const
|
|
{
|
|
CheckOutputIndexIsValid(outputIndex);
|
|
return std::make_pair(m_OutputBindings[outputIndex].second.GetQuantizationScale(),
|
|
m_OutputBindings[outputIndex].second.GetQuantizationOffset());
|
|
}
|
|
|
|
QuantizationParams GetInputQuantizationParams(unsigned int inputIndex = 0u) const
|
|
{
|
|
CheckInputIndexIsValid(inputIndex);
|
|
return std::make_pair(m_InputBindings[inputIndex].second.GetQuantizationScale(),
|
|
m_InputBindings[inputIndex].second.GetQuantizationOffset());
|
|
}
|
|
|
|
std::vector<QuantizationParams> GetAllQuantizationParams() const
|
|
{
|
|
std::vector<QuantizationParams> quantizationParams;
|
|
for (unsigned int i = 0u; i < m_OutputBindings.size(); i++)
|
|
{
|
|
quantizationParams.push_back(GetQuantizationParams(i));
|
|
}
|
|
return quantizationParams;
|
|
}
|
|
|
|
std::unique_ptr<armnn::experimental::IWorkingMemHandle> CreateWorkingMemHandle()
|
|
{
|
|
return m_Runtime->CreateWorkingMemHandle(m_NetworkIdentifier);
|
|
}
|
|
|
|
private:
|
|
armnn::NetworkId m_NetworkIdentifier;
|
|
std::shared_ptr<armnn::IRuntime> m_Runtime;
|
|
std::unique_ptr<armnn::Threadpool> m_Threadpool;
|
|
|
|
std::vector<armnn::BindingPointInfo> m_InputBindings;
|
|
std::vector<armnn::BindingPointInfo> m_OutputBindings;
|
|
bool m_EnableProfiling;
|
|
armnn::ProfilingDetailsMethod m_ProfilingDetailsMethod;
|
|
std::string m_DynamicBackendsPath;
|
|
|
|
template<typename TContainer>
|
|
armnn::InputTensors MakeInputTensors(const std::vector<TContainer>& inputDataContainers)
|
|
{
|
|
return armnnUtils::MakeInputTensors(m_InputBindings, inputDataContainers);
|
|
}
|
|
|
|
template<typename TContainer>
|
|
armnn::OutputTensors MakeOutputTensors(std::vector<TContainer>& outputDataContainers)
|
|
{
|
|
return armnnUtils::MakeOutputTensors(m_OutputBindings, outputDataContainers);
|
|
}
|
|
};
|