mirror of
https://github.com/Qortal/Brooklyn.git
synced 2025-02-14 11:15:54 +00:00
80 lines
3.0 KiB
C++
80 lines
3.0 KiB
C++
//
|
|
// Copyright © 2017 Arm Ltd. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
#include "../MobileNetSsdInferenceTest.hpp"
|
|
|
|
#include "armnnTfLiteParser/ITfLiteParser.hpp"
|
|
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
|
|
using namespace armnnTfLiteParser;
|
|
|
|
int main(int argc, char* argv[])
|
|
{
|
|
int retVal = EXIT_FAILURE;
|
|
try
|
|
{
|
|
using DataType = float;
|
|
using Parser = armnnTfLiteParser::ITfLiteParser;
|
|
using Model = InferenceModel<Parser, DataType>;
|
|
|
|
armnn::TensorShape inputTensorShape({ 1, 300, 300, 3 });
|
|
|
|
std::vector<const char*> inputLayerNames =
|
|
{
|
|
"normalized_input_image_tensor"
|
|
};
|
|
|
|
std::vector<const char*> outputLayerNames =
|
|
{
|
|
"TFLite_Detection_PostProcess",
|
|
"TFLite_Detection_PostProcess:1",
|
|
"TFLite_Detection_PostProcess:2",
|
|
"TFLite_Detection_PostProcess:3"
|
|
};
|
|
|
|
retVal = InferenceTestMain(argc, argv, { 0 },
|
|
[&inputTensorShape, inputLayerNames, outputLayerNames]()
|
|
{
|
|
return make_unique<MobileNetSsdTestCaseProvider<Model>>(
|
|
[&]
|
|
(const InferenceTestOptions& commonOptions,
|
|
typename Model::CommandLineOptions modelOptions)
|
|
{
|
|
if (!ValidateDirectory(modelOptions.m_ModelDir))
|
|
{
|
|
return std::unique_ptr<Model>();
|
|
}
|
|
|
|
typename Model::Params modelParams;
|
|
modelParams.m_ModelPath =
|
|
modelOptions.m_ModelDir + "ssd_mobilenet_v1.tflite";
|
|
|
|
std::copy(inputLayerNames.begin(), inputLayerNames.end(),
|
|
std::back_inserter(modelParams.m_InputBindings));
|
|
|
|
std::copy(outputLayerNames.begin(), outputLayerNames.end(),
|
|
std::back_inserter(modelParams.m_OutputBindings));
|
|
|
|
modelParams.m_InputShapes = { inputTensorShape };
|
|
modelParams.m_IsModelBinary = true;
|
|
modelParams.m_ComputeDevices = modelOptions.GetComputeDevicesAsBackendIds();
|
|
modelParams.m_VisualizePostOptimizationModel = modelOptions.m_VisualizePostOptimizationModel;
|
|
modelParams.m_EnableFp16TurboMode = modelOptions.m_EnableFp16TurboMode;
|
|
|
|
return std::make_unique<Model>(modelParams,
|
|
commonOptions.m_EnableProfiling,
|
|
commonOptions.m_DynamicBackendsPath);
|
|
});
|
|
});
|
|
}
|
|
catch (const std::exception& e)
|
|
{
|
|
std::cerr << "WARNING: " << *argv << ": An error has occurred when running "
|
|
"the classifier inference tests: " << e.what() << std::endl;
|
|
}
|
|
return retVal;
|
|
}
|