mirror of
https://github.com/Qortal/Brooklyn.git
synced 2025-02-07 23:03:06 +00:00
Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey! Ring the door. Take your seat moosey!
1202 lines
34 KiB
C
1202 lines
34 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2015 Broadcom
|
|
*/
|
|
|
|
/**
|
|
* DOC: VC4 HVS module.
|
|
*
|
|
* The Hardware Video Scaler (HVS) is the piece of hardware that does
|
|
* translation, scaling, colorspace conversion, and compositing of
|
|
* pixels stored in framebuffers into a FIFO of pixels going out to
|
|
* the Pixel Valve (CRTC). It operates at the system clock rate (the
|
|
* system audio clock gate, specifically), which is much higher than
|
|
* the pixel clock rate.
|
|
*
|
|
* There is a single global HVS, with multiple output FIFOs that can
|
|
* be consumed by the PVs. This file just manages the resources for
|
|
* the HVS, while the vc4_crtc.c code actually drives HVS setup for
|
|
* each CRTC.
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/component.h>
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <drm/drm_atomic_helper.h>
|
|
#include <drm/drm_vblank.h>
|
|
|
|
#include "vc4_drv.h"
|
|
#include "vc4_regs.h"
|
|
|
|
static const struct debugfs_reg32 hvs_regs[] = {
|
|
VC4_REG32(SCALER_DISPCTRL),
|
|
VC4_REG32(SCALER_DISPSTAT),
|
|
VC4_REG32(SCALER_DISPID),
|
|
VC4_REG32(SCALER_DISPECTRL),
|
|
VC4_REG32(SCALER_DISPPROF),
|
|
VC4_REG32(SCALER_DISPDITHER),
|
|
VC4_REG32(SCALER_DISPEOLN),
|
|
VC4_REG32(SCALER_DISPLIST0),
|
|
VC4_REG32(SCALER_DISPLIST1),
|
|
VC4_REG32(SCALER_DISPLIST2),
|
|
VC4_REG32(SCALER_DISPLSTAT),
|
|
VC4_REG32(SCALER_DISPLACT0),
|
|
VC4_REG32(SCALER_DISPLACT1),
|
|
VC4_REG32(SCALER_DISPLACT2),
|
|
VC4_REG32(SCALER_DISPCTRL0),
|
|
VC4_REG32(SCALER_DISPBKGND0),
|
|
VC4_REG32(SCALER_DISPSTAT0),
|
|
VC4_REG32(SCALER_DISPBASE0),
|
|
VC4_REG32(SCALER_DISPCTRL1),
|
|
VC4_REG32(SCALER_DISPBKGND1),
|
|
VC4_REG32(SCALER_DISPSTAT1),
|
|
VC4_REG32(SCALER_DISPBASE1),
|
|
VC4_REG32(SCALER_DISPCTRL2),
|
|
VC4_REG32(SCALER_DISPBKGND2),
|
|
VC4_REG32(SCALER_DISPSTAT2),
|
|
VC4_REG32(SCALER_DISPBASE2),
|
|
VC4_REG32(SCALER_DISPALPHA2),
|
|
VC4_REG32(SCALER_OLEDOFFS),
|
|
VC4_REG32(SCALER_OLEDCOEF0),
|
|
VC4_REG32(SCALER_OLEDCOEF1),
|
|
VC4_REG32(SCALER_OLEDCOEF2),
|
|
};
|
|
|
|
void vc4_hvs_dump_state(struct vc4_hvs *hvs)
|
|
{
|
|
struct drm_printer p = drm_info_printer(&hvs->pdev->dev);
|
|
int i;
|
|
|
|
drm_print_regset32(&p, &hvs->regset);
|
|
|
|
DRM_INFO("HVS ctx:\n");
|
|
for (i = 0; i < 64; i += 4) {
|
|
DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
|
|
i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
|
|
readl((u32 __iomem *)hvs->dlist + i + 0),
|
|
readl((u32 __iomem *)hvs->dlist + i + 1),
|
|
readl((u32 __iomem *)hvs->dlist + i + 2),
|
|
readl((u32 __iomem *)hvs->dlist + i + 3));
|
|
}
|
|
}
|
|
|
|
static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
|
|
{
|
|
struct drm_info_node *node = m->private;
|
|
struct drm_device *dev = node->minor->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct drm_printer p = drm_seq_file_printer(m);
|
|
|
|
drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vc4_hvs_debugfs_dlist(struct seq_file *m, void *data)
|
|
{
|
|
struct drm_info_node *node = m->private;
|
|
struct drm_device *dev = node->minor->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_hvs *hvs = vc4->hvs;
|
|
struct drm_printer p = drm_seq_file_printer(m);
|
|
unsigned int next_entry_start = 0;
|
|
unsigned int i, j;
|
|
u32 dlist_word, dispstat;
|
|
|
|
for (i = 0; i < SCALER_CHANNELS_COUNT; i++) {
|
|
dispstat = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(i)),
|
|
SCALER_DISPSTATX_MODE);
|
|
if (dispstat == SCALER_DISPSTATX_MODE_DISABLED ||
|
|
dispstat == SCALER_DISPSTATX_MODE_EOF) {
|
|
drm_printf(&p, "HVS chan %u disabled\n", i);
|
|
continue;
|
|
}
|
|
|
|
drm_printf(&p, "HVS chan %u:\n", i);
|
|
|
|
for (j = HVS_READ(SCALER_DISPLISTX(i)); j < 256; j++) {
|
|
dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j);
|
|
drm_printf(&p, "dlist: %02d: 0x%08x\n", j,
|
|
dlist_word);
|
|
if (!next_entry_start ||
|
|
next_entry_start == j) {
|
|
if (dlist_word & SCALER_CTL0_END)
|
|
break;
|
|
next_entry_start = j +
|
|
VC4_GET_FIELD(dlist_word,
|
|
SCALER_CTL0_SIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vc5_hvs_debugfs_gamma(struct seq_file *m, void *data)
|
|
{
|
|
struct drm_info_node *node = m->private;
|
|
struct drm_device *dev = node->minor->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_hvs *hvs = vc4->hvs;
|
|
struct drm_printer p = drm_seq_file_printer(m);
|
|
unsigned int i, chan;
|
|
u32 dispstat, dispbkgndx;
|
|
|
|
for (chan = 0; chan < SCALER_CHANNELS_COUNT; chan++) {
|
|
u32 x_c, grad;
|
|
u32 offset = SCALER5_DSPGAMMA_START +
|
|
chan * SCALER5_DSPGAMMA_CHAN_OFFSET;
|
|
|
|
dispstat = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
|
|
SCALER_DISPSTATX_MODE);
|
|
if (dispstat == SCALER_DISPSTATX_MODE_DISABLED ||
|
|
dispstat == SCALER_DISPSTATX_MODE_EOF) {
|
|
drm_printf(&p, "HVS channel %u: Channel disabled\n", chan);
|
|
continue;
|
|
}
|
|
|
|
dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
|
|
if (!(dispbkgndx & SCALER_DISPBKGND_GAMMA)) {
|
|
drm_printf(&p, "HVS channel %u: Gamma disabled\n", chan);
|
|
continue;
|
|
}
|
|
|
|
drm_printf(&p, "HVS channel %u:\n", chan);
|
|
drm_printf(&p, " red:\n");
|
|
for (i = 0; i < SCALER5_DSPGAMMA_NUM_POINTS; i++, offset += 8) {
|
|
x_c = HVS_READ(offset);
|
|
grad = HVS_READ(offset + 4);
|
|
drm_printf(&p, " %08x %08x - x %u, c %u, grad %u\n",
|
|
x_c, grad,
|
|
VC4_GET_FIELD(x_c, SCALER5_DSPGAMMA_OFF_X),
|
|
VC4_GET_FIELD(x_c, SCALER5_DSPGAMMA_OFF_C),
|
|
grad);
|
|
}
|
|
drm_printf(&p, " green:\n");
|
|
for (i = 0; i < SCALER5_DSPGAMMA_NUM_POINTS; i++, offset += 8) {
|
|
x_c = HVS_READ(offset);
|
|
grad = HVS_READ(offset + 4);
|
|
drm_printf(&p, " %08x %08x - x %u, c %u, grad %u\n",
|
|
x_c, grad,
|
|
VC4_GET_FIELD(x_c, SCALER5_DSPGAMMA_OFF_X),
|
|
VC4_GET_FIELD(x_c, SCALER5_DSPGAMMA_OFF_C),
|
|
grad);
|
|
}
|
|
drm_printf(&p, " blue:\n");
|
|
for (i = 0; i < SCALER5_DSPGAMMA_NUM_POINTS; i++, offset += 8) {
|
|
x_c = HVS_READ(offset);
|
|
grad = HVS_READ(offset + 4);
|
|
drm_printf(&p, " %08x %08x - x %u, c %u, grad %u\n",
|
|
x_c, grad,
|
|
VC4_GET_FIELD(x_c, SCALER5_DSPGAMMA_OFF_X),
|
|
VC4_GET_FIELD(x_c, SCALER5_DSPGAMMA_OFF_C),
|
|
grad);
|
|
}
|
|
|
|
/* Alpha only valid on channel 2 */
|
|
if (chan != 2)
|
|
continue;
|
|
|
|
drm_printf(&p, " alpha:\n");
|
|
for (i = 0; i < SCALER5_DSPGAMMA_NUM_POINTS; i++, offset += 8) {
|
|
x_c = HVS_READ(offset);
|
|
grad = HVS_READ(offset + 4);
|
|
drm_printf(&p, " %08x %08x - x %u, c %u, grad %u\n",
|
|
x_c, grad,
|
|
VC4_GET_FIELD(x_c, SCALER5_DSPGAMMA_OFF_X),
|
|
VC4_GET_FIELD(x_c, SCALER5_DSPGAMMA_OFF_C),
|
|
grad);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* The filter kernel is composed of dwords each containing 3 9-bit
|
|
* signed integers packed next to each other.
|
|
*/
|
|
#define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
|
|
#define VC4_PPF_FILTER_WORD(c0, c1, c2) \
|
|
((((c0) & 0x1ff) << 0) | \
|
|
(((c1) & 0x1ff) << 9) | \
|
|
(((c2) & 0x1ff) << 18))
|
|
|
|
/* The whole filter kernel is arranged as the coefficients 0-16 going
|
|
* up, then a pad, then 17-31 going down and reversed within the
|
|
* dwords. This means that a linear phase kernel (where it's
|
|
* symmetrical at the boundary between 15 and 16) has the last 5
|
|
* dwords matching the first 5, but reversed.
|
|
*/
|
|
#define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \
|
|
c9, c10, c11, c12, c13, c14, c15) \
|
|
{VC4_PPF_FILTER_WORD(c0, c1, c2), \
|
|
VC4_PPF_FILTER_WORD(c3, c4, c5), \
|
|
VC4_PPF_FILTER_WORD(c6, c7, c8), \
|
|
VC4_PPF_FILTER_WORD(c9, c10, c11), \
|
|
VC4_PPF_FILTER_WORD(c12, c13, c14), \
|
|
VC4_PPF_FILTER_WORD(c15, c15, 0)}
|
|
|
|
#define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
|
|
#define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
|
|
|
|
/* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
|
|
* http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
|
|
*/
|
|
static const u32 mitchell_netravali_1_3_1_3_kernel[] =
|
|
VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
|
|
50, 82, 119, 155, 187, 213, 227);
|
|
|
|
static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
|
|
struct drm_mm_node *space,
|
|
const u32 *kernel)
|
|
{
|
|
int ret, i;
|
|
u32 __iomem *dst_kernel;
|
|
|
|
ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
dst_kernel = hvs->dlist + space->start;
|
|
|
|
for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
|
|
if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
|
|
writel(kernel[i], &dst_kernel[i]);
|
|
else {
|
|
writel(kernel[VC4_KERNEL_DWORDS - i - 1],
|
|
&dst_kernel[i]);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vc4_hvs_lut_load(struct vc4_hvs *hvs,
|
|
struct vc4_crtc *vc4_crtc)
|
|
{
|
|
struct drm_crtc *crtc = &vc4_crtc->base;
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
|
|
u32 i;
|
|
|
|
/* The LUT memory is laid out with each HVS channel in order,
|
|
* each of which takes 256 writes for R, 256 for G, then 256
|
|
* for B.
|
|
*/
|
|
HVS_WRITE(SCALER_GAMADDR,
|
|
SCALER_GAMADDR_AUTOINC |
|
|
(vc4_state->assigned_channel * 3 * crtc->gamma_size));
|
|
|
|
for (i = 0; i < crtc->gamma_size; i++)
|
|
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
|
|
for (i = 0; i < crtc->gamma_size; i++)
|
|
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
|
|
for (i = 0; i < crtc->gamma_size; i++)
|
|
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
|
|
}
|
|
|
|
static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs,
|
|
struct vc4_crtc *vc4_crtc)
|
|
{
|
|
struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
|
|
struct drm_color_lut *lut = crtc_state->gamma_lut->data;
|
|
u32 length = drm_color_lut_size(crtc_state->gamma_lut);
|
|
u32 i;
|
|
|
|
for (i = 0; i < length; i++) {
|
|
vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
|
|
vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
|
|
vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
|
|
}
|
|
|
|
vc4_hvs_lut_load(hvs, vc4_crtc);
|
|
}
|
|
|
|
static void vc5_hvs_write_gamma_entry(struct vc4_hvs *hvs,
|
|
u32 offset,
|
|
struct vc5_gamma_entry *gamma)
|
|
{
|
|
HVS_WRITE(offset, gamma->x_c_terms);
|
|
HVS_WRITE(offset + 4, gamma->grad_term);
|
|
}
|
|
|
|
static void vc5_hvs_lut_load(struct vc4_hvs *hvs,
|
|
struct vc4_crtc *vc4_crtc)
|
|
{
|
|
struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
|
|
u32 i;
|
|
u32 offset = SCALER5_DSPGAMMA_START +
|
|
vc4_state->assigned_channel * SCALER5_DSPGAMMA_CHAN_OFFSET;
|
|
|
|
for (i = 0; i < SCALER5_DSPGAMMA_NUM_POINTS; i++, offset += 8)
|
|
vc5_hvs_write_gamma_entry(hvs, offset, &vc4_crtc->pwl_r[i]);
|
|
for (i = 0; i < SCALER5_DSPGAMMA_NUM_POINTS; i++, offset += 8)
|
|
vc5_hvs_write_gamma_entry(hvs, offset, &vc4_crtc->pwl_g[i]);
|
|
for (i = 0; i < SCALER5_DSPGAMMA_NUM_POINTS; i++, offset += 8)
|
|
vc5_hvs_write_gamma_entry(hvs, offset, &vc4_crtc->pwl_b[i]);
|
|
|
|
if (vc4_state->assigned_channel == 2) {
|
|
/* Alpha only valid on channel 2 */
|
|
for (i = 0; i < SCALER5_DSPGAMMA_NUM_POINTS; i++, offset += 8)
|
|
vc5_hvs_write_gamma_entry(hvs, offset, &vc4_crtc->pwl_a[i]);
|
|
}
|
|
}
|
|
|
|
static void vc5_hvs_update_gamma_lut(struct vc4_hvs *hvs,
|
|
struct vc4_crtc *vc4_crtc)
|
|
{
|
|
struct drm_crtc *crtc = &vc4_crtc->base;
|
|
struct drm_color_lut *lut = crtc->state->gamma_lut->data;
|
|
unsigned int step, i;
|
|
u32 start, end;
|
|
|
|
#define VC5_HVS_UPDATE_GAMMA_ENTRY_FROM_LUT(pwl, chan) \
|
|
start = drm_color_lut_extract(lut[i * step].chan, 12); \
|
|
end = drm_color_lut_extract(lut[(i + 1) * step - 1].chan, 12); \
|
|
\
|
|
/* Negative gradients not permitted by the hardware, so \
|
|
* flatten such points out. \
|
|
*/ \
|
|
if (end < start) \
|
|
end = start; \
|
|
\
|
|
/* Assume 12bit pipeline. \
|
|
* X evenly spread over full range (12 bit). \
|
|
* C as U12.4 format. \
|
|
* Gradient as U4.8 format. \
|
|
*/ \
|
|
vc4_crtc->pwl[i] = \
|
|
VC5_HVS_SET_GAMMA_ENTRY(i << 8, start << 4, \
|
|
((end - start) << 4) / (step - 1))
|
|
|
|
/* HVS5 has a 16 point piecewise linear function for each colour
|
|
* channel (including alpha on channel 2) on each display channel.
|
|
*
|
|
* Currently take a crude subsample of the gamma LUT, but this could
|
|
* be improved to implement curve fitting.
|
|
*/
|
|
step = crtc->gamma_size / SCALER5_DSPGAMMA_NUM_POINTS;
|
|
for (i = 0; i < SCALER5_DSPGAMMA_NUM_POINTS; i++) {
|
|
VC5_HVS_UPDATE_GAMMA_ENTRY_FROM_LUT(pwl_r, red);
|
|
VC5_HVS_UPDATE_GAMMA_ENTRY_FROM_LUT(pwl_g, green);
|
|
VC5_HVS_UPDATE_GAMMA_ENTRY_FROM_LUT(pwl_b, blue);
|
|
}
|
|
|
|
vc5_hvs_lut_load(hvs, vc4_crtc);
|
|
}
|
|
|
|
static void vc4_hvs_irq_enable_eof(const struct vc4_hvs *hvs,
|
|
unsigned int channel)
|
|
{
|
|
u32 irq_mask = hvs->hvs5 ?
|
|
SCALER5_DISPCTRL_DSPEIEOF(channel) :
|
|
SCALER_DISPCTRL_DSPEIEOF(channel);
|
|
|
|
HVS_WRITE(SCALER_DISPCTRL,
|
|
HVS_READ(SCALER_DISPCTRL) | irq_mask);
|
|
}
|
|
|
|
static void vc4_hvs_irq_clear_eof(const struct vc4_hvs *hvs,
|
|
unsigned int channel)
|
|
{
|
|
u32 irq_mask = hvs->hvs5 ?
|
|
SCALER5_DISPCTRL_DSPEIEOF(channel) :
|
|
SCALER_DISPCTRL_DSPEIEOF(channel);
|
|
|
|
HVS_WRITE(SCALER_DISPCTRL,
|
|
HVS_READ(SCALER_DISPCTRL) & ~irq_mask);
|
|
}
|
|
|
|
static struct vc4_hvs_dlist_allocation *
|
|
vc4_hvs_alloc_dlist_entry(struct vc4_hvs *hvs,
|
|
unsigned int channel,
|
|
size_t dlist_count)
|
|
{
|
|
struct vc4_hvs_dlist_allocation *alloc;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
if (channel == VC4_HVS_CHANNEL_DISABLED)
|
|
return NULL;
|
|
|
|
alloc = kzalloc(sizeof(*alloc), GFP_KERNEL);
|
|
if (!alloc)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
spin_lock_irqsave(&hvs->mm_lock, flags);
|
|
ret = drm_mm_insert_node(&hvs->dlist_mm, &alloc->mm_node,
|
|
dlist_count);
|
|
spin_unlock_irqrestore(&hvs->mm_lock, flags);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
alloc->channel = channel;
|
|
|
|
return alloc;
|
|
}
|
|
|
|
void vc4_hvs_mark_dlist_entry_stale(struct vc4_hvs *hvs,
|
|
struct vc4_hvs_dlist_allocation *alloc)
|
|
{
|
|
unsigned long flags;
|
|
u8 frcnt;
|
|
|
|
if (!alloc)
|
|
return;
|
|
|
|
if (!drm_mm_node_allocated(&alloc->mm_node))
|
|
return;
|
|
|
|
frcnt = vc4_hvs_get_fifo_frame_count(hvs, alloc->channel);
|
|
alloc->target_frame_count = (frcnt + 1) & ((1 << 6) - 1);
|
|
|
|
spin_lock_irqsave(&hvs->mm_lock, flags);
|
|
|
|
list_add_tail(&alloc->node, &hvs->stale_dlist_entries);
|
|
|
|
HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_EOF(alloc->channel));
|
|
vc4_hvs_irq_enable_eof(hvs, alloc->channel);
|
|
|
|
spin_unlock_irqrestore(&hvs->mm_lock, flags);
|
|
}
|
|
|
|
static void vc4_hvs_schedule_dlist_sweep(struct vc4_hvs *hvs,
|
|
unsigned int channel)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&hvs->mm_lock, flags);
|
|
|
|
if (!list_empty(&hvs->stale_dlist_entries))
|
|
queue_work(system_unbound_wq, &hvs->free_dlist_work);
|
|
|
|
vc4_hvs_irq_clear_eof(hvs, channel);
|
|
|
|
spin_unlock_irqrestore(&hvs->mm_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Frame counts are essentially sequence numbers over 6 bits, and we
|
|
* thus can use sequence number arithmetic and follow the RFC1982 to
|
|
* implement proper comparison between them.
|
|
*/
|
|
static bool vc4_hvs_frcnt_lte(u8 cnt1, u8 cnt2)
|
|
{
|
|
return (s8)((cnt1 << 2) - (cnt2 << 2)) <= 0;
|
|
}
|
|
|
|
/*
|
|
* Some atomic commits (legacy cursor updates, mostly) will not wait for
|
|
* the next vblank and will just return once the commit has been pushed
|
|
* to the hardware.
|
|
*
|
|
* On the hardware side, our HVS stores the planes parameters in its
|
|
* context RAM, and will use part of the RAM to store data during the
|
|
* frame rendering.
|
|
*
|
|
* This interacts badly if we get multiple commits before the next
|
|
* vblank since we could end up overwriting the DLIST entries used by
|
|
* previous commits if our dlist allocation reuses that entry. In such a
|
|
* case, we would overwrite the data currently being used by the
|
|
* hardware, resulting in a corrupted frame.
|
|
*
|
|
* In order to work around this, we'll queue the dlist entries in a list
|
|
* once the associated CRTC state is destroyed. The HVS only allows us
|
|
* to know which entry is being active, but not which one are no longer
|
|
* being used, so in order to avoid freeing entries that are still used
|
|
* by the hardware we add a guesstimate of the frame count where our
|
|
* entry will no longer be used, and thus will only free those entries
|
|
* when we will have reached that frame count.
|
|
*/
|
|
static void vc4_hvs_dlist_free_work(struct work_struct *work)
|
|
{
|
|
struct vc4_hvs *hvs = container_of(work, struct vc4_hvs, free_dlist_work);
|
|
struct vc4_hvs_dlist_allocation *cur, *next;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&hvs->mm_lock, flags);
|
|
list_for_each_entry_safe(cur, next, &hvs->stale_dlist_entries, node) {
|
|
u8 frcnt;
|
|
|
|
frcnt = vc4_hvs_get_fifo_frame_count(hvs, cur->channel);
|
|
if (!vc4_hvs_frcnt_lte(cur->target_frame_count, frcnt))
|
|
continue;
|
|
|
|
list_del(&cur->node);
|
|
drm_mm_remove_node(&cur->mm_node);
|
|
kfree(cur);
|
|
}
|
|
spin_unlock_irqrestore(&hvs->mm_lock, flags);
|
|
}
|
|
|
|
u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo)
|
|
{
|
|
u8 field = 0;
|
|
|
|
switch (fifo) {
|
|
case 0:
|
|
field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
|
|
SCALER_DISPSTAT1_FRCNT0);
|
|
break;
|
|
case 1:
|
|
field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
|
|
SCALER_DISPSTAT1_FRCNT1);
|
|
break;
|
|
case 2:
|
|
field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
|
|
SCALER_DISPSTAT2_FRCNT2);
|
|
break;
|
|
}
|
|
|
|
return field;
|
|
}
|
|
|
|
int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output)
|
|
{
|
|
u32 reg;
|
|
int ret;
|
|
|
|
if (!hvs->hvs5)
|
|
return output;
|
|
|
|
switch (output) {
|
|
case 0:
|
|
return 0;
|
|
|
|
case 1:
|
|
return 1;
|
|
|
|
case 2:
|
|
reg = HVS_READ(SCALER_DISPECTRL);
|
|
ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
|
|
if (ret == 0)
|
|
return 2;
|
|
|
|
return 0;
|
|
|
|
case 3:
|
|
reg = HVS_READ(SCALER_DISPCTRL);
|
|
ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
|
|
if (ret == 3)
|
|
return -EPIPE;
|
|
|
|
return ret;
|
|
|
|
case 4:
|
|
reg = HVS_READ(SCALER_DISPEOLN);
|
|
ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
|
|
if (ret == 3)
|
|
return -EPIPE;
|
|
|
|
return ret;
|
|
|
|
case 5:
|
|
reg = HVS_READ(SCALER_DISPDITHER);
|
|
ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
|
|
if (ret == 3)
|
|
return -EPIPE;
|
|
|
|
return ret;
|
|
|
|
default:
|
|
return -EPIPE;
|
|
}
|
|
}
|
|
|
|
static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode, bool oneshot)
|
|
{
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
|
|
unsigned int chan = vc4_crtc_state->assigned_channel;
|
|
bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
|
|
u32 dispbkgndx;
|
|
u32 dispctrl;
|
|
|
|
HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
|
|
HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
|
|
HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
|
|
|
|
/* Turn on the scaler, which will wait for vstart to start
|
|
* compositing.
|
|
* When feeding the transposer, we should operate in oneshot
|
|
* mode.
|
|
*/
|
|
dispctrl = SCALER_DISPCTRLX_ENABLE;
|
|
|
|
if (!hvs->hvs5)
|
|
dispctrl |= VC4_SET_FIELD(mode->hdisplay,
|
|
SCALER_DISPCTRLX_WIDTH) |
|
|
VC4_SET_FIELD(mode->vdisplay,
|
|
SCALER_DISPCTRLX_HEIGHT) |
|
|
(oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
|
|
else
|
|
dispctrl |= VC4_SET_FIELD(mode->hdisplay,
|
|
SCALER5_DISPCTRLX_WIDTH) |
|
|
VC4_SET_FIELD(mode->vdisplay,
|
|
SCALER5_DISPCTRLX_HEIGHT) |
|
|
(oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
|
|
|
|
HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
|
|
|
|
dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
|
|
dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
|
|
dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
|
|
|
|
if (crtc->state->gamma_lut)
|
|
/* Enable gamma on if required */
|
|
dispbkgndx |= SCALER_DISPBKGND_GAMMA;
|
|
|
|
HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
|
|
SCALER_DISPBKGND_AUTOHS |
|
|
(interlace ? SCALER_DISPBKGND_INTERLACE : 0));
|
|
|
|
/* Reload the LUT, since the SRAMs would have been disabled if
|
|
* all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
|
|
*/
|
|
if (!hvs->hvs5)
|
|
vc4_hvs_lut_load(hvs, vc4_crtc);
|
|
else
|
|
vc5_hvs_lut_load(hvs, vc4_crtc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
|
|
{
|
|
if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)
|
|
return;
|
|
|
|
HVS_WRITE(SCALER_DISPCTRLX(chan),
|
|
HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET);
|
|
HVS_WRITE(SCALER_DISPCTRLX(chan),
|
|
HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE);
|
|
|
|
/* Once we leave, the scaler should be disabled and its fifo empty. */
|
|
WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
|
|
|
|
WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
|
|
SCALER_DISPSTATX_MODE) !=
|
|
SCALER_DISPSTATX_MODE_DISABLED);
|
|
|
|
WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
|
|
(SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
|
|
SCALER_DISPSTATX_EMPTY);
|
|
}
|
|
|
|
static int vc4_hvs_gamma_check(struct drm_crtc *crtc,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
|
|
struct drm_connector_state *conn_state;
|
|
struct drm_connector *connector;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
|
|
if (!vc4->hvs->hvs5)
|
|
return 0;
|
|
|
|
if (!crtc_state->color_mgmt_changed)
|
|
return 0;
|
|
|
|
if (crtc_state->gamma_lut) {
|
|
unsigned int len = drm_color_lut_size(crtc_state->gamma_lut);
|
|
|
|
if (len != crtc->gamma_size) {
|
|
DRM_DEBUG_KMS("Invalid LUT size; got %u, expected %u\n",
|
|
len, crtc->gamma_size);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
connector = vc4_get_crtc_connector(crtc, crtc_state);
|
|
if (!connector)
|
|
return -EINVAL;
|
|
|
|
if (!(connector->connector_type == DRM_MODE_CONNECTOR_HDMIA))
|
|
return 0;
|
|
|
|
conn_state = drm_atomic_get_connector_state(state, connector);
|
|
if (!conn_state)
|
|
return -EINVAL;
|
|
|
|
crtc_state->mode_changed = true;
|
|
return 0;
|
|
}
|
|
|
|
int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
|
|
{
|
|
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
|
|
struct vc4_hvs_dlist_allocation *alloc;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct drm_plane *plane;
|
|
const struct drm_plane_state *plane_state;
|
|
u32 dlist_count = 0;
|
|
|
|
/* The pixelvalve can only feed one encoder (and encoders are
|
|
* 1:1 with connectors.)
|
|
*/
|
|
if (hweight32(crtc_state->connector_mask) > 1)
|
|
return -EINVAL;
|
|
|
|
drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state)
|
|
dlist_count += vc4_plane_dlist_size(plane_state);
|
|
|
|
dlist_count++; /* Account for SCALER_CTL0_END. */
|
|
|
|
alloc = vc4_hvs_alloc_dlist_entry(vc4->hvs, vc4_state->assigned_channel, dlist_count);
|
|
if (IS_ERR(alloc))
|
|
return PTR_ERR(alloc);
|
|
|
|
vc4_state->mm = alloc;
|
|
|
|
return vc4_hvs_gamma_check(crtc, state);
|
|
}
|
|
|
|
static void vc4_hvs_install_dlist(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_hvs *hvs = vc4->hvs;
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
|
|
|
|
WARN_ON(!vc4_state->mm);
|
|
HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
|
|
vc4_state->mm->mm_node.start);
|
|
}
|
|
|
|
static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
|
|
unsigned long flags;
|
|
|
|
if (crtc->state->event) {
|
|
crtc->state->event->pipe = drm_crtc_index(crtc);
|
|
|
|
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
|
|
if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
|
|
vc4_crtc->event = crtc->state->event;
|
|
crtc->state->event = NULL;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
}
|
|
|
|
WARN_ON(!vc4_state->mm);
|
|
|
|
spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
|
|
vc4_crtc->current_dlist = vc4_state->mm->mm_node.start;
|
|
spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
|
|
}
|
|
|
|
void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
|
|
vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
|
|
spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
|
|
}
|
|
|
|
void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct drm_display_mode *mode = &crtc->state->adjusted_mode;
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
bool oneshot = vc4_crtc->feeds_txp;
|
|
|
|
vc4_hvs_install_dlist(crtc);
|
|
vc4_hvs_update_dlist(crtc);
|
|
vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
|
|
}
|
|
|
|
void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
|
|
unsigned int chan = vc4_state->assigned_channel;
|
|
|
|
vc4_hvs_stop_channel(vc4->hvs, chan);
|
|
}
|
|
|
|
void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
|
|
crtc);
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_hvs *hvs = vc4->hvs;
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
|
|
unsigned int channel = vc4_state->assigned_channel;
|
|
struct drm_plane *plane;
|
|
struct vc4_plane_state *vc4_plane_state;
|
|
bool debug_dump_regs = false;
|
|
bool enable_bg_fill = false;
|
|
u32 __iomem *dlist_start, *dlist_next;
|
|
|
|
if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
|
|
return;
|
|
|
|
if (debug_dump_regs) {
|
|
DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
|
|
vc4_hvs_dump_state(hvs);
|
|
}
|
|
|
|
dlist_start = vc4->hvs->dlist + vc4_state->mm->mm_node.start;
|
|
dlist_next = dlist_start;
|
|
|
|
/* Copy all the active planes' dlist contents to the hardware dlist. */
|
|
drm_atomic_crtc_for_each_plane(plane, crtc) {
|
|
/* Is this the first active plane? */
|
|
if (dlist_next == dlist_start) {
|
|
/* We need to enable background fill when a plane
|
|
* could be alpha blending from the background, i.e.
|
|
* where no other plane is underneath. It suffices to
|
|
* consider the first active plane here since we set
|
|
* needs_bg_fill such that either the first plane
|
|
* already needs it or all planes on top blend from
|
|
* the first or a lower plane.
|
|
*/
|
|
vc4_plane_state = to_vc4_plane_state(plane->state);
|
|
enable_bg_fill = vc4_plane_state->needs_bg_fill;
|
|
}
|
|
|
|
dlist_next += vc4_plane_write_dlist(plane, dlist_next);
|
|
}
|
|
|
|
writel(SCALER_CTL0_END, dlist_next);
|
|
dlist_next++;
|
|
|
|
WARN_ON(!vc4_state->mm);
|
|
WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm->mm_node.size);
|
|
|
|
if (enable_bg_fill)
|
|
/* This sets a black background color fill, as is the case
|
|
* with other DRM drivers.
|
|
*/
|
|
HVS_WRITE(SCALER_DISPBKGNDX(channel),
|
|
HVS_READ(SCALER_DISPBKGNDX(channel)) |
|
|
SCALER_DISPBKGND_FILL);
|
|
|
|
/* Only update DISPLIST if the CRTC was already running and is not
|
|
* being disabled.
|
|
* vc4_crtc_enable() takes care of updating the dlist just after
|
|
* re-enabling VBLANK interrupts and before enabling the engine.
|
|
* If the CRTC is being disabled, there's no point in updating this
|
|
* information.
|
|
*/
|
|
if (crtc->state->active && old_state->active) {
|
|
vc4_hvs_install_dlist(crtc);
|
|
vc4_hvs_update_dlist(crtc);
|
|
}
|
|
|
|
if (crtc->state->color_mgmt_changed) {
|
|
u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel));
|
|
|
|
if (crtc->state->gamma_lut) {
|
|
if (!vc4->hvs->hvs5) {
|
|
vc4_hvs_update_gamma_lut(hvs, vc4_crtc);
|
|
dispbkgndx |= SCALER_DISPBKGND_GAMMA;
|
|
} else {
|
|
vc5_hvs_update_gamma_lut(hvs, vc4_crtc);
|
|
}
|
|
} else {
|
|
/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
|
|
* in hardware, which is the same as a linear lut that
|
|
* DRM expects us to use in absence of a user lut.
|
|
*
|
|
* Do NOT change state dynamically for hvs5 as it
|
|
* inserts a delay in the pipeline that will cause
|
|
* stalls if enabled/disabled whilst running. The other
|
|
* should already be disabling/enabling the pipeline
|
|
* when gamma changes.
|
|
*/
|
|
if (!vc4->hvs->hvs5)
|
|
dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
|
|
}
|
|
HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx);
|
|
}
|
|
|
|
if (debug_dump_regs) {
|
|
DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
|
|
vc4_hvs_dump_state(hvs);
|
|
}
|
|
}
|
|
|
|
void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel)
|
|
{
|
|
u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
|
|
|
|
dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
|
|
|
|
HVS_WRITE(SCALER_DISPCTRL, dispctrl);
|
|
}
|
|
|
|
void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel)
|
|
{
|
|
u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
|
|
|
|
dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
|
|
|
|
HVS_WRITE(SCALER_DISPSTAT,
|
|
SCALER_DISPSTAT_EUFLOW(channel));
|
|
HVS_WRITE(SCALER_DISPCTRL, dispctrl);
|
|
}
|
|
|
|
static void vc4_hvs_report_underrun(struct drm_device *dev)
|
|
{
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
|
|
atomic_inc(&vc4->underrun);
|
|
DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
|
|
}
|
|
|
|
static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
|
|
{
|
|
struct drm_device *dev = data;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_hvs *hvs = vc4->hvs;
|
|
irqreturn_t irqret = IRQ_NONE;
|
|
int channel;
|
|
u32 control;
|
|
u32 status;
|
|
|
|
status = HVS_READ(SCALER_DISPSTAT);
|
|
control = HVS_READ(SCALER_DISPCTRL);
|
|
|
|
for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
|
|
/* Interrupt masking is not always honored, so check it here. */
|
|
if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
|
|
control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
|
|
vc4_hvs_mask_underrun(hvs, channel);
|
|
vc4_hvs_report_underrun(dev);
|
|
|
|
irqret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (status & SCALER_DISPSTAT_EOF(channel)) {
|
|
vc4_hvs_schedule_dlist_sweep(hvs, channel);
|
|
irqret = IRQ_HANDLED;
|
|
}
|
|
}
|
|
|
|
/* Clear every per-channel interrupt flag. */
|
|
HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
|
|
SCALER_DISPSTAT_IRQMASK(1) |
|
|
SCALER_DISPSTAT_IRQMASK(2));
|
|
|
|
return irqret;
|
|
}
|
|
|
|
static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct drm_device *drm = dev_get_drvdata(master);
|
|
struct vc4_dev *vc4 = to_vc4_dev(drm);
|
|
struct vc4_hvs *hvs = NULL;
|
|
int ret;
|
|
u32 dispctrl;
|
|
u32 reg;
|
|
|
|
hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
|
|
if (!hvs)
|
|
return -ENOMEM;
|
|
|
|
hvs->pdev = pdev;
|
|
|
|
if (of_device_is_compatible(pdev->dev.of_node, "brcm,bcm2711-hvs"))
|
|
hvs->hvs5 = true;
|
|
|
|
hvs->regs = vc4_ioremap_regs(pdev, 0);
|
|
if (IS_ERR(hvs->regs))
|
|
return PTR_ERR(hvs->regs);
|
|
|
|
hvs->regset.base = hvs->regs;
|
|
hvs->regset.regs = hvs_regs;
|
|
hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
|
|
|
|
if (hvs->hvs5) {
|
|
hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(hvs->core_clk)) {
|
|
dev_err(&pdev->dev, "Couldn't get core clock\n");
|
|
return PTR_ERR(hvs->core_clk);
|
|
}
|
|
|
|
ret = clk_prepare_enable(hvs->core_clk);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "Couldn't enable the core clock\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (!hvs->hvs5)
|
|
hvs->dlist = hvs->regs + SCALER_DLIST_START;
|
|
else
|
|
hvs->dlist = hvs->regs + SCALER5_DLIST_START;
|
|
|
|
spin_lock_init(&hvs->mm_lock);
|
|
INIT_LIST_HEAD(&hvs->stale_dlist_entries);
|
|
INIT_WORK(&hvs->free_dlist_work, vc4_hvs_dlist_free_work);
|
|
|
|
/* Set up the HVS display list memory manager. We never
|
|
* overwrite the setup from the bootloader (just 128b out of
|
|
* our 16K), since we don't want to scramble the screen when
|
|
* transitioning from the firmware's boot setup to runtime.
|
|
*/
|
|
drm_mm_init(&hvs->dlist_mm,
|
|
HVS_BOOTLOADER_DLIST_END,
|
|
(SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
|
|
|
|
/* Set up the HVS LBM memory manager. We could have some more
|
|
* complicated data structure that allowed reuse of LBM areas
|
|
* between planes when they don't overlap on the screen, but
|
|
* for now we just allocate globally.
|
|
*/
|
|
if (!hvs->hvs5)
|
|
/* 48k words of 2x12-bit pixels */
|
|
drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
|
|
else
|
|
/* 60k words of 4x12-bit pixels */
|
|
drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
|
|
|
|
/* Upload filter kernels. We only have the one for now, so we
|
|
* keep it around for the lifetime of the driver.
|
|
*/
|
|
ret = vc4_hvs_upload_linear_kernel(hvs,
|
|
&hvs->mitchell_netravali_filter,
|
|
mitchell_netravali_1_3_1_3_kernel);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vc4->hvs = hvs;
|
|
|
|
reg = HVS_READ(SCALER_DISPECTRL);
|
|
reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
|
|
HVS_WRITE(SCALER_DISPECTRL,
|
|
reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
|
|
|
|
reg = HVS_READ(SCALER_DISPCTRL);
|
|
reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
|
|
HVS_WRITE(SCALER_DISPCTRL,
|
|
reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
|
|
|
|
reg = HVS_READ(SCALER_DISPEOLN);
|
|
reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
|
|
HVS_WRITE(SCALER_DISPEOLN,
|
|
reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
|
|
|
|
reg = HVS_READ(SCALER_DISPDITHER);
|
|
reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
|
|
HVS_WRITE(SCALER_DISPDITHER,
|
|
reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
|
|
|
|
dispctrl = HVS_READ(SCALER_DISPCTRL);
|
|
|
|
dispctrl |= SCALER_DISPCTRL_ENABLE;
|
|
dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
|
|
SCALER_DISPCTRL_DISPEIRQ(1) |
|
|
SCALER_DISPCTRL_DISPEIRQ(2);
|
|
|
|
dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
|
|
SCALER_DISPCTRL_SLVWREIRQ |
|
|
SCALER_DISPCTRL_SLVRDEIRQ |
|
|
SCALER_DISPCTRL_DSPEIEOF(0) |
|
|
SCALER_DISPCTRL_DSPEIEOF(1) |
|
|
SCALER_DISPCTRL_DSPEIEOF(2) |
|
|
SCALER_DISPCTRL_DSPEIEOLN(0) |
|
|
SCALER_DISPCTRL_DSPEIEOLN(1) |
|
|
SCALER_DISPCTRL_DSPEIEOLN(2) |
|
|
SCALER_DISPCTRL_DSPEISLUR(0) |
|
|
SCALER_DISPCTRL_DSPEISLUR(1) |
|
|
SCALER_DISPCTRL_DSPEISLUR(2) |
|
|
SCALER_DISPCTRL_SCLEIRQ);
|
|
|
|
HVS_WRITE(SCALER_DISPCTRL, dispctrl);
|
|
|
|
ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
|
|
vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
|
|
vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
|
|
NULL);
|
|
vc4_debugfs_add_file(drm, "hvs_dlists", vc4_hvs_debugfs_dlist,
|
|
NULL);
|
|
if (hvs->hvs5)
|
|
vc4_debugfs_add_file(drm, "hvs_gamma", vc5_hvs_debugfs_gamma,
|
|
NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vc4_hvs_unbind(struct device *dev, struct device *master,
|
|
void *data)
|
|
{
|
|
struct drm_device *drm = dev_get_drvdata(master);
|
|
struct vc4_dev *vc4 = to_vc4_dev(drm);
|
|
struct vc4_hvs *hvs = vc4->hvs;
|
|
|
|
if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
|
|
drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
|
|
|
|
drm_mm_takedown(&vc4->hvs->dlist_mm);
|
|
drm_mm_takedown(&vc4->hvs->lbm_mm);
|
|
|
|
clk_disable_unprepare(hvs->core_clk);
|
|
|
|
vc4->hvs = NULL;
|
|
}
|
|
|
|
static const struct component_ops vc4_hvs_ops = {
|
|
.bind = vc4_hvs_bind,
|
|
.unbind = vc4_hvs_unbind,
|
|
};
|
|
|
|
static int vc4_hvs_dev_probe(struct platform_device *pdev)
|
|
{
|
|
return component_add(&pdev->dev, &vc4_hvs_ops);
|
|
}
|
|
|
|
static int vc4_hvs_dev_remove(struct platform_device *pdev)
|
|
{
|
|
component_del(&pdev->dev, &vc4_hvs_ops);
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id vc4_hvs_dt_match[] = {
|
|
{ .compatible = "brcm,bcm2711-hvs" },
|
|
{ .compatible = "brcm,bcm2835-hvs" },
|
|
{}
|
|
};
|
|
|
|
struct platform_driver vc4_hvs_driver = {
|
|
.probe = vc4_hvs_dev_probe,
|
|
.remove = vc4_hvs_dev_remove,
|
|
.driver = {
|
|
.name = "vc4_hvs",
|
|
.of_match_table = vc4_hvs_dt_match,
|
|
},
|
|
};
|