mirror of
https://github.com/Qortal/Brooklyn.git
synced 2025-02-01 07:42:18 +00:00
418 lines
14 KiB
C++
418 lines
14 KiB
C++
//
|
|
// Copyright © 2017 Arm Ltd. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
#include "InferenceTest.hpp"
|
|
|
|
#include <armnn/Utils.hpp>
|
|
#include <armnn/utility/Assert.hpp>
|
|
#include <armnn/utility/NumericCast.hpp>
|
|
#include <armnnUtils/TContainer.hpp>
|
|
|
|
#include "CxxoptsUtils.hpp"
|
|
|
|
#include <cxxopts/cxxopts.hpp>
|
|
#include <fmt/format.h>
|
|
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <array>
|
|
#include <chrono>
|
|
|
|
using namespace std;
|
|
using namespace std::chrono;
|
|
using namespace armnn::test;
|
|
|
|
namespace armnn
|
|
{
|
|
namespace test
|
|
{
|
|
|
|
template <typename TTestCaseDatabase, typename TModel>
|
|
ClassifierTestCase<TTestCaseDatabase, TModel>::ClassifierTestCase(
|
|
int& numInferencesRef,
|
|
int& numCorrectInferencesRef,
|
|
const std::vector<unsigned int>& validationPredictions,
|
|
std::vector<unsigned int>* validationPredictionsOut,
|
|
TModel& model,
|
|
unsigned int testCaseId,
|
|
unsigned int label,
|
|
std::vector<typename TModel::DataType> modelInput)
|
|
: InferenceModelTestCase<TModel>(
|
|
model, testCaseId, std::vector<armnnUtils::TContainer>{ modelInput }, { model.GetOutputSize() })
|
|
, m_Label(label)
|
|
, m_QuantizationParams(model.GetQuantizationParams())
|
|
, m_NumInferencesRef(numInferencesRef)
|
|
, m_NumCorrectInferencesRef(numCorrectInferencesRef)
|
|
, m_ValidationPredictions(validationPredictions)
|
|
, m_ValidationPredictionsOut(validationPredictionsOut)
|
|
{
|
|
}
|
|
|
|
struct ClassifierResultProcessor
|
|
{
|
|
using ResultMap = std::map<float,int>;
|
|
|
|
ClassifierResultProcessor(float scale, int offset)
|
|
: m_Scale(scale)
|
|
, m_Offset(offset)
|
|
{}
|
|
|
|
void operator()(const std::vector<float>& values)
|
|
{
|
|
SortPredictions(values, [](float value)
|
|
{
|
|
return value;
|
|
});
|
|
}
|
|
|
|
void operator()(const std::vector<int8_t>& values)
|
|
{
|
|
SortPredictions(values, [](int8_t value)
|
|
{
|
|
return value;
|
|
});
|
|
}
|
|
|
|
void operator()(const std::vector<uint8_t>& values)
|
|
{
|
|
auto& scale = m_Scale;
|
|
auto& offset = m_Offset;
|
|
SortPredictions(values, [&scale, &offset](uint8_t value)
|
|
{
|
|
return armnn::Dequantize(value, scale, offset);
|
|
});
|
|
}
|
|
|
|
void operator()(const std::vector<int>& values)
|
|
{
|
|
IgnoreUnused(values);
|
|
ARMNN_ASSERT_MSG(false, "Non-float predictions output not supported.");
|
|
}
|
|
|
|
ResultMap& GetResultMap() { return m_ResultMap; }
|
|
|
|
private:
|
|
template<typename Container, typename Delegate>
|
|
void SortPredictions(const Container& c, Delegate delegate)
|
|
{
|
|
int index = 0;
|
|
for (const auto& value : c)
|
|
{
|
|
int classification = index++;
|
|
// Take the first class with each probability
|
|
// This avoids strange results when looping over batched results produced
|
|
// with identical test data.
|
|
ResultMap::iterator lb = m_ResultMap.lower_bound(value);
|
|
|
|
if (lb == m_ResultMap.end() || !m_ResultMap.key_comp()(value, lb->first))
|
|
{
|
|
// If the key is not already in the map, insert it.
|
|
m_ResultMap.insert(lb, ResultMap::value_type(delegate(value), classification));
|
|
}
|
|
}
|
|
}
|
|
|
|
ResultMap m_ResultMap;
|
|
|
|
float m_Scale=0.0f;
|
|
int m_Offset=0;
|
|
};
|
|
|
|
template <typename TTestCaseDatabase, typename TModel>
|
|
TestCaseResult ClassifierTestCase<TTestCaseDatabase, TModel>::ProcessResult(const InferenceTestOptions& params)
|
|
{
|
|
auto& output = this->GetOutputs()[0];
|
|
const auto testCaseId = this->GetTestCaseId();
|
|
|
|
ClassifierResultProcessor resultProcessor(m_QuantizationParams.first, m_QuantizationParams.second);
|
|
mapbox::util::apply_visitor(resultProcessor, output);
|
|
|
|
ARMNN_LOG(info) << "= Prediction values for test #" << testCaseId;
|
|
auto it = resultProcessor.GetResultMap().rbegin();
|
|
for (int i=0; i<5 && it != resultProcessor.GetResultMap().rend(); ++i)
|
|
{
|
|
ARMNN_LOG(info) << "Top(" << (i+1) << ") prediction is " << it->second <<
|
|
" with value: " << (it->first);
|
|
++it;
|
|
}
|
|
|
|
unsigned int prediction = 0;
|
|
mapbox::util::apply_visitor([&](auto&& value)
|
|
{
|
|
prediction = armnn::numeric_cast<unsigned int>(
|
|
std::distance(value.begin(), std::max_element(value.begin(), value.end())));
|
|
},
|
|
output);
|
|
|
|
// If we're just running the defaultTestCaseIds, each one must be classified correctly.
|
|
if (params.m_IterationCount == 0 && prediction != m_Label)
|
|
{
|
|
ARMNN_LOG(error) << "Prediction for test case " << testCaseId << " (" << prediction << ")" <<
|
|
" is incorrect (should be " << m_Label << ")";
|
|
return TestCaseResult::Failed;
|
|
}
|
|
|
|
// If a validation file was provided as input, it checks that the prediction matches.
|
|
if (!m_ValidationPredictions.empty() && prediction != m_ValidationPredictions[testCaseId])
|
|
{
|
|
ARMNN_LOG(error) << "Prediction for test case " << testCaseId << " (" << prediction << ")" <<
|
|
" doesn't match the prediction in the validation file (" << m_ValidationPredictions[testCaseId] << ")";
|
|
return TestCaseResult::Failed;
|
|
}
|
|
|
|
// If a validation file was requested as output, it stores the predictions.
|
|
if (m_ValidationPredictionsOut)
|
|
{
|
|
m_ValidationPredictionsOut->push_back(prediction);
|
|
}
|
|
|
|
// Updates accuracy stats.
|
|
m_NumInferencesRef++;
|
|
if (prediction == m_Label)
|
|
{
|
|
m_NumCorrectInferencesRef++;
|
|
}
|
|
|
|
return TestCaseResult::Ok;
|
|
}
|
|
|
|
template <typename TDatabase, typename InferenceModel>
|
|
template <typename TConstructDatabaseCallable, typename TConstructModelCallable>
|
|
ClassifierTestCaseProvider<TDatabase, InferenceModel>::ClassifierTestCaseProvider(
|
|
TConstructDatabaseCallable constructDatabase, TConstructModelCallable constructModel)
|
|
: m_ConstructModel(constructModel)
|
|
, m_ConstructDatabase(constructDatabase)
|
|
, m_NumInferences(0)
|
|
, m_NumCorrectInferences(0)
|
|
{
|
|
}
|
|
|
|
template <typename TDatabase, typename InferenceModel>
|
|
void ClassifierTestCaseProvider<TDatabase, InferenceModel>::AddCommandLineOptions(
|
|
cxxopts::Options& options, std::vector<std::string>& required)
|
|
{
|
|
options
|
|
.allow_unrecognised_options()
|
|
.add_options()
|
|
("validation-file-in",
|
|
"Reads expected predictions from the given file and confirms they match the actual predictions.",
|
|
cxxopts::value<std::string>(m_ValidationFileIn)->default_value(""))
|
|
("validation-file-out", "Predictions are saved to the given file for later use via --validation-file-in.",
|
|
cxxopts::value<std::string>(m_ValidationFileOut)->default_value(""))
|
|
("d,data-dir", "Path to directory containing test data", cxxopts::value<std::string>(m_DataDir));
|
|
|
|
required.emplace_back("data-dir"); //add to required arguments to check
|
|
|
|
InferenceModel::AddCommandLineOptions(options, m_ModelCommandLineOptions, required);
|
|
}
|
|
|
|
template <typename TDatabase, typename InferenceModel>
|
|
bool ClassifierTestCaseProvider<TDatabase, InferenceModel>::ProcessCommandLineOptions(
|
|
const InferenceTestOptions& commonOptions)
|
|
{
|
|
if (!ValidateDirectory(m_DataDir))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
ReadPredictions();
|
|
|
|
m_Model = m_ConstructModel(commonOptions, m_ModelCommandLineOptions);
|
|
if (!m_Model)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
m_Database = std::make_unique<TDatabase>(m_ConstructDatabase(m_DataDir.c_str(), *m_Model));
|
|
if (!m_Database)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <typename TDatabase, typename InferenceModel>
|
|
std::unique_ptr<IInferenceTestCase>
|
|
ClassifierTestCaseProvider<TDatabase, InferenceModel>::GetTestCase(unsigned int testCaseId)
|
|
{
|
|
std::unique_ptr<typename TDatabase::TTestCaseData> testCaseData = m_Database->GetTestCaseData(testCaseId);
|
|
if (testCaseData == nullptr)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
return std::make_unique<ClassifierTestCase<TDatabase, InferenceModel>>(
|
|
m_NumInferences,
|
|
m_NumCorrectInferences,
|
|
m_ValidationPredictions,
|
|
m_ValidationFileOut.empty() ? nullptr : &m_ValidationPredictionsOut,
|
|
*m_Model,
|
|
testCaseId,
|
|
testCaseData->m_Label,
|
|
std::move(testCaseData->m_InputImage));
|
|
}
|
|
|
|
template <typename TDatabase, typename InferenceModel>
|
|
bool ClassifierTestCaseProvider<TDatabase, InferenceModel>::OnInferenceTestFinished()
|
|
{
|
|
const double accuracy = armnn::numeric_cast<double>(m_NumCorrectInferences) /
|
|
armnn::numeric_cast<double>(m_NumInferences);
|
|
ARMNN_LOG(info) << std::fixed << std::setprecision(3) << "Overall accuracy: " << accuracy;
|
|
|
|
// If a validation file was requested as output, the predictions are saved to it.
|
|
if (!m_ValidationFileOut.empty())
|
|
{
|
|
std::ofstream validationFileOut(m_ValidationFileOut.c_str(), std::ios_base::trunc | std::ios_base::out);
|
|
if (validationFileOut.good())
|
|
{
|
|
for (const unsigned int prediction : m_ValidationPredictionsOut)
|
|
{
|
|
validationFileOut << prediction << std::endl;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ARMNN_LOG(error) << "Failed to open output validation file: " << m_ValidationFileOut;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <typename TDatabase, typename InferenceModel>
|
|
void ClassifierTestCaseProvider<TDatabase, InferenceModel>::ReadPredictions()
|
|
{
|
|
// Reads the expected predictions from the input validation file (if provided).
|
|
if (!m_ValidationFileIn.empty())
|
|
{
|
|
std::ifstream validationFileIn(m_ValidationFileIn.c_str(), std::ios_base::in);
|
|
if (validationFileIn.good())
|
|
{
|
|
while (!validationFileIn.eof())
|
|
{
|
|
unsigned int i;
|
|
validationFileIn >> i;
|
|
m_ValidationPredictions.emplace_back(i);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
throw armnn::Exception(fmt::format("Failed to open input validation file: {}"
|
|
, m_ValidationFileIn));
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename TConstructTestCaseProvider>
|
|
int InferenceTestMain(int argc,
|
|
char* argv[],
|
|
const std::vector<unsigned int>& defaultTestCaseIds,
|
|
TConstructTestCaseProvider constructTestCaseProvider)
|
|
{
|
|
// Configures logging for both the ARMNN library and this test program.
|
|
#ifdef NDEBUG
|
|
armnn::LogSeverity level = armnn::LogSeverity::Info;
|
|
#else
|
|
armnn::LogSeverity level = armnn::LogSeverity::Debug;
|
|
#endif
|
|
armnn::ConfigureLogging(true, true, level);
|
|
|
|
try
|
|
{
|
|
std::unique_ptr<IInferenceTestCaseProvider> testCaseProvider = constructTestCaseProvider();
|
|
if (!testCaseProvider)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
InferenceTestOptions inferenceTestOptions;
|
|
if (!ParseCommandLine(argc, argv, *testCaseProvider, inferenceTestOptions))
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
const bool success = InferenceTest(inferenceTestOptions, defaultTestCaseIds, *testCaseProvider);
|
|
return success ? 0 : 1;
|
|
}
|
|
catch (armnn::Exception const& e)
|
|
{
|
|
ARMNN_LOG(fatal) << "Armnn Error: " << e.what();
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
//
|
|
// This function allows us to create a classifier inference test based on:
|
|
// - a model file name
|
|
// - which can be a binary or a text file for protobuf formats
|
|
// - an input tensor name
|
|
// - an output tensor name
|
|
// - a set of test case ids
|
|
// - a callback method which creates an object that can return images
|
|
// called 'Database' in these tests
|
|
// - and an input tensor shape
|
|
//
|
|
template<typename TDatabase,
|
|
typename TParser,
|
|
typename TConstructDatabaseCallable>
|
|
int ClassifierInferenceTestMain(int argc,
|
|
char* argv[],
|
|
const char* modelFilename,
|
|
bool isModelBinary,
|
|
const char* inputBindingName,
|
|
const char* outputBindingName,
|
|
const std::vector<unsigned int>& defaultTestCaseIds,
|
|
TConstructDatabaseCallable constructDatabase,
|
|
const armnn::TensorShape* inputTensorShape)
|
|
|
|
{
|
|
ARMNN_ASSERT(modelFilename);
|
|
ARMNN_ASSERT(inputBindingName);
|
|
ARMNN_ASSERT(outputBindingName);
|
|
|
|
return InferenceTestMain(argc, argv, defaultTestCaseIds,
|
|
[=]
|
|
()
|
|
{
|
|
using InferenceModel = InferenceModel<TParser, typename TDatabase::DataType>;
|
|
using TestCaseProvider = ClassifierTestCaseProvider<TDatabase, InferenceModel>;
|
|
|
|
return make_unique<TestCaseProvider>(constructDatabase,
|
|
[&]
|
|
(const InferenceTestOptions &commonOptions,
|
|
typename InferenceModel::CommandLineOptions modelOptions)
|
|
{
|
|
if (!ValidateDirectory(modelOptions.m_ModelDir))
|
|
{
|
|
return std::unique_ptr<InferenceModel>();
|
|
}
|
|
|
|
typename InferenceModel::Params modelParams;
|
|
modelParams.m_ModelPath = modelOptions.m_ModelDir + modelFilename;
|
|
modelParams.m_InputBindings = { inputBindingName };
|
|
modelParams.m_OutputBindings = { outputBindingName };
|
|
|
|
if (inputTensorShape)
|
|
{
|
|
modelParams.m_InputShapes.push_back(*inputTensorShape);
|
|
}
|
|
|
|
modelParams.m_IsModelBinary = isModelBinary;
|
|
modelParams.m_ComputeDevices = modelOptions.GetComputeDevicesAsBackendIds();
|
|
modelParams.m_VisualizePostOptimizationModel = modelOptions.m_VisualizePostOptimizationModel;
|
|
modelParams.m_EnableFp16TurboMode = modelOptions.m_EnableFp16TurboMode;
|
|
|
|
return std::make_unique<InferenceModel>(modelParams,
|
|
commonOptions.m_EnableProfiling,
|
|
commonOptions.m_DynamicBackendsPath);
|
|
});
|
|
});
|
|
}
|
|
|
|
} // namespace test
|
|
} // namespace armnn
|