3
0
mirror of https://github.com/Qortal/Brooklyn.git synced 2025-01-31 07:12:18 +00:00
Brooklyn/drivers/media/platform/bcm2835/bcm2835-unicam.c
crowetic a94b3d14aa Brooklyn+ (PLUS) changes
Changes included (and more):

1. Dynamic RAM merge

2. Real-time page scan and allocation

3. Cache compression

4. Real-time IRQ checks

5. Dynamic I/O allocation for Java heap

6. Java page migration

7. Contiguous memory allocation

8. Idle pages tracking

9. Per CPU RAM usage tracking

10. ARM NEON scalar multiplication library

11. NEON/ARMv8 crypto extensions

12. NEON SHA, Blake, RIPEMD crypto extensions

13. Parallel NEON crypto engine for multi-algo based CPU stress reduction
2022-05-12 10:47:00 -07:00

3456 lines
90 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* BCM283x / BCM271x Unicam Capture Driver
*
* Copyright (C) 2017-2020 - Raspberry Pi (Trading) Ltd.
*
* Dave Stevenson <dave.stevenson@raspberrypi.com>
*
* Based on TI am437x driver by
* Benoit Parrot <bparrot@ti.com>
* Lad, Prabhakar <prabhakar.csengg@gmail.com>
*
* and TI CAL camera interface driver by
* Benoit Parrot <bparrot@ti.com>
*
*
* There are two camera drivers in the kernel for BCM283x - this one
* and bcm2835-camera (currently in staging).
*
* This driver directly controls the Unicam peripheral - there is no
* involvement with the VideoCore firmware. Unicam receives CSI-2 or
* CCP2 data and writes it into SDRAM.
* The only potential processing options are to repack Bayer data into an
* alternate format, and applying windowing.
* The repacking does not shift the data, so can repack V4L2_PIX_FMT_Sxxxx10P
* to V4L2_PIX_FMT_Sxxxx10, or V4L2_PIX_FMT_Sxxxx12P to V4L2_PIX_FMT_Sxxxx12,
* but not generically up to V4L2_PIX_FMT_Sxxxx16. The driver will add both
* formats where the relevant formats are defined, and will automatically
* configure the repacking as required.
* Support for windowing may be added later.
*
* It should be possible to connect this driver to any sensor with a
* suitable output interface and V4L2 subdevice driver.
*
* bcm2835-camera uses the VideoCore firmware to control the sensor,
* Unicam, ISP, and all tuner control loops. Fully processed frames are
* delivered to the driver by the firmware. It only has sensor drivers
* for Omnivision OV5647, and Sony IMX219 sensors.
*
* The two drivers are mutually exclusive for the same Unicam instance.
* The VideoCore firmware checks the device tree configuration during boot.
* If it finds device tree nodes called csi0 or csi1 it will block the
* firmware from accessing the peripheral, and bcm2835-camera will
* not be able to stream data.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/videodev2.h>
#include <media/v4l2-common.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-dev.h>
#include <media/v4l2-device.h>
#include <media/v4l2-dv-timings.h>
#include <media/v4l2-event.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-fwnode.h>
#include <media/videobuf2-dma-contig.h>
#include <media/v4l2-async.h>
#include "vc4-regs-unicam.h"
#define UNICAM_MODULE_NAME "unicam"
#define UNICAM_VERSION "0.1.0"
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Debug level 0-3");
static int media_controller;
module_param(media_controller, int, 0644);
MODULE_PARM_DESC(media_controller, "Use media controller API");
#define unicam_dbg(level, dev, fmt, arg...) \
v4l2_dbg(level, debug, &(dev)->v4l2_dev, fmt, ##arg)
#define unicam_info(dev, fmt, arg...) \
v4l2_info(&(dev)->v4l2_dev, fmt, ##arg)
#define unicam_err(dev, fmt, arg...) \
v4l2_err(&(dev)->v4l2_dev, fmt, ##arg)
/*
* Unicam must request a minimum of 250Mhz from the VPU clock.
* Otherwise the input FIFOs overrun and cause image corruption.
*/
#define MIN_VPU_CLOCK_RATE (250 * 1000 * 1000)
/*
* To protect against a dodgy sensor driver never returning an error from
* enum_mbus_code, set a maximum index value to be used.
*/
#define MAX_ENUM_MBUS_CODE 128
/*
* Stride is a 16 bit register, but also has to be a multiple of 32.
*/
#define BPL_ALIGNMENT 32
#define MAX_BYTESPERLINE ((1 << 16) - BPL_ALIGNMENT)
/*
* Max width is therefore determined by the max stride divided by
* the number of bits per pixel. Take 32bpp as a
* worst case.
* No imposed limit on the height, so adopt a square image for want
* of anything better.
*/
#define MAX_WIDTH (MAX_BYTESPERLINE / 4)
#define MAX_HEIGHT MAX_WIDTH
/* Define a nominal minimum image size */
#define MIN_WIDTH 16
#define MIN_HEIGHT 16
/* Default size of the embedded buffer */
#define UNICAM_EMBEDDED_SIZE 16384
/*
* Size of the dummy buffer. Can be any size really, but the DMA
* allocation works in units of page sizes.
*/
#define DUMMY_BUF_SIZE (PAGE_SIZE)
enum pad_types {
IMAGE_PAD,
METADATA_PAD,
MAX_NODES
};
#define MASK_CS_DEFAULT BIT(V4L2_COLORSPACE_DEFAULT)
#define MASK_CS_SMPTE170M BIT(V4L2_COLORSPACE_SMPTE170M)
#define MASK_CS_SMPTE240M BIT(V4L2_COLORSPACE_SMPTE240M)
#define MASK_CS_REC709 BIT(V4L2_COLORSPACE_REC709)
#define MASK_CS_BT878 BIT(V4L2_COLORSPACE_BT878)
#define MASK_CS_470_M BIT(V4L2_COLORSPACE_470_SYSTEM_M)
#define MASK_CS_470_BG BIT(V4L2_COLORSPACE_470_SYSTEM_BG)
#define MASK_CS_JPEG BIT(V4L2_COLORSPACE_JPEG)
#define MASK_CS_SRGB BIT(V4L2_COLORSPACE_SRGB)
#define MASK_CS_OPRGB BIT(V4L2_COLORSPACE_OPRGB)
#define MASK_CS_BT2020 BIT(V4L2_COLORSPACE_BT2020)
#define MASK_CS_RAW BIT(V4L2_COLORSPACE_RAW)
#define MASK_CS_DCI_P3 BIT(V4L2_COLORSPACE_DCI_P3)
#define MAX_COLORSPACE 32
/*
* struct unicam_fmt - Unicam media bus format information
* @pixelformat: V4L2 pixel format FCC identifier. 0 if n/a.
* @repacked_fourcc: V4L2 pixel format FCC identifier if the data is expanded
* out to 16bpp. 0 if n/a.
* @code: V4L2 media bus format code.
* @depth: Bits per pixel as delivered from the source.
* @csi_dt: CSI data type.
* @valid_colorspaces: Bitmask of valid colorspaces so that the Media Controller
* centric try_fmt can validate the colorspace and pass
* v4l2-compliance.
* @check_variants: Flag to denote that there are multiple mediabus formats
* still in the list that could match this V4L2 format.
* @mc_skip: Media Controller shouldn't list this format via ENUM_FMT as it is
* a duplicate of an earlier format.
* @metadata_fmt: This format only applies to the metadata pad.
*/
struct unicam_fmt {
u32 fourcc;
u32 repacked_fourcc;
u32 code;
u8 depth;
u8 csi_dt;
u32 valid_colorspaces;
u8 check_variants:1;
u8 mc_skip:1;
u8 metadata_fmt:1;
};
static const struct unicam_fmt formats[] = {
/* YUV Formats */
{
.fourcc = V4L2_PIX_FMT_YUYV,
.code = MEDIA_BUS_FMT_YUYV8_2X8,
.depth = 16,
.csi_dt = 0x1e,
.check_variants = 1,
.valid_colorspaces = MASK_CS_SMPTE170M | MASK_CS_REC709 |
MASK_CS_JPEG,
}, {
.fourcc = V4L2_PIX_FMT_UYVY,
.code = MEDIA_BUS_FMT_UYVY8_2X8,
.depth = 16,
.csi_dt = 0x1e,
.check_variants = 1,
.valid_colorspaces = MASK_CS_SMPTE170M | MASK_CS_REC709 |
MASK_CS_JPEG,
}, {
.fourcc = V4L2_PIX_FMT_YVYU,
.code = MEDIA_BUS_FMT_YVYU8_2X8,
.depth = 16,
.csi_dt = 0x1e,
.check_variants = 1,
.valid_colorspaces = MASK_CS_SMPTE170M | MASK_CS_REC709 |
MASK_CS_JPEG,
}, {
.fourcc = V4L2_PIX_FMT_VYUY,
.code = MEDIA_BUS_FMT_VYUY8_2X8,
.depth = 16,
.csi_dt = 0x1e,
.check_variants = 1,
.valid_colorspaces = MASK_CS_SMPTE170M | MASK_CS_REC709 |
MASK_CS_JPEG,
}, {
.fourcc = V4L2_PIX_FMT_YUYV,
.code = MEDIA_BUS_FMT_YUYV8_1X16,
.depth = 16,
.csi_dt = 0x1e,
.mc_skip = 1,
.valid_colorspaces = MASK_CS_SMPTE170M | MASK_CS_REC709 |
MASK_CS_JPEG,
}, {
.fourcc = V4L2_PIX_FMT_UYVY,
.code = MEDIA_BUS_FMT_UYVY8_1X16,
.depth = 16,
.csi_dt = 0x1e,
.mc_skip = 1,
.valid_colorspaces = MASK_CS_SMPTE170M | MASK_CS_REC709 |
MASK_CS_JPEG,
}, {
.fourcc = V4L2_PIX_FMT_YVYU,
.code = MEDIA_BUS_FMT_YVYU8_1X16,
.depth = 16,
.csi_dt = 0x1e,
.mc_skip = 1,
.valid_colorspaces = MASK_CS_SMPTE170M | MASK_CS_REC709 |
MASK_CS_JPEG,
}, {
.fourcc = V4L2_PIX_FMT_VYUY,
.code = MEDIA_BUS_FMT_VYUY8_1X16,
.depth = 16,
.csi_dt = 0x1e,
.mc_skip = 1,
.valid_colorspaces = MASK_CS_SMPTE170M | MASK_CS_REC709 |
MASK_CS_JPEG,
}, {
/* RGB Formats */
.fourcc = V4L2_PIX_FMT_RGB565, /* gggbbbbb rrrrrggg */
.code = MEDIA_BUS_FMT_RGB565_2X8_LE,
.depth = 16,
.csi_dt = 0x22,
.valid_colorspaces = MASK_CS_SRGB,
}, {
.fourcc = V4L2_PIX_FMT_RGB565X, /* rrrrrggg gggbbbbb */
.code = MEDIA_BUS_FMT_RGB565_2X8_BE,
.depth = 16,
.csi_dt = 0x22,
.valid_colorspaces = MASK_CS_SRGB,
}, {
.fourcc = V4L2_PIX_FMT_RGB555, /* gggbbbbb arrrrrgg */
.code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_LE,
.depth = 16,
.csi_dt = 0x21,
.valid_colorspaces = MASK_CS_SRGB,
}, {
.fourcc = V4L2_PIX_FMT_RGB555X, /* arrrrrgg gggbbbbb */
.code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE,
.depth = 16,
.csi_dt = 0x21,
.valid_colorspaces = MASK_CS_SRGB,
}, {
.fourcc = V4L2_PIX_FMT_RGB24, /* rgb */
.code = MEDIA_BUS_FMT_RGB888_1X24,
.depth = 24,
.csi_dt = 0x24,
.valid_colorspaces = MASK_CS_SRGB,
}, {
.fourcc = V4L2_PIX_FMT_BGR24, /* bgr */
.code = MEDIA_BUS_FMT_BGR888_1X24,
.depth = 24,
.csi_dt = 0x24,
.valid_colorspaces = MASK_CS_SRGB,
}, {
.fourcc = V4L2_PIX_FMT_RGB32, /* argb */
.code = MEDIA_BUS_FMT_ARGB8888_1X32,
.depth = 32,
.csi_dt = 0x0,
.valid_colorspaces = MASK_CS_SRGB,
}, {
/* Bayer Formats */
.fourcc = V4L2_PIX_FMT_SBGGR8,
.code = MEDIA_BUS_FMT_SBGGR8_1X8,
.depth = 8,
.csi_dt = 0x2a,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG8,
.code = MEDIA_BUS_FMT_SGBRG8_1X8,
.depth = 8,
.csi_dt = 0x2a,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG8,
.code = MEDIA_BUS_FMT_SGRBG8_1X8,
.depth = 8,
.csi_dt = 0x2a,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB8,
.code = MEDIA_BUS_FMT_SRGGB8_1X8,
.depth = 8,
.csi_dt = 0x2a,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR10P,
.repacked_fourcc = V4L2_PIX_FMT_SBGGR10,
.code = MEDIA_BUS_FMT_SBGGR10_1X10,
.depth = 10,
.csi_dt = 0x2b,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG10P,
.repacked_fourcc = V4L2_PIX_FMT_SGBRG10,
.code = MEDIA_BUS_FMT_SGBRG10_1X10,
.depth = 10,
.csi_dt = 0x2b,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG10P,
.repacked_fourcc = V4L2_PIX_FMT_SGRBG10,
.code = MEDIA_BUS_FMT_SGRBG10_1X10,
.depth = 10,
.csi_dt = 0x2b,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB10P,
.repacked_fourcc = V4L2_PIX_FMT_SRGGB10,
.code = MEDIA_BUS_FMT_SRGGB10_1X10,
.depth = 10,
.csi_dt = 0x2b,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR12P,
.repacked_fourcc = V4L2_PIX_FMT_SBGGR12,
.code = MEDIA_BUS_FMT_SBGGR12_1X12,
.depth = 12,
.csi_dt = 0x2c,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG12P,
.repacked_fourcc = V4L2_PIX_FMT_SGBRG12,
.code = MEDIA_BUS_FMT_SGBRG12_1X12,
.depth = 12,
.csi_dt = 0x2c,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG12P,
.repacked_fourcc = V4L2_PIX_FMT_SGRBG12,
.code = MEDIA_BUS_FMT_SGRBG12_1X12,
.depth = 12,
.csi_dt = 0x2c,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB12P,
.repacked_fourcc = V4L2_PIX_FMT_SRGGB12,
.code = MEDIA_BUS_FMT_SRGGB12_1X12,
.depth = 12,
.csi_dt = 0x2c,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR14P,
.repacked_fourcc = V4L2_PIX_FMT_SBGGR14,
.code = MEDIA_BUS_FMT_SBGGR14_1X14,
.depth = 14,
.csi_dt = 0x2d,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG14P,
.repacked_fourcc = V4L2_PIX_FMT_SGBRG14,
.code = MEDIA_BUS_FMT_SGBRG14_1X14,
.depth = 14,
.csi_dt = 0x2d,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG14P,
.repacked_fourcc = V4L2_PIX_FMT_SGRBG14,
.code = MEDIA_BUS_FMT_SGRBG14_1X14,
.depth = 14,
.csi_dt = 0x2d,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB14P,
.repacked_fourcc = V4L2_PIX_FMT_SRGGB14,
.code = MEDIA_BUS_FMT_SRGGB14_1X14,
.depth = 14,
.csi_dt = 0x2d,
.valid_colorspaces = MASK_CS_RAW,
}, {
/*
* 16 bit Bayer formats could be supported, but there is no CSI2
* data_type defined for raw 16, and no sensors that produce it at
* present.
*/
/* Greyscale formats */
.fourcc = V4L2_PIX_FMT_GREY,
.code = MEDIA_BUS_FMT_Y8_1X8,
.depth = 8,
.csi_dt = 0x2a,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_Y10P,
.repacked_fourcc = V4L2_PIX_FMT_Y10,
.code = MEDIA_BUS_FMT_Y10_1X10,
.depth = 10,
.csi_dt = 0x2b,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_Y12P,
.repacked_fourcc = V4L2_PIX_FMT_Y12,
.code = MEDIA_BUS_FMT_Y12_1X12,
.depth = 12,
.csi_dt = 0x2c,
.valid_colorspaces = MASK_CS_RAW,
}, {
.fourcc = V4L2_PIX_FMT_Y14P,
.repacked_fourcc = V4L2_PIX_FMT_Y14,
.code = MEDIA_BUS_FMT_Y14_1X14,
.depth = 14,
.csi_dt = 0x2d,
.valid_colorspaces = MASK_CS_RAW,
},
/* Embedded data format */
{
.fourcc = V4L2_META_FMT_SENSOR_DATA,
.code = MEDIA_BUS_FMT_SENSOR_DATA,
.depth = 8,
.metadata_fmt = 1,
}
};
struct unicam_buffer {
struct vb2_v4l2_buffer vb;
struct list_head list;
};
static inline struct unicam_buffer *to_unicam_buffer(struct vb2_buffer *vb)
{
return container_of(vb, struct unicam_buffer, vb.vb2_buf);
}
struct unicam_node {
bool registered;
int open;
bool streaming;
unsigned int pad_id;
/* Source pad id on the sensor for this node */
unsigned int src_pad_id;
/* Pointer pointing to current v4l2_buffer */
struct unicam_buffer *cur_frm;
/* Pointer pointing to next v4l2_buffer */
struct unicam_buffer *next_frm;
/* video capture */
const struct unicam_fmt *fmt;
/* Used to store current pixel format */
struct v4l2_format v_fmt;
/* Used to store current mbus frame format */
struct v4l2_mbus_framefmt m_fmt;
/* Buffer queue used in video-buf */
struct vb2_queue buffer_queue;
/* Queue of filled frames */
struct list_head dma_queue;
/* IRQ lock for DMA queue */
spinlock_t dma_queue_lock;
/* lock used to access this structure */
struct mutex lock;
/* Identifies video device for this channel */
struct video_device video_dev;
/* Pointer to the parent handle */
struct unicam_device *dev;
struct media_pad pad;
unsigned int embedded_lines;
struct media_pipeline pipe;
/*
* Dummy buffer intended to be used by unicam
* if we have no other queued buffers to swap to.
*/
void *dummy_buf_cpu_addr;
dma_addr_t dummy_buf_dma_addr;
};
struct unicam_device {
struct kref kref;
/* V4l2 specific parameters */
struct v4l2_async_subdev asd;
/* peripheral base address */
void __iomem *base;
/* clock gating base address */
void __iomem *clk_gate_base;
/* lp clock handle */
struct clk *clock;
/* vpu clock handle */
struct clk *vpu_clock;
/* clock status for error handling */
bool clocks_enabled;
/* V4l2 device */
struct v4l2_device v4l2_dev;
struct media_device mdev;
/* parent device */
struct platform_device *pdev;
/* subdevice async Notifier */
struct v4l2_async_notifier notifier;
unsigned int sequence;
/* ptr to sub device */
struct v4l2_subdev *sensor;
/* Pad config for the sensor */
struct v4l2_subdev_state *sensor_state;
enum v4l2_mbus_type bus_type;
/*
* Stores bus.mipi_csi2.flags for CSI2 sensors, or
* bus.mipi_csi1.strobe for CCP2.
*/
unsigned int bus_flags;
unsigned int max_data_lanes;
unsigned int active_data_lanes;
bool sensor_embedded_data;
struct unicam_node node[MAX_NODES];
struct v4l2_ctrl_handler ctrl_handler;
bool mc_api;
};
static inline struct unicam_device *
to_unicam_device(struct v4l2_device *v4l2_dev)
{
return container_of(v4l2_dev, struct unicam_device, v4l2_dev);
}
/* Hardware access */
static inline void clk_write(struct unicam_device *dev, u32 val)
{
writel(val | 0x5a000000, dev->clk_gate_base);
}
static inline u32 reg_read(struct unicam_device *dev, u32 offset)
{
return readl(dev->base + offset);
}
static inline void reg_write(struct unicam_device *dev, u32 offset, u32 val)
{
writel(val, dev->base + offset);
}
static inline int get_field(u32 value, u32 mask)
{
return (value & mask) >> __ffs(mask);
}
static inline void set_field(u32 *valp, u32 field, u32 mask)
{
u32 val = *valp;
val &= ~mask;
val |= (field << __ffs(mask)) & mask;
*valp = val;
}
static inline u32 reg_read_field(struct unicam_device *dev, u32 offset,
u32 mask)
{
return get_field(reg_read(dev, offset), mask);
}
static inline void reg_write_field(struct unicam_device *dev, u32 offset,
u32 field, u32 mask)
{
u32 val = reg_read(dev, offset);
set_field(&val, field, mask);
reg_write(dev, offset, val);
}
/* Power management functions */
static inline int unicam_runtime_get(struct unicam_device *dev)
{
return pm_runtime_get_sync(&dev->pdev->dev);
}
static inline void unicam_runtime_put(struct unicam_device *dev)
{
pm_runtime_put_sync(&dev->pdev->dev);
}
/* Format setup functions */
static const struct unicam_fmt *find_format_by_code(u32 code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(formats); i++) {
if (formats[i].code == code)
return &formats[i];
}
return NULL;
}
static int check_mbus_format(struct unicam_device *dev,
const struct unicam_fmt *format)
{
unsigned int i;
int ret = 0;
for (i = 0; !ret && i < MAX_ENUM_MBUS_CODE; i++) {
struct v4l2_subdev_mbus_code_enum mbus_code = {
.index = i,
.pad = IMAGE_PAD,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
ret = v4l2_subdev_call(dev->sensor, pad, enum_mbus_code,
NULL, &mbus_code);
if (!ret && mbus_code.code == format->code)
return 1;
}
return 0;
}
static const struct unicam_fmt *find_format_by_pix(struct unicam_device *dev,
u32 pixelformat)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(formats); i++) {
if (formats[i].fourcc == pixelformat ||
formats[i].repacked_fourcc == pixelformat) {
if (formats[i].check_variants &&
!check_mbus_format(dev, &formats[i]))
continue;
return &formats[i];
}
}
return NULL;
}
static unsigned int bytes_per_line(u32 width, const struct unicam_fmt *fmt,
u32 v4l2_fourcc)
{
if (v4l2_fourcc == fmt->repacked_fourcc)
/* Repacking always goes to 16bpp */
return ALIGN(width << 1, BPL_ALIGNMENT);
else
return ALIGN((width * fmt->depth) >> 3, BPL_ALIGNMENT);
}
static int __subdev_get_format(struct unicam_device *dev,
struct v4l2_mbus_framefmt *fmt, int pad_id)
{
struct v4l2_subdev_format sd_fmt = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
.pad = dev->node[pad_id].src_pad_id,
};
int ret;
ret = v4l2_subdev_call(dev->sensor, pad, get_fmt, dev->sensor_state,
&sd_fmt);
if (ret < 0)
return ret;
*fmt = sd_fmt.format;
unicam_dbg(1, dev, "%s %dx%d code:%04x\n", __func__,
fmt->width, fmt->height, fmt->code);
return 0;
}
static int __subdev_set_format(struct unicam_device *dev,
struct v4l2_mbus_framefmt *fmt, int pad_id)
{
struct v4l2_subdev_format sd_fmt = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
.pad = dev->node[pad_id].src_pad_id,
};
int ret;
sd_fmt.format = *fmt;
ret = v4l2_subdev_call(dev->sensor, pad, set_fmt, dev->sensor_state,
&sd_fmt);
if (ret < 0)
return ret;
*fmt = sd_fmt.format;
if (pad_id == IMAGE_PAD)
unicam_dbg(1, dev, "%s %dx%d code:%04x\n", __func__, fmt->width,
fmt->height, fmt->code);
else
unicam_dbg(1, dev, "%s Embedded data code:%04x\n", __func__,
sd_fmt.format.code);
return 0;
}
static int unicam_calc_format_size_bpl(struct unicam_device *dev,
const struct unicam_fmt *fmt,
struct v4l2_format *f)
{
unsigned int min_bytesperline;
v4l_bound_align_image(&f->fmt.pix.width, MIN_WIDTH, MAX_WIDTH, 2,
&f->fmt.pix.height, MIN_HEIGHT, MAX_HEIGHT, 0,
0);
min_bytesperline = bytes_per_line(f->fmt.pix.width, fmt,
f->fmt.pix.pixelformat);
if (f->fmt.pix.bytesperline > min_bytesperline &&
f->fmt.pix.bytesperline <= MAX_BYTESPERLINE)
f->fmt.pix.bytesperline = ALIGN(f->fmt.pix.bytesperline,
BPL_ALIGNMENT);
else
f->fmt.pix.bytesperline = min_bytesperline;
f->fmt.pix.sizeimage = f->fmt.pix.height * f->fmt.pix.bytesperline;
unicam_dbg(3, dev, "%s: fourcc: %08X size: %dx%d bpl:%d img_size:%d\n",
__func__,
f->fmt.pix.pixelformat,
f->fmt.pix.width, f->fmt.pix.height,
f->fmt.pix.bytesperline, f->fmt.pix.sizeimage);
return 0;
}
static int unicam_reset_format(struct unicam_node *node)
{
struct unicam_device *dev = node->dev;
struct v4l2_mbus_framefmt mbus_fmt;
int ret;
if (dev->sensor_embedded_data || node->pad_id != METADATA_PAD) {
ret = __subdev_get_format(dev, &mbus_fmt, node->pad_id);
if (ret) {
unicam_err(dev, "Failed to get_format - ret %d\n", ret);
return ret;
}
if (mbus_fmt.code != node->fmt->code) {
unicam_err(dev, "code mismatch - fmt->code %08x, mbus_fmt.code %08x\n",
node->fmt->code, mbus_fmt.code);
return ret;
}
}
if (node->pad_id == IMAGE_PAD) {
v4l2_fill_pix_format(&node->v_fmt.fmt.pix, &mbus_fmt);
node->v_fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
unicam_calc_format_size_bpl(dev, node->fmt, &node->v_fmt);
} else {
node->v_fmt.type = V4L2_BUF_TYPE_META_CAPTURE;
node->v_fmt.fmt.meta.dataformat = V4L2_META_FMT_SENSOR_DATA;
if (dev->sensor_embedded_data) {
node->v_fmt.fmt.meta.buffersize =
mbus_fmt.width * mbus_fmt.height;
node->embedded_lines = mbus_fmt.height;
} else {
node->v_fmt.fmt.meta.buffersize = UNICAM_EMBEDDED_SIZE;
node->embedded_lines = 1;
}
}
node->m_fmt = mbus_fmt;
return 0;
}
static void unicam_wr_dma_addr(struct unicam_device *dev, dma_addr_t dmaaddr,
unsigned int buffer_size, int pad_id)
{
dma_addr_t endaddr = dmaaddr + buffer_size;
if (pad_id == IMAGE_PAD) {
reg_write(dev, UNICAM_IBSA0, dmaaddr);
reg_write(dev, UNICAM_IBEA0, endaddr);
} else {
reg_write(dev, UNICAM_DBSA0, dmaaddr);
reg_write(dev, UNICAM_DBEA0, endaddr);
}
}
static unsigned int unicam_get_lines_done(struct unicam_device *dev)
{
dma_addr_t start_addr, cur_addr;
unsigned int stride = dev->node[IMAGE_PAD].v_fmt.fmt.pix.bytesperline;
struct unicam_buffer *frm = dev->node[IMAGE_PAD].cur_frm;
if (!frm)
return 0;
start_addr = vb2_dma_contig_plane_dma_addr(&frm->vb.vb2_buf, 0);
cur_addr = reg_read(dev, UNICAM_IBWP);
return (unsigned int)(cur_addr - start_addr) / stride;
}
static void unicam_schedule_next_buffer(struct unicam_node *node)
{
struct unicam_device *dev = node->dev;
struct unicam_buffer *buf;
unsigned int size;
dma_addr_t addr;
buf = list_first_entry(&node->dma_queue, struct unicam_buffer, list);
node->next_frm = buf;
list_del(&buf->list);
addr = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0);
size = (node->pad_id == IMAGE_PAD) ?
node->v_fmt.fmt.pix.sizeimage :
node->v_fmt.fmt.meta.buffersize;
unicam_wr_dma_addr(dev, addr, size, node->pad_id);
}
static void unicam_schedule_dummy_buffer(struct unicam_node *node)
{
struct unicam_device *dev = node->dev;
unicam_dbg(3, dev, "Scheduling dummy buffer for node %d\n",
node->pad_id);
unicam_wr_dma_addr(dev, node->dummy_buf_dma_addr, DUMMY_BUF_SIZE,
node->pad_id);
node->next_frm = NULL;
}
static void unicam_process_buffer_complete(struct unicam_node *node,
unsigned int sequence)
{
node->cur_frm->vb.field = node->m_fmt.field;
node->cur_frm->vb.sequence = sequence;
vb2_buffer_done(&node->cur_frm->vb.vb2_buf, VB2_BUF_STATE_DONE);
}
static void unicam_queue_event_sof(struct unicam_device *unicam)
{
struct v4l2_event event = {
.type = V4L2_EVENT_FRAME_SYNC,
.u.frame_sync.frame_sequence = unicam->sequence,
};
v4l2_event_queue(&unicam->node[IMAGE_PAD].video_dev, &event);
}
/*
* unicam_isr : ISR handler for unicam capture
* @irq: irq number
* @dev_id: dev_id ptr
*
* It changes status of the captured buffer, takes next buffer from the queue
* and sets its address in unicam registers
*/
static irqreturn_t unicam_isr(int irq, void *dev)
{
struct unicam_device *unicam = dev;
unsigned int lines_done = unicam_get_lines_done(dev);
unsigned int sequence = unicam->sequence;
unsigned int i;
u32 ista, sta;
bool fe;
u64 ts;
sta = reg_read(unicam, UNICAM_STA);
/* Write value back to clear the interrupts */
reg_write(unicam, UNICAM_STA, sta);
ista = reg_read(unicam, UNICAM_ISTA);
/* Write value back to clear the interrupts */
reg_write(unicam, UNICAM_ISTA, ista);
unicam_dbg(3, unicam, "ISR: ISTA: 0x%X, STA: 0x%X, sequence %d, lines done %d",
ista, sta, sequence, lines_done);
if (!(sta & (UNICAM_IS | UNICAM_PI0)))
return IRQ_HANDLED;
/*
* Look for either the Frame End interrupt or the Packet Capture status
* to signal a frame end.
*/
fe = (ista & UNICAM_FEI || sta & UNICAM_PI0);
/*
* We must run the frame end handler first. If we have a valid next_frm
* and we get a simultaneout FE + FS interrupt, running the FS handler
* first would null out the next_frm ptr and we would have lost the
* buffer forever.
*/
if (fe) {
/*
* Ensure we have swapped buffers already as we can't
* stop the peripheral. If no buffer is available, use a
* dummy buffer to dump out frames until we get a new buffer
* to use.
*/
for (i = 0; i < ARRAY_SIZE(unicam->node); i++) {
if (!unicam->node[i].streaming)
continue;
/*
* If cur_frm == next_frm, it means we have not had
* a chance to swap buffers, likely due to having
* multiple interrupts occurring simultaneously (like FE
* + FS + LS). In this case, we cannot signal the buffer
* as complete, as the HW will reuse that buffer.
*/
if (unicam->node[i].cur_frm &&
unicam->node[i].cur_frm != unicam->node[i].next_frm) {
unicam_process_buffer_complete(&unicam->node[i],
sequence);
unicam->node[i].cur_frm = unicam->node[i].next_frm;
unicam->node[i].next_frm = NULL;
} else {
unicam->node[i].cur_frm = unicam->node[i].next_frm;
}
}
unicam->sequence++;
}
if (ista & UNICAM_FSI) {
/*
* Timestamp is to be when the first data byte was captured,
* aka frame start.
*/
ts = ktime_get_ns();
for (i = 0; i < ARRAY_SIZE(unicam->node); i++) {
if (!unicam->node[i].streaming)
continue;
if (unicam->node[i].cur_frm)
unicam->node[i].cur_frm->vb.vb2_buf.timestamp =
ts;
else
unicam_dbg(2, unicam, "ISR: [%d] Dropping frame, buffer not available at FS\n",
i);
/*
* Set the next frame output to go to a dummy frame
* if no buffer currently queued.
*/
if (!unicam->node[i].next_frm ||
unicam->node[i].next_frm == unicam->node[i].cur_frm) {
unicam_schedule_dummy_buffer(&unicam->node[i]);
} else if (unicam->node[i].cur_frm) {
/*
* Repeated FS without FE. Hardware will have
* swapped buffers, but the cur_frm doesn't
* contain valid data. Return cur_frm to the
* queue.
*/
spin_lock(&unicam->node[i].dma_queue_lock);
list_add_tail(&unicam->node[i].cur_frm->list,
&unicam->node[i].dma_queue);
spin_unlock(&unicam->node[i].dma_queue_lock);
unicam->node[i].cur_frm = unicam->node[i].next_frm;
unicam->node[i].next_frm = NULL;
}
}
unicam_queue_event_sof(unicam);
}
/*
* Cannot swap buffer at frame end, there may be a race condition
* where the HW does not actually swap it if the new frame has
* already started.
*/
if (ista & (UNICAM_FSI | UNICAM_LCI) && !fe) {
for (i = 0; i < ARRAY_SIZE(unicam->node); i++) {
if (!unicam->node[i].streaming)
continue;
spin_lock(&unicam->node[i].dma_queue_lock);
if (!list_empty(&unicam->node[i].dma_queue) &&
!unicam->node[i].next_frm)
unicam_schedule_next_buffer(&unicam->node[i]);
spin_unlock(&unicam->node[i].dma_queue_lock);
}
}
return IRQ_HANDLED;
}
/* V4L2 Common IOCTLs */
static int unicam_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
strscpy(cap->driver, UNICAM_MODULE_NAME, sizeof(cap->driver));
strscpy(cap->card, UNICAM_MODULE_NAME, sizeof(cap->card));
snprintf(cap->bus_info, sizeof(cap->bus_info),
"platform:%s", dev_name(&dev->pdev->dev));
cap->capabilities |= V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_META_CAPTURE;
return 0;
}
static int unicam_log_status(struct file *file, void *fh)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
u32 reg;
/* status for sub devices */
v4l2_device_call_all(&dev->v4l2_dev, 0, core, log_status);
unicam_info(dev, "-----Receiver status-----\n");
unicam_info(dev, "V4L2 width/height: %ux%u\n",
node->v_fmt.fmt.pix.width, node->v_fmt.fmt.pix.height);
unicam_info(dev, "Mediabus format: %08x\n", node->fmt->code);
unicam_info(dev, "V4L2 format: %08x\n",
node->v_fmt.fmt.pix.pixelformat);
reg = reg_read(dev, UNICAM_IPIPE);
unicam_info(dev, "Unpacking/packing: %u / %u\n",
get_field(reg, UNICAM_PUM_MASK),
get_field(reg, UNICAM_PPM_MASK));
unicam_info(dev, "----Live data----\n");
unicam_info(dev, "Programmed stride: %4u\n",
reg_read(dev, UNICAM_IBLS));
unicam_info(dev, "Detected resolution: %ux%u\n",
reg_read(dev, UNICAM_IHSTA),
reg_read(dev, UNICAM_IVSTA));
unicam_info(dev, "Write pointer: %08x\n",
reg_read(dev, UNICAM_IBWP));
return 0;
}
/* V4L2 Video Centric IOCTLs */
static int unicam_enum_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
unsigned int index = 0;
unsigned int i;
int ret = 0;
if (node->pad_id != IMAGE_PAD)
return -EINVAL;
for (i = 0; !ret && i < MAX_ENUM_MBUS_CODE; i++) {
struct v4l2_subdev_mbus_code_enum mbus_code = {
.index = i,
.pad = IMAGE_PAD,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
const struct unicam_fmt *fmt;
ret = v4l2_subdev_call(dev->sensor, pad, enum_mbus_code,
NULL, &mbus_code);
if (ret < 0) {
unicam_dbg(2, dev,
"subdev->enum_mbus_code idx %d returned %d - index invalid\n",
i, ret);
return -EINVAL;
}
fmt = find_format_by_code(mbus_code.code);
if (fmt) {
if (fmt->fourcc) {
if (index == f->index) {
f->pixelformat = fmt->fourcc;
break;
}
index++;
}
if (fmt->repacked_fourcc) {
if (index == f->index) {
f->pixelformat = fmt->repacked_fourcc;
break;
}
index++;
}
}
}
return 0;
}
static int unicam_g_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct v4l2_mbus_framefmt mbus_fmt = {0};
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
const struct unicam_fmt *fmt = NULL;
int ret;
if (node->pad_id != IMAGE_PAD)
return -EINVAL;
/*
* If a flip has occurred in the sensor, the fmt code might have
* changed. So we will need to re-fetch the format from the subdevice.
*/
ret = __subdev_get_format(dev, &mbus_fmt, node->pad_id);
if (ret)
return -EINVAL;
/* Find the V4L2 format from mbus code. We must match a known format. */
fmt = find_format_by_code(mbus_fmt.code);
if (!fmt)
return -EINVAL;
if (node->fmt != fmt) {
/*
* The sensor format has changed so the pixelformat needs to
* be updated. Try and retain the packed/unpacked choice if
* at all possible.
*/
if (node->fmt->repacked_fourcc ==
node->v_fmt.fmt.pix.pixelformat)
/* Using the repacked format */
node->v_fmt.fmt.pix.pixelformat = fmt->repacked_fourcc;
else
/* Using the native format */
node->v_fmt.fmt.pix.pixelformat = fmt->fourcc;
node->fmt = fmt;
}
*f = node->v_fmt;
return 0;
}
static const struct unicam_fmt *
get_first_supported_format(struct unicam_device *dev)
{
struct v4l2_subdev_mbus_code_enum mbus_code;
const struct unicam_fmt *fmt = NULL;
unsigned int i;
int ret = 0;
for (i = 0; ret != -EINVAL && ret != -ENOIOCTLCMD; ++i) {
memset(&mbus_code, 0, sizeof(mbus_code));
mbus_code.index = i;
mbus_code.pad = IMAGE_PAD;
mbus_code.which = V4L2_SUBDEV_FORMAT_ACTIVE;
ret = v4l2_subdev_call(dev->sensor, pad, enum_mbus_code, NULL,
&mbus_code);
if (ret < 0) {
unicam_dbg(2, dev,
"subdev->enum_mbus_code idx %u returned %d - continue\n",
i, ret);
continue;
}
unicam_dbg(2, dev, "subdev %s: code: 0x%08x idx: %u\n",
dev->sensor->name, mbus_code.code, i);
fmt = find_format_by_code(mbus_code.code);
unicam_dbg(2, dev, "fmt 0x%08x returned as %p, V4L2 FOURCC 0x%08x, csi_dt 0x%02x\n",
mbus_code.code, fmt, fmt ? fmt->fourcc : 0,
fmt ? fmt->csi_dt : 0);
if (fmt)
return fmt;
}
return NULL;
}
static int unicam_try_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
struct v4l2_subdev_format sd_fmt = {
.which = V4L2_SUBDEV_FORMAT_TRY,
.pad = IMAGE_PAD
};
struct v4l2_mbus_framefmt *mbus_fmt = &sd_fmt.format;
const struct unicam_fmt *fmt;
int ret;
if (node->pad_id != IMAGE_PAD)
return -EINVAL;
fmt = find_format_by_pix(dev, f->fmt.pix.pixelformat);
if (!fmt) {
/*
* Pixel format not supported by unicam. Choose the first
* supported format, and let the sensor choose something else.
*/
unicam_dbg(3, dev, "Fourcc format (0x%08x) not found. Use first format.\n",
f->fmt.pix.pixelformat);
fmt = &formats[0];
f->fmt.pix.pixelformat = fmt->fourcc;
}
v4l2_fill_mbus_format(mbus_fmt, &f->fmt.pix, fmt->code);
/*
* No support for receiving interlaced video, so never
* request it from the sensor subdev.
*/
mbus_fmt->field = V4L2_FIELD_NONE;
ret = v4l2_subdev_call(dev->sensor, pad, set_fmt, dev->sensor_state,
&sd_fmt);
if (ret && ret != -ENOIOCTLCMD && ret != -ENODEV)
return ret;
if (mbus_fmt->field != V4L2_FIELD_NONE)
unicam_info(dev, "Sensor trying to send interlaced video - results may be unpredictable\n");
v4l2_fill_pix_format(&f->fmt.pix, &sd_fmt.format);
if (mbus_fmt->code != fmt->code) {
/* Sensor has returned an alternate format */
fmt = find_format_by_code(mbus_fmt->code);
if (!fmt) {
/*
* The alternate format is one unicam can't support.
* Find the first format that is supported by both, and
* then set that.
*/
fmt = get_first_supported_format(dev);
mbus_fmt->code = fmt->code;
ret = v4l2_subdev_call(dev->sensor, pad, set_fmt,
dev->sensor_state, &sd_fmt);
if (ret && ret != -ENOIOCTLCMD && ret != -ENODEV)
return ret;
if (mbus_fmt->field != V4L2_FIELD_NONE)
unicam_info(dev, "Sensor trying to send interlaced video - results may be unpredictable\n");
v4l2_fill_pix_format(&f->fmt.pix, &sd_fmt.format);
if (mbus_fmt->code != fmt->code) {
/*
* We've set a format that the sensor reports
* as being supported, but it refuses to set it.
* Not much else we can do.
* Assume that the sensor driver may accept the
* format when it is set (rather than tried).
*/
unicam_err(dev, "Sensor won't accept default format, and Unicam can't support sensor default\n");
}
}
if (fmt->fourcc)
f->fmt.pix.pixelformat = fmt->fourcc;
else
f->fmt.pix.pixelformat = fmt->repacked_fourcc;
}
return unicam_calc_format_size_bpl(dev, fmt, f);
}
static int unicam_s_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
struct vb2_queue *q = &node->buffer_queue;
struct v4l2_mbus_framefmt mbus_fmt = {0};
const struct unicam_fmt *fmt;
int ret;
if (vb2_is_busy(q))
return -EBUSY;
ret = unicam_try_fmt_vid_cap(file, priv, f);
if (ret < 0)
return ret;
fmt = find_format_by_pix(dev, f->fmt.pix.pixelformat);
if (!fmt) {
/*
* Unknown pixel format - adopt a default.
* This shouldn't happen as try_fmt should have resolved any
* issues first.
*/
fmt = get_first_supported_format(dev);
if (!fmt)
/*
* It shouldn't be possible to get here with no
* supported formats
*/
return -EINVAL;
f->fmt.pix.pixelformat = fmt->fourcc;
return -EINVAL;
}
v4l2_fill_mbus_format(&mbus_fmt, &f->fmt.pix, fmt->code);
ret = __subdev_set_format(dev, &mbus_fmt, node->pad_id);
if (ret) {
unicam_dbg(3, dev, "%s __subdev_set_format failed %d\n",
__func__, ret);
return ret;
}
/* Just double check nothing has gone wrong */
if (mbus_fmt.code != fmt->code) {
unicam_dbg(3, dev,
"%s subdev changed format on us, this should not happen\n",
__func__);
return -EINVAL;
}
node->fmt = fmt;
node->v_fmt.fmt.pix.pixelformat = f->fmt.pix.pixelformat;
node->v_fmt.fmt.pix.bytesperline = f->fmt.pix.bytesperline;
unicam_reset_format(node);
unicam_dbg(3, dev,
"%s %dx%d, mbus_fmt 0x%08X, V4L2 pix 0x%08X.\n",
__func__, node->v_fmt.fmt.pix.width,
node->v_fmt.fmt.pix.height, mbus_fmt.code,
node->v_fmt.fmt.pix.pixelformat);
*f = node->v_fmt;
return 0;
}
static int unicam_enum_fmt_meta_cap(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
const struct unicam_fmt *fmt;
u32 code;
int ret = 0;
if (node->pad_id != METADATA_PAD || f->index != 0)
return -EINVAL;
if (dev->sensor_embedded_data) {
struct v4l2_subdev_mbus_code_enum mbus_code = {
.index = f->index,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
.pad = METADATA_PAD,
};
ret = v4l2_subdev_call(dev->sensor, pad, enum_mbus_code, NULL,
&mbus_code);
if (ret < 0) {
unicam_dbg(2, dev,
"subdev->enum_mbus_code idx 0 returned %d - index invalid\n",
ret);
return -EINVAL;
}
code = mbus_code.code;
} else {
code = MEDIA_BUS_FMT_SENSOR_DATA;
}
fmt = find_format_by_code(code);
if (fmt)
f->pixelformat = fmt->fourcc;
return 0;
}
static int unicam_g_fmt_meta_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct unicam_node *node = video_drvdata(file);
if (node->pad_id != METADATA_PAD)
return -EINVAL;
*f = node->v_fmt;
return 0;
}
static int unicam_enum_input(struct file *file, void *priv,
struct v4l2_input *inp)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
int ret;
if (inp->index != 0)
return -EINVAL;
inp->type = V4L2_INPUT_TYPE_CAMERA;
if (v4l2_subdev_has_op(dev->sensor, video, s_dv_timings)) {
inp->capabilities = V4L2_IN_CAP_DV_TIMINGS;
inp->std = 0;
} else if (v4l2_subdev_has_op(dev->sensor, video, s_std)) {
inp->capabilities = V4L2_IN_CAP_STD;
if (v4l2_subdev_call(dev->sensor, video, g_tvnorms, &inp->std) < 0)
inp->std = V4L2_STD_ALL;
} else {
inp->capabilities = 0;
inp->std = 0;
}
if (v4l2_subdev_has_op(dev->sensor, video, g_input_status)) {
ret = v4l2_subdev_call(dev->sensor, video, g_input_status,
&inp->status);
if (ret < 0)
return ret;
}
snprintf(inp->name, sizeof(inp->name), "Camera 0");
return 0;
}
static int unicam_g_input(struct file *file, void *priv, unsigned int *i)
{
*i = 0;
return 0;
}
static int unicam_s_input(struct file *file, void *priv, unsigned int i)
{
/*
* FIXME: Ideally we would like to be able to query the source
* subdevice for information over the input connectors it supports,
* and map that through in to a call to video_ops->s_routing.
* There is no infrastructure support for defining that within
* devicetree at present. Until that is implemented we can't
* map a user physical connector number to s_routing input number.
*/
if (i > 0)
return -EINVAL;
return 0;
}
static int unicam_querystd(struct file *file, void *priv,
v4l2_std_id *std)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
return v4l2_subdev_call(dev->sensor, video, querystd, std);
}
static int unicam_g_std(struct file *file, void *priv, v4l2_std_id *std)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
return v4l2_subdev_call(dev->sensor, video, g_std, std);
}
static int unicam_s_std(struct file *file, void *priv, v4l2_std_id std)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
int ret;
v4l2_std_id current_std;
ret = v4l2_subdev_call(dev->sensor, video, g_std, &current_std);
if (ret)
return ret;
if (std == current_std)
return 0;
if (vb2_is_busy(&node->buffer_queue))
return -EBUSY;
ret = v4l2_subdev_call(dev->sensor, video, s_std, std);
/* Force recomputation of bytesperline */
node->v_fmt.fmt.pix.bytesperline = 0;
unicam_reset_format(node);
return ret;
}
static int unicam_s_edid(struct file *file, void *priv, struct v4l2_edid *edid)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
return v4l2_subdev_call(dev->sensor, pad, set_edid, edid);
}
static int unicam_g_edid(struct file *file, void *priv, struct v4l2_edid *edid)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
return v4l2_subdev_call(dev->sensor, pad, get_edid, edid);
}
static int unicam_s_selection(struct file *file, void *priv,
struct v4l2_selection *sel)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
struct v4l2_subdev_selection sdsel = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
.target = sel->target,
.flags = sel->flags,
.r = sel->r,
};
if (sel->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
return v4l2_subdev_call(dev->sensor, pad, set_selection, NULL, &sdsel);
}
static int unicam_g_selection(struct file *file, void *priv,
struct v4l2_selection *sel)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
struct v4l2_subdev_selection sdsel = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
.target = sel->target,
};
int ret;
if (sel->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
ret = v4l2_subdev_call(dev->sensor, pad, get_selection, NULL, &sdsel);
if (!ret)
sel->r = sdsel.r;
return ret;
}
static int unicam_enum_framesizes(struct file *file, void *priv,
struct v4l2_frmsizeenum *fsize)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
const struct unicam_fmt *fmt;
struct v4l2_subdev_frame_size_enum fse;
int ret;
/* check for valid format */
fmt = find_format_by_pix(dev, fsize->pixel_format);
if (!fmt) {
unicam_dbg(3, dev, "Invalid pixel code: %x\n",
fsize->pixel_format);
return -EINVAL;
}
fse.code = fmt->code;
fse.which = V4L2_SUBDEV_FORMAT_ACTIVE;
fse.index = fsize->index;
fse.pad = node->src_pad_id;
ret = v4l2_subdev_call(dev->sensor, pad, enum_frame_size, NULL, &fse);
if (ret)
return ret;
unicam_dbg(1, dev, "%s: index: %d code: %x W:[%d,%d] H:[%d,%d]\n",
__func__, fse.index, fse.code, fse.min_width, fse.max_width,
fse.min_height, fse.max_height);
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = fse.max_width;
fsize->discrete.height = fse.max_height;
return 0;
}
static int unicam_enum_frameintervals(struct file *file, void *priv,
struct v4l2_frmivalenum *fival)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
const struct unicam_fmt *fmt;
struct v4l2_subdev_frame_interval_enum fie = {
.index = fival->index,
.pad = node->src_pad_id,
.width = fival->width,
.height = fival->height,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
int ret;
fmt = find_format_by_pix(dev, fival->pixel_format);
if (!fmt)
return -EINVAL;
fie.code = fmt->code;
ret = v4l2_subdev_call(dev->sensor, pad, enum_frame_interval,
NULL, &fie);
if (ret)
return ret;
fival->type = V4L2_FRMIVAL_TYPE_DISCRETE;
fival->discrete = fie.interval;
return 0;
}
static int unicam_g_parm(struct file *file, void *fh, struct v4l2_streamparm *a)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
return v4l2_g_parm_cap(video_devdata(file), dev->sensor, a);
}
static int unicam_s_parm(struct file *file, void *fh, struct v4l2_streamparm *a)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
return v4l2_s_parm_cap(video_devdata(file), dev->sensor, a);
}
static int unicam_g_dv_timings(struct file *file, void *priv,
struct v4l2_dv_timings *timings)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
return v4l2_subdev_call(dev->sensor, video, g_dv_timings, timings);
}
static int unicam_s_dv_timings(struct file *file, void *priv,
struct v4l2_dv_timings *timings)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
struct v4l2_dv_timings current_timings;
int ret;
ret = v4l2_subdev_call(dev->sensor, video, g_dv_timings,
&current_timings);
if (ret < 0)
return ret;
if (v4l2_match_dv_timings(timings, &current_timings, 0, false))
return 0;
if (vb2_is_busy(&node->buffer_queue))
return -EBUSY;
ret = v4l2_subdev_call(dev->sensor, video, s_dv_timings, timings);
/* Force recomputation of bytesperline */
node->v_fmt.fmt.pix.bytesperline = 0;
unicam_reset_format(node);
return ret;
}
static int unicam_query_dv_timings(struct file *file, void *priv,
struct v4l2_dv_timings *timings)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
return v4l2_subdev_call(dev->sensor, video, query_dv_timings, timings);
}
static int unicam_enum_dv_timings(struct file *file, void *priv,
struct v4l2_enum_dv_timings *timings)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
int ret;
timings->pad = node->src_pad_id;
ret = v4l2_subdev_call(dev->sensor, pad, enum_dv_timings, timings);
timings->pad = node->pad_id;
return ret;
}
static int unicam_dv_timings_cap(struct file *file, void *priv,
struct v4l2_dv_timings_cap *cap)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
int ret;
cap->pad = node->src_pad_id;
ret = v4l2_subdev_call(dev->sensor, pad, dv_timings_cap, cap);
cap->pad = node->pad_id;
return ret;
}
static int unicam_subscribe_event(struct v4l2_fh *fh,
const struct v4l2_event_subscription *sub)
{
switch (sub->type) {
case V4L2_EVENT_FRAME_SYNC:
return v4l2_event_subscribe(fh, sub, 2, NULL);
case V4L2_EVENT_SOURCE_CHANGE:
return v4l2_event_subscribe(fh, sub, 4, NULL);
}
return v4l2_ctrl_subscribe_event(fh, sub);
}
static void unicam_notify(struct v4l2_subdev *sd,
unsigned int notification, void *arg)
{
struct unicam_device *dev = to_unicam_device(sd->v4l2_dev);
switch (notification) {
case V4L2_DEVICE_NOTIFY_EVENT:
v4l2_event_queue(&dev->node[IMAGE_PAD].video_dev, arg);
break;
default:
break;
}
}
/* unicam capture ioctl operations */
static const struct v4l2_ioctl_ops unicam_ioctl_ops = {
.vidioc_querycap = unicam_querycap,
.vidioc_enum_fmt_vid_cap = unicam_enum_fmt_vid_cap,
.vidioc_g_fmt_vid_cap = unicam_g_fmt_vid_cap,
.vidioc_s_fmt_vid_cap = unicam_s_fmt_vid_cap,
.vidioc_try_fmt_vid_cap = unicam_try_fmt_vid_cap,
.vidioc_enum_fmt_meta_cap = unicam_enum_fmt_meta_cap,
.vidioc_g_fmt_meta_cap = unicam_g_fmt_meta_cap,
.vidioc_s_fmt_meta_cap = unicam_g_fmt_meta_cap,
.vidioc_try_fmt_meta_cap = unicam_g_fmt_meta_cap,
.vidioc_enum_input = unicam_enum_input,
.vidioc_g_input = unicam_g_input,
.vidioc_s_input = unicam_s_input,
.vidioc_querystd = unicam_querystd,
.vidioc_s_std = unicam_s_std,
.vidioc_g_std = unicam_g_std,
.vidioc_g_edid = unicam_g_edid,
.vidioc_s_edid = unicam_s_edid,
.vidioc_enum_framesizes = unicam_enum_framesizes,
.vidioc_enum_frameintervals = unicam_enum_frameintervals,
.vidioc_g_selection = unicam_g_selection,
.vidioc_s_selection = unicam_s_selection,
.vidioc_g_parm = unicam_g_parm,
.vidioc_s_parm = unicam_s_parm,
.vidioc_s_dv_timings = unicam_s_dv_timings,
.vidioc_g_dv_timings = unicam_g_dv_timings,
.vidioc_query_dv_timings = unicam_query_dv_timings,
.vidioc_enum_dv_timings = unicam_enum_dv_timings,
.vidioc_dv_timings_cap = unicam_dv_timings_cap,
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
.vidioc_log_status = unicam_log_status,
.vidioc_subscribe_event = unicam_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
/* V4L2 Media Controller Centric IOCTLs */
static int unicam_mc_enum_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
int i, j;
for (i = 0, j = 0; i < ARRAY_SIZE(formats); i++) {
if (f->mbus_code && formats[i].code != f->mbus_code)
continue;
if (formats[i].mc_skip || formats[i].metadata_fmt)
continue;
if (formats[i].fourcc) {
if (j == f->index) {
f->pixelformat = formats[i].fourcc;
f->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
return 0;
}
j++;
}
if (formats[i].repacked_fourcc) {
if (j == f->index) {
f->pixelformat = formats[i].repacked_fourcc;
f->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
return 0;
}
j++;
}
}
return -EINVAL;
}
static int unicam_mc_g_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct unicam_node *node = video_drvdata(file);
if (node->pad_id != IMAGE_PAD)
return -EINVAL;
*f = node->v_fmt;
return 0;
}
static void unicam_mc_try_fmt(struct unicam_node *node, struct v4l2_format *f,
const struct unicam_fmt **ret_fmt)
{
struct v4l2_pix_format *v4l2_format = &f->fmt.pix;
struct unicam_device *dev = node->dev;
const struct unicam_fmt *fmt;
int is_rgb;
/*
* Default to the first format if the requested pixel format code isn't
* supported.
*/
fmt = find_format_by_pix(dev, v4l2_format->pixelformat);
if (!fmt) {
fmt = &formats[0];
v4l2_format->pixelformat = fmt->fourcc;
}
unicam_calc_format_size_bpl(dev, fmt, f);
if (v4l2_format->field == V4L2_FIELD_ANY)
v4l2_format->field = V4L2_FIELD_NONE;
if (ret_fmt)
*ret_fmt = fmt;
if (v4l2_format->colorspace >= MAX_COLORSPACE ||
!(fmt->valid_colorspaces & (1 << v4l2_format->colorspace))) {
v4l2_format->colorspace = __ffs(fmt->valid_colorspaces);
v4l2_format->xfer_func =
V4L2_MAP_XFER_FUNC_DEFAULT(v4l2_format->colorspace);
v4l2_format->ycbcr_enc =
V4L2_MAP_YCBCR_ENC_DEFAULT(v4l2_format->colorspace);
is_rgb = v4l2_format->colorspace == V4L2_COLORSPACE_SRGB;
v4l2_format->quantization =
V4L2_MAP_QUANTIZATION_DEFAULT(is_rgb,
v4l2_format->colorspace,
v4l2_format->ycbcr_enc);
}
unicam_dbg(3, dev, "%s: %08x %ux%u (bytesperline %u sizeimage %u)\n",
__func__, v4l2_format->pixelformat,
v4l2_format->width, v4l2_format->height,
v4l2_format->bytesperline, v4l2_format->sizeimage);
}
static int unicam_mc_try_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct unicam_node *node = video_drvdata(file);
unicam_mc_try_fmt(node, f, NULL);
return 0;
}
static int unicam_mc_s_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
const struct unicam_fmt *fmt;
if (vb2_is_busy(&node->buffer_queue)) {
unicam_dbg(3, dev, "%s device busy\n", __func__);
return -EBUSY;
}
unicam_mc_try_fmt(node, f, &fmt);
node->v_fmt = *f;
node->fmt = fmt;
return 0;
}
static int unicam_mc_enum_framesizes(struct file *file, void *fh,
struct v4l2_frmsizeenum *fsize)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
if (fsize->index > 0)
return -EINVAL;
if (!find_format_by_pix(dev, fsize->pixel_format)) {
unicam_dbg(3, dev, "Invalid pixel format 0x%08x\n",
fsize->pixel_format);
return -EINVAL;
}
fsize->type = V4L2_FRMSIZE_TYPE_STEPWISE;
fsize->stepwise.min_width = MIN_WIDTH;
fsize->stepwise.max_width = MAX_WIDTH;
fsize->stepwise.step_width = 1;
fsize->stepwise.min_height = MIN_HEIGHT;
fsize->stepwise.max_height = MAX_HEIGHT;
fsize->stepwise.step_height = 1;
return 0;
}
static int unicam_mc_enum_fmt_meta_cap(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
int i, j;
for (i = 0, j = 0; i < ARRAY_SIZE(formats); i++) {
if (f->mbus_code && formats[i].code != f->mbus_code)
continue;
if (!formats[i].metadata_fmt)
continue;
if (formats[i].fourcc) {
if (j == f->index) {
f->pixelformat = formats[i].fourcc;
f->type = V4L2_BUF_TYPE_META_CAPTURE;
return 0;
}
j++;
}
}
return -EINVAL;
}
static int unicam_mc_g_fmt_meta_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct unicam_node *node = video_drvdata(file);
if (node->pad_id != METADATA_PAD)
return -EINVAL;
*f = node->v_fmt;
return 0;
}
static int unicam_mc_try_fmt_meta_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct unicam_node *node = video_drvdata(file);
if (node->pad_id != METADATA_PAD)
return -EINVAL;
f->fmt.meta.dataformat = V4L2_META_FMT_SENSOR_DATA;
return 0;
}
static int unicam_mc_s_fmt_meta_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct unicam_node *node = video_drvdata(file);
if (node->pad_id != METADATA_PAD)
return -EINVAL;
unicam_mc_try_fmt_meta_cap(file, priv, f);
node->v_fmt = *f;
return 0;
}
static const struct v4l2_ioctl_ops unicam_mc_ioctl_ops = {
.vidioc_querycap = unicam_querycap,
.vidioc_enum_fmt_vid_cap = unicam_mc_enum_fmt_vid_cap,
.vidioc_g_fmt_vid_cap = unicam_mc_g_fmt_vid_cap,
.vidioc_try_fmt_vid_cap = unicam_mc_try_fmt_vid_cap,
.vidioc_s_fmt_vid_cap = unicam_mc_s_fmt_vid_cap,
.vidioc_enum_fmt_meta_cap = unicam_mc_enum_fmt_meta_cap,
.vidioc_g_fmt_meta_cap = unicam_mc_g_fmt_meta_cap,
.vidioc_try_fmt_meta_cap = unicam_mc_try_fmt_meta_cap,
.vidioc_s_fmt_meta_cap = unicam_mc_s_fmt_meta_cap,
.vidioc_enum_framesizes = unicam_mc_enum_framesizes,
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
.vidioc_log_status = unicam_log_status,
.vidioc_subscribe_event = unicam_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
static int
unicam_mc_subdev_link_validate_get_format(struct media_pad *pad,
struct v4l2_subdev_format *fmt)
{
if (is_media_entity_v4l2_subdev(pad->entity)) {
struct v4l2_subdev *sd =
media_entity_to_v4l2_subdev(pad->entity);
fmt->which = V4L2_SUBDEV_FORMAT_ACTIVE;
fmt->pad = pad->index;
return v4l2_subdev_call(sd, pad, get_fmt, NULL, fmt);
}
return -EINVAL;
}
static int unicam_mc_video_link_validate(struct media_link *link)
{
struct video_device *vd = container_of(link->sink->entity,
struct video_device, entity);
struct unicam_node *node = container_of(vd, struct unicam_node,
video_dev);
struct unicam_device *unicam = node->dev;
struct v4l2_subdev_format source_fmt;
int ret;
if (!media_entity_remote_pad(link->sink->entity->pads)) {
unicam_dbg(1, unicam,
"video node %s pad not connected\n", vd->name);
return -ENOTCONN;
}
ret = unicam_mc_subdev_link_validate_get_format(link->source,
&source_fmt);
if (ret < 0)
return 0;
if (node->pad_id == IMAGE_PAD) {
struct v4l2_pix_format *pix_fmt = &node->v_fmt.fmt.pix;
const struct unicam_fmt *fmt;
if (source_fmt.format.width != pix_fmt->width ||
source_fmt.format.height != pix_fmt->height) {
unicam_err(unicam,
"Wrong width or height %ux%u (remote pad set to %ux%u)\n",
pix_fmt->width, pix_fmt->height,
source_fmt.format.width,
source_fmt.format.height);
return -EINVAL;
}
fmt = find_format_by_code(source_fmt.format.code);
if (!fmt || (fmt->fourcc != pix_fmt->pixelformat &&
fmt->repacked_fourcc != pix_fmt->pixelformat))
return -EINVAL;
} else {
struct v4l2_meta_format *meta_fmt = &node->v_fmt.fmt.meta;
if (source_fmt.format.width != meta_fmt->buffersize ||
source_fmt.format.height != 1 ||
source_fmt.format.code != MEDIA_BUS_FMT_SENSOR_DATA) {
unicam_err(unicam,
"Wrong metadata width/height/code %ux%u %08x (remote pad set to %ux%u %08x)\n",
meta_fmt->buffersize, 1,
MEDIA_BUS_FMT_SENSOR_DATA,
source_fmt.format.width,
source_fmt.format.height,
source_fmt.format.code);
return -EINVAL;
}
}
return 0;
}
static const struct media_entity_operations unicam_mc_entity_ops = {
.link_validate = unicam_mc_video_link_validate,
};
/* videobuf2 Operations */
static int unicam_queue_setup(struct vb2_queue *vq,
unsigned int *nbuffers,
unsigned int *nplanes,
unsigned int sizes[],
struct device *alloc_devs[])
{
struct unicam_node *node = vb2_get_drv_priv(vq);
struct unicam_device *dev = node->dev;
unsigned int size = node->pad_id == IMAGE_PAD ?
node->v_fmt.fmt.pix.sizeimage :
node->v_fmt.fmt.meta.buffersize;
if (vq->num_buffers + *nbuffers < 3)
*nbuffers = 3 - vq->num_buffers;
if (*nplanes) {
if (sizes[0] < size) {
unicam_err(dev, "sizes[0] %i < size %u\n", sizes[0],
size);
return -EINVAL;
}
size = sizes[0];
}
*nplanes = 1;
sizes[0] = size;
return 0;
}
static int unicam_buffer_prepare(struct vb2_buffer *vb)
{
struct unicam_node *node = vb2_get_drv_priv(vb->vb2_queue);
struct unicam_device *dev = node->dev;
struct unicam_buffer *buf = to_unicam_buffer(vb);
unsigned long size;
if (WARN_ON(!node->fmt))
return -EINVAL;
size = node->pad_id == IMAGE_PAD ? node->v_fmt.fmt.pix.sizeimage :
node->v_fmt.fmt.meta.buffersize;
if (vb2_plane_size(vb, 0) < size) {
unicam_err(dev, "data will not fit into plane (%lu < %lu)\n",
vb2_plane_size(vb, 0), size);
return -EINVAL;
}
vb2_set_plane_payload(&buf->vb.vb2_buf, 0, size);
return 0;
}
static void unicam_buffer_queue(struct vb2_buffer *vb)
{
struct unicam_node *node = vb2_get_drv_priv(vb->vb2_queue);
struct unicam_buffer *buf = to_unicam_buffer(vb);
unsigned long flags;
spin_lock_irqsave(&node->dma_queue_lock, flags);
list_add_tail(&buf->list, &node->dma_queue);
spin_unlock_irqrestore(&node->dma_queue_lock, flags);
}
static void unicam_set_packing_config(struct unicam_device *dev)
{
u32 pack, unpack;
u32 val;
if (dev->node[IMAGE_PAD].v_fmt.fmt.pix.pixelformat ==
dev->node[IMAGE_PAD].fmt->fourcc) {
unpack = UNICAM_PUM_NONE;
pack = UNICAM_PPM_NONE;
} else {
switch (dev->node[IMAGE_PAD].fmt->depth) {
case 8:
unpack = UNICAM_PUM_UNPACK8;
break;
case 10:
unpack = UNICAM_PUM_UNPACK10;
break;
case 12:
unpack = UNICAM_PUM_UNPACK12;
break;
case 14:
unpack = UNICAM_PUM_UNPACK14;
break;
case 16:
unpack = UNICAM_PUM_UNPACK16;
break;
default:
unpack = UNICAM_PUM_NONE;
break;
}
/* Repacking is always to 16bpp */
pack = UNICAM_PPM_PACK16;
}
val = 0;
set_field(&val, unpack, UNICAM_PUM_MASK);
set_field(&val, pack, UNICAM_PPM_MASK);
reg_write(dev, UNICAM_IPIPE, val);
}
static void unicam_cfg_image_id(struct unicam_device *dev)
{
if (dev->bus_type == V4L2_MBUS_CSI2_DPHY) {
/* CSI2 mode, hardcode VC 0 for now. */
reg_write(dev, UNICAM_IDI0,
(0 << 6) | dev->node[IMAGE_PAD].fmt->csi_dt);
} else {
/* CCP2 mode */
reg_write(dev, UNICAM_IDI0,
0x80 | dev->node[IMAGE_PAD].fmt->csi_dt);
}
}
static void unicam_enable_ed(struct unicam_device *dev)
{
u32 val = reg_read(dev, UNICAM_DCS);
set_field(&val, 2, UNICAM_EDL_MASK);
/* Do not wrap at the end of the embedded data buffer */
set_field(&val, 0, UNICAM_DBOB);
reg_write(dev, UNICAM_DCS, val);
}
static void unicam_start_rx(struct unicam_device *dev, dma_addr_t *addr)
{
int line_int_freq = dev->node[IMAGE_PAD].v_fmt.fmt.pix.height >> 2;
unsigned int size, i;
u32 val;
if (line_int_freq < 128)
line_int_freq = 128;
/* Enable lane clocks */
val = 1;
for (i = 0; i < dev->active_data_lanes; i++)
val = val << 2 | 1;
clk_write(dev, val);
/* Basic init */
reg_write(dev, UNICAM_CTRL, UNICAM_MEM);
/* Enable analogue control, and leave in reset. */
val = UNICAM_AR;
set_field(&val, 7, UNICAM_CTATADJ_MASK);
set_field(&val, 7, UNICAM_PTATADJ_MASK);
reg_write(dev, UNICAM_ANA, val);
usleep_range(1000, 2000);
/* Come out of reset */
reg_write_field(dev, UNICAM_ANA, 0, UNICAM_AR);
/* Peripheral reset */
reg_write_field(dev, UNICAM_CTRL, 1, UNICAM_CPR);
reg_write_field(dev, UNICAM_CTRL, 0, UNICAM_CPR);
reg_write_field(dev, UNICAM_CTRL, 0, UNICAM_CPE);
/* Enable Rx control. */
val = reg_read(dev, UNICAM_CTRL);
if (dev->bus_type == V4L2_MBUS_CSI2_DPHY) {
set_field(&val, UNICAM_CPM_CSI2, UNICAM_CPM_MASK);
set_field(&val, UNICAM_DCM_STROBE, UNICAM_DCM_MASK);
} else {
set_field(&val, UNICAM_CPM_CCP2, UNICAM_CPM_MASK);
set_field(&val, dev->bus_flags, UNICAM_DCM_MASK);
}
/* Packet framer timeout */
set_field(&val, 0xf, UNICAM_PFT_MASK);
set_field(&val, 128, UNICAM_OET_MASK);
reg_write(dev, UNICAM_CTRL, val);
reg_write(dev, UNICAM_IHWIN, 0);
reg_write(dev, UNICAM_IVWIN, 0);
/* AXI bus access QoS setup */
val = reg_read(dev, UNICAM_PRI);
set_field(&val, 0, UNICAM_BL_MASK);
set_field(&val, 0, UNICAM_BS_MASK);
set_field(&val, 0xe, UNICAM_PP_MASK);
set_field(&val, 8, UNICAM_NP_MASK);
set_field(&val, 2, UNICAM_PT_MASK);
set_field(&val, 1, UNICAM_PE);
reg_write(dev, UNICAM_PRI, val);
reg_write_field(dev, UNICAM_ANA, 0, UNICAM_DDL);
val = UNICAM_FSIE | UNICAM_FEIE | UNICAM_IBOB;
set_field(&val, line_int_freq, UNICAM_LCIE_MASK);
reg_write(dev, UNICAM_ICTL, val);
reg_write(dev, UNICAM_STA, UNICAM_STA_MASK_ALL);
reg_write(dev, UNICAM_ISTA, UNICAM_ISTA_MASK_ALL);
/* tclk_term_en */
reg_write_field(dev, UNICAM_CLT, 2, UNICAM_CLT1_MASK);
/* tclk_settle */
reg_write_field(dev, UNICAM_CLT, 6, UNICAM_CLT2_MASK);
/* td_term_en */
reg_write_field(dev, UNICAM_DLT, 2, UNICAM_DLT1_MASK);
/* ths_settle */
reg_write_field(dev, UNICAM_DLT, 6, UNICAM_DLT2_MASK);
/* trx_enable */
reg_write_field(dev, UNICAM_DLT, 0, UNICAM_DLT3_MASK);
reg_write_field(dev, UNICAM_CTRL, 0, UNICAM_SOE);
/* Packet compare setup - required to avoid missing frame ends */
val = 0;
set_field(&val, 1, UNICAM_PCE);
set_field(&val, 1, UNICAM_GI);
set_field(&val, 1, UNICAM_CPH);
set_field(&val, 0, UNICAM_PCVC_MASK);
set_field(&val, 1, UNICAM_PCDT_MASK);
reg_write(dev, UNICAM_CMP0, val);
/* Enable clock lane and set up terminations */
val = 0;
if (dev->bus_type == V4L2_MBUS_CSI2_DPHY) {
/* CSI2 */
set_field(&val, 1, UNICAM_CLE);
set_field(&val, 1, UNICAM_CLLPE);
if (!(dev->bus_flags & V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK)) {
set_field(&val, 1, UNICAM_CLTRE);
set_field(&val, 1, UNICAM_CLHSE);
}
} else {
/* CCP2 */
set_field(&val, 1, UNICAM_CLE);
set_field(&val, 1, UNICAM_CLHSE);
set_field(&val, 1, UNICAM_CLTRE);
}
reg_write(dev, UNICAM_CLK, val);
/*
* Enable required data lanes with appropriate terminations.
* The same value needs to be written to UNICAM_DATn registers for
* the active lanes, and 0 for inactive ones.
*/
val = 0;
if (dev->bus_type == V4L2_MBUS_CSI2_DPHY) {
/* CSI2 */
set_field(&val, 1, UNICAM_DLE);
set_field(&val, 1, UNICAM_DLLPE);
if (!(dev->bus_flags & V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK)) {
set_field(&val, 1, UNICAM_DLTRE);
set_field(&val, 1, UNICAM_DLHSE);
}
} else {
/* CCP2 */
set_field(&val, 1, UNICAM_DLE);
set_field(&val, 1, UNICAM_DLHSE);
set_field(&val, 1, UNICAM_DLTRE);
}
reg_write(dev, UNICAM_DAT0, val);
if (dev->active_data_lanes == 1)
val = 0;
reg_write(dev, UNICAM_DAT1, val);
if (dev->max_data_lanes > 2) {
/*
* Registers UNICAM_DAT2 and UNICAM_DAT3 only valid if the
* instance supports more than 2 data lanes.
*/
if (dev->active_data_lanes == 2)
val = 0;
reg_write(dev, UNICAM_DAT2, val);
if (dev->active_data_lanes == 3)
val = 0;
reg_write(dev, UNICAM_DAT3, val);
}
reg_write(dev, UNICAM_IBLS,
dev->node[IMAGE_PAD].v_fmt.fmt.pix.bytesperline);
size = dev->node[IMAGE_PAD].v_fmt.fmt.pix.sizeimage;
unicam_wr_dma_addr(dev, addr[IMAGE_PAD], size, IMAGE_PAD);
unicam_set_packing_config(dev);
unicam_cfg_image_id(dev);
val = reg_read(dev, UNICAM_MISC);
set_field(&val, 1, UNICAM_FL0);
set_field(&val, 1, UNICAM_FL1);
reg_write(dev, UNICAM_MISC, val);
if (dev->node[METADATA_PAD].streaming && dev->sensor_embedded_data) {
size = dev->node[METADATA_PAD].v_fmt.fmt.meta.buffersize;
unicam_enable_ed(dev);
unicam_wr_dma_addr(dev, addr[METADATA_PAD], size, METADATA_PAD);
}
/* Enable peripheral */
reg_write_field(dev, UNICAM_CTRL, 1, UNICAM_CPE);
/* Load image pointers */
reg_write_field(dev, UNICAM_ICTL, 1, UNICAM_LIP_MASK);
/* Load embedded data buffer pointers if needed */
if (dev->node[METADATA_PAD].streaming && dev->sensor_embedded_data)
reg_write_field(dev, UNICAM_DCS, 1, UNICAM_LDP);
}
static void unicam_disable(struct unicam_device *dev)
{
/* Analogue lane control disable */
reg_write_field(dev, UNICAM_ANA, 1, UNICAM_DDL);
/* Stop the output engine */
reg_write_field(dev, UNICAM_CTRL, 1, UNICAM_SOE);
/* Disable the data lanes. */
reg_write(dev, UNICAM_DAT0, 0);
reg_write(dev, UNICAM_DAT1, 0);
if (dev->max_data_lanes > 2) {
reg_write(dev, UNICAM_DAT2, 0);
reg_write(dev, UNICAM_DAT3, 0);
}
/* Peripheral reset */
reg_write_field(dev, UNICAM_CTRL, 1, UNICAM_CPR);
usleep_range(50, 100);
reg_write_field(dev, UNICAM_CTRL, 0, UNICAM_CPR);
/* Disable peripheral */
reg_write_field(dev, UNICAM_CTRL, 0, UNICAM_CPE);
/* Clear ED setup */
reg_write(dev, UNICAM_DCS, 0);
/* Disable all lane clocks */
clk_write(dev, 0);
}
static void unicam_return_buffers(struct unicam_node *node,
enum vb2_buffer_state state)
{
struct unicam_buffer *buf, *tmp;
unsigned long flags;
spin_lock_irqsave(&node->dma_queue_lock, flags);
list_for_each_entry_safe(buf, tmp, &node->dma_queue, list) {
list_del(&buf->list);
vb2_buffer_done(&buf->vb.vb2_buf, state);
}
if (node->cur_frm)
vb2_buffer_done(&node->cur_frm->vb.vb2_buf,
state);
if (node->next_frm && node->cur_frm != node->next_frm)
vb2_buffer_done(&node->next_frm->vb.vb2_buf,
state);
node->cur_frm = NULL;
node->next_frm = NULL;
spin_unlock_irqrestore(&node->dma_queue_lock, flags);
}
static int unicam_start_streaming(struct vb2_queue *vq, unsigned int count)
{
struct unicam_node *node = vb2_get_drv_priv(vq);
struct unicam_device *dev = node->dev;
dma_addr_t buffer_addr[MAX_NODES] = { 0 };
unsigned long flags;
unsigned int i;
int ret;
node->streaming = true;
if (!(dev->node[IMAGE_PAD].open && dev->node[IMAGE_PAD].streaming &&
(!dev->node[METADATA_PAD].open ||
dev->node[METADATA_PAD].streaming))) {
/*
* Metadata pad must be enabled before image pad if it is
* wanted.
*/
unicam_dbg(3, dev, "Not all nodes are streaming yet.");
return 0;
}
dev->sequence = 0;
ret = unicam_runtime_get(dev);
if (ret < 0) {
unicam_dbg(3, dev, "unicam_runtime_get failed\n");
goto err_streaming;
}
ret = media_pipeline_start(&node->video_dev.entity, &node->pipe);
if (ret < 0) {
unicam_err(dev, "Failed to start media pipeline: %d\n", ret);
goto err_pm_put;
}
dev->active_data_lanes = dev->max_data_lanes;
if (dev->bus_type == V4L2_MBUS_CSI2_DPHY) {
struct v4l2_mbus_config mbus_config = { 0 };
ret = v4l2_subdev_call(dev->sensor, pad, get_mbus_config,
0, &mbus_config);
if (ret < 0 && ret != -ENOIOCTLCMD) {
unicam_dbg(3, dev, "g_mbus_config failed\n");
goto error_pipeline;
}
dev->active_data_lanes = mbus_config.bus.mipi_csi2.num_data_lanes;
if (!dev->active_data_lanes)
dev->active_data_lanes = dev->max_data_lanes;
if (dev->active_data_lanes > dev->max_data_lanes) {
unicam_err(dev, "Device has requested %u data lanes, which is >%u configured in DT\n",
dev->active_data_lanes,
dev->max_data_lanes);
ret = -EINVAL;
goto error_pipeline;
}
}
unicam_dbg(1, dev, "Running with %u data lanes\n",
dev->active_data_lanes);
ret = clk_set_min_rate(dev->vpu_clock, MIN_VPU_CLOCK_RATE);
if (ret) {
unicam_err(dev, "failed to set up VPU clock\n");
goto error_pipeline;
}
ret = clk_prepare_enable(dev->vpu_clock);
if (ret) {
unicam_err(dev, "Failed to enable VPU clock: %d\n", ret);
goto error_pipeline;
}
ret = clk_set_rate(dev->clock, 100 * 1000 * 1000);
if (ret) {
unicam_err(dev, "failed to set up CSI clock\n");
goto err_vpu_clock;
}
ret = clk_prepare_enable(dev->clock);
if (ret) {
unicam_err(dev, "Failed to enable CSI clock: %d\n", ret);
goto err_vpu_clock;
}
for (i = 0; i < ARRAY_SIZE(dev->node); i++) {
struct unicam_buffer *buf;
if (!dev->node[i].streaming)
continue;
spin_lock_irqsave(&dev->node[i].dma_queue_lock, flags);
buf = list_first_entry(&dev->node[i].dma_queue,
struct unicam_buffer, list);
dev->node[i].cur_frm = buf;
dev->node[i].next_frm = buf;
list_del(&buf->list);
spin_unlock_irqrestore(&dev->node[i].dma_queue_lock, flags);
buffer_addr[i] =
vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0);
}
unicam_start_rx(dev, buffer_addr);
ret = v4l2_subdev_call(dev->sensor, video, s_stream, 1);
if (ret < 0) {
unicam_err(dev, "stream on failed in subdev\n");
goto err_disable_unicam;
}
dev->clocks_enabled = true;
return 0;
err_disable_unicam:
unicam_disable(dev);
clk_disable_unprepare(dev->clock);
err_vpu_clock:
if (clk_set_min_rate(dev->vpu_clock, 0))
unicam_err(dev, "failed to reset the VPU clock\n");
clk_disable_unprepare(dev->vpu_clock);
error_pipeline:
media_pipeline_stop(&node->video_dev.entity);
err_pm_put:
unicam_runtime_put(dev);
err_streaming:
unicam_return_buffers(node, VB2_BUF_STATE_QUEUED);
node->streaming = false;
return ret;
}
static void unicam_stop_streaming(struct vb2_queue *vq)
{
struct unicam_node *node = vb2_get_drv_priv(vq);
struct unicam_device *dev = node->dev;
node->streaming = false;
if (node->pad_id == IMAGE_PAD) {
/*
* Stop streaming the sensor and disable the peripheral.
* We cannot continue streaming embedded data with the
* image pad disabled.
*/
if (v4l2_subdev_call(dev->sensor, video, s_stream, 0) < 0)
unicam_err(dev, "stream off failed in subdev\n");
unicam_disable(dev);
media_pipeline_stop(&node->video_dev.entity);
if (dev->clocks_enabled) {
if (clk_set_min_rate(dev->vpu_clock, 0))
unicam_err(dev, "failed to reset the min VPU clock\n");
clk_disable_unprepare(dev->vpu_clock);
clk_disable_unprepare(dev->clock);
dev->clocks_enabled = false;
}
unicam_runtime_put(dev);
} else if (node->pad_id == METADATA_PAD) {
/*
* Allow the hardware to spin in the dummy buffer.
* This is only really needed if the embedded data pad is
* disabled before the image pad.
*/
unicam_wr_dma_addr(dev, node->dummy_buf_dma_addr,
DUMMY_BUF_SIZE, METADATA_PAD);
}
/* Clear all queued buffers for the node */
unicam_return_buffers(node, VB2_BUF_STATE_ERROR);
}
static const struct vb2_ops unicam_video_qops = {
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
.queue_setup = unicam_queue_setup,
.buf_prepare = unicam_buffer_prepare,
.buf_queue = unicam_buffer_queue,
.start_streaming = unicam_start_streaming,
.stop_streaming = unicam_stop_streaming,
};
/*
* unicam_v4l2_open : This function is based on the v4l2_fh_open helper
* function. It has been augmented to handle sensor subdevice power management,
*/
static int unicam_v4l2_open(struct file *file)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
int ret;
mutex_lock(&node->lock);
ret = v4l2_fh_open(file);
if (ret) {
unicam_err(dev, "v4l2_fh_open failed\n");
goto unlock;
}
node->open++;
if (!v4l2_fh_is_singular_file(file))
goto unlock;
ret = v4l2_subdev_call(dev->sensor, core, s_power, 1);
if (ret < 0 && ret != -ENOIOCTLCMD) {
v4l2_fh_release(file);
node->open--;
goto unlock;
}
ret = 0;
unlock:
mutex_unlock(&node->lock);
return ret;
}
static int unicam_v4l2_release(struct file *file)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *dev = node->dev;
struct v4l2_subdev *sd = dev->sensor;
bool fh_singular;
int ret;
mutex_lock(&node->lock);
fh_singular = v4l2_fh_is_singular_file(file);
ret = _vb2_fop_release(file, NULL);
if (fh_singular)
v4l2_subdev_call(sd, core, s_power, 0);
node->open--;
mutex_unlock(&node->lock);
return ret;
}
/* unicam capture driver file operations */
static const struct v4l2_file_operations unicam_fops = {
.owner = THIS_MODULE,
.open = unicam_v4l2_open,
.release = unicam_v4l2_release,
.read = vb2_fop_read,
.poll = vb2_fop_poll,
.unlocked_ioctl = video_ioctl2,
.mmap = vb2_fop_mmap,
};
static int
unicam_async_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_subdev *asd)
{
struct unicam_device *unicam = to_unicam_device(notifier->v4l2_dev);
if (unicam->sensor) {
unicam_info(unicam, "Rejecting subdev %s (Already set!!)",
subdev->name);
return 0;
}
unicam->sensor = subdev;
unicam_dbg(1, unicam, "Using sensor %s for capture\n", subdev->name);
return 0;
}
static void unicam_release(struct kref *kref)
{
struct unicam_device *unicam =
container_of(kref, struct unicam_device, kref);
v4l2_ctrl_handler_free(&unicam->ctrl_handler);
media_device_cleanup(&unicam->mdev);
if (unicam->sensor_state)
v4l2_subdev_free_state(unicam->sensor_state);
kfree(unicam);
}
static void unicam_put(struct unicam_device *unicam)
{
kref_put(&unicam->kref, unicam_release);
}
static void unicam_get(struct unicam_device *unicam)
{
kref_get(&unicam->kref);
}
static void unicam_node_release(struct video_device *vdev)
{
struct unicam_node *node = video_get_drvdata(vdev);
unicam_put(node->dev);
}
static int unicam_set_default_format(struct unicam_device *unicam,
struct unicam_node *node,
int pad_id,
const struct unicam_fmt **ret_fmt)
{
struct v4l2_mbus_framefmt mbus_fmt = {0};
const struct unicam_fmt *fmt;
int ret;
if (pad_id == IMAGE_PAD) {
ret = __subdev_get_format(unicam, &mbus_fmt, pad_id);
if (ret) {
unicam_err(unicam, "Failed to get_format - ret %d\n",
ret);
return ret;
}
fmt = find_format_by_code(mbus_fmt.code);
if (!fmt) {
/*
* Find the first format that the sensor and unicam both
* support
*/
fmt = get_first_supported_format(unicam);
if (fmt) {
mbus_fmt.code = fmt->code;
ret = __subdev_set_format(unicam, &mbus_fmt, pad_id);
if (ret)
return -EINVAL;
}
}
if (mbus_fmt.field != V4L2_FIELD_NONE) {
/* Interlaced not supported - disable it now. */
mbus_fmt.field = V4L2_FIELD_NONE;
ret = __subdev_set_format(unicam, &mbus_fmt, pad_id);
if (ret)
return -EINVAL;
}
if (fmt)
node->v_fmt.fmt.pix.pixelformat = fmt->fourcc ? fmt->fourcc
: fmt->repacked_fourcc;
} else {
/* Fix this node format as embedded data. */
fmt = find_format_by_code(MEDIA_BUS_FMT_SENSOR_DATA);
node->v_fmt.fmt.meta.dataformat = fmt->fourcc;
}
*ret_fmt = fmt;
return 0;
}
static void unicam_mc_set_default_format(struct unicam_node *node, int pad_id)
{
if (pad_id == IMAGE_PAD) {
struct v4l2_pix_format *pix_fmt = &node->v_fmt.fmt.pix;
pix_fmt->width = 640;
pix_fmt->height = 480;
pix_fmt->field = V4L2_FIELD_NONE;
pix_fmt->colorspace = V4L2_COLORSPACE_SRGB;
pix_fmt->ycbcr_enc = V4L2_YCBCR_ENC_601;
pix_fmt->quantization = V4L2_QUANTIZATION_LIM_RANGE;
pix_fmt->xfer_func = V4L2_XFER_FUNC_SRGB;
pix_fmt->pixelformat = formats[0].fourcc;
unicam_calc_format_size_bpl(node->dev, &formats[0],
&node->v_fmt);
node->v_fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
node->fmt = &formats[0];
} else {
const struct unicam_fmt *fmt;
/* Fix this node format as embedded data. */
fmt = find_format_by_code(MEDIA_BUS_FMT_SENSOR_DATA);
node->v_fmt.fmt.meta.dataformat = fmt->fourcc;
node->fmt = fmt;
node->v_fmt.fmt.meta.buffersize = UNICAM_EMBEDDED_SIZE;
node->embedded_lines = 1;
node->v_fmt.type = V4L2_BUF_TYPE_META_CAPTURE;
}
}
static int register_node(struct unicam_device *unicam, struct unicam_node *node,
enum v4l2_buf_type type, int pad_id)
{
struct video_device *vdev;
struct vb2_queue *q;
int ret;
node->dev = unicam;
node->pad_id = pad_id;
if (!unicam->mc_api) {
const struct unicam_fmt *fmt;
ret = unicam_set_default_format(unicam, node, pad_id, &fmt);
if (ret)
return ret;
node->fmt = fmt;
/* Read current subdev format */
if (fmt)
unicam_reset_format(node);
} else {
unicam_mc_set_default_format(node, pad_id);
}
if (!unicam->mc_api &&
v4l2_subdev_has_op(unicam->sensor, video, s_std)) {
v4l2_std_id tvnorms;
if (WARN_ON(!v4l2_subdev_has_op(unicam->sensor, video,
g_tvnorms)))
/*
* Subdevice should not advertise s_std but not
* g_tvnorms
*/
return -EINVAL;
ret = v4l2_subdev_call(unicam->sensor, video,
g_tvnorms, &tvnorms);
if (WARN_ON(ret))
return -EINVAL;
node->video_dev.tvnorms |= tvnorms;
}
spin_lock_init(&node->dma_queue_lock);
mutex_init(&node->lock);
vdev = &node->video_dev;
if (pad_id == IMAGE_PAD) {
if (!unicam->mc_api) {
/* Add controls from the subdevice */
ret = v4l2_ctrl_add_handler(&unicam->ctrl_handler,
unicam->sensor->ctrl_handler,
NULL,
true);
if (ret < 0)
return ret;
}
/*
* If the sensor subdevice has any controls, associate the node
* with the ctrl handler to allow access from userland.
*/
if (!list_empty(&unicam->ctrl_handler.ctrls))
vdev->ctrl_handler = &unicam->ctrl_handler;
}
q = &node->buffer_queue;
q->type = type;
q->io_modes = VB2_MMAP | VB2_DMABUF | VB2_READ;
q->drv_priv = node;
q->ops = &unicam_video_qops;
q->mem_ops = &vb2_dma_contig_memops;
q->buf_struct_size = sizeof(struct unicam_buffer);
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
q->lock = &node->lock;
q->min_buffers_needed = 1;
q->dev = &unicam->pdev->dev;
ret = vb2_queue_init(q);
if (ret) {
unicam_err(unicam, "vb2_queue_init() failed\n");
return ret;
}
INIT_LIST_HEAD(&node->dma_queue);
vdev->release = unicam_node_release;
vdev->fops = &unicam_fops;
vdev->ioctl_ops = unicam->mc_api ? &unicam_mc_ioctl_ops :
&unicam_ioctl_ops;
vdev->v4l2_dev = &unicam->v4l2_dev;
vdev->vfl_dir = VFL_DIR_RX;
vdev->queue = q;
vdev->lock = &node->lock;
vdev->device_caps = (pad_id == IMAGE_PAD) ?
V4L2_CAP_VIDEO_CAPTURE : V4L2_CAP_META_CAPTURE;
vdev->device_caps |= V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
if (unicam->mc_api) {
vdev->device_caps |= V4L2_CAP_IO_MC;
vdev->entity.ops = &unicam_mc_entity_ops;
}
/* Define the device names */
snprintf(vdev->name, sizeof(vdev->name), "%s-%s", UNICAM_MODULE_NAME,
pad_id == IMAGE_PAD ? "image" : "embedded");
video_set_drvdata(vdev, node);
if (pad_id == IMAGE_PAD)
vdev->entity.flags |= MEDIA_ENT_FL_DEFAULT;
node->pad.flags = MEDIA_PAD_FL_SINK;
media_entity_pads_init(&vdev->entity, 1, &node->pad);
node->dummy_buf_cpu_addr = dma_alloc_coherent(&unicam->pdev->dev,
DUMMY_BUF_SIZE,
&node->dummy_buf_dma_addr,
GFP_KERNEL);
if (!node->dummy_buf_cpu_addr) {
unicam_err(unicam, "Unable to allocate dummy buffer.\n");
return -ENOMEM;
}
if (!unicam->mc_api) {
if (pad_id == METADATA_PAD ||
!v4l2_subdev_has_op(unicam->sensor, video, s_std)) {
v4l2_disable_ioctl(&node->video_dev, VIDIOC_S_STD);
v4l2_disable_ioctl(&node->video_dev, VIDIOC_G_STD);
v4l2_disable_ioctl(&node->video_dev, VIDIOC_ENUMSTD);
}
if (pad_id == METADATA_PAD ||
!v4l2_subdev_has_op(unicam->sensor, video, querystd))
v4l2_disable_ioctl(&node->video_dev, VIDIOC_QUERYSTD);
if (pad_id == METADATA_PAD ||
!v4l2_subdev_has_op(unicam->sensor, video, s_dv_timings)) {
v4l2_disable_ioctl(&node->video_dev, VIDIOC_S_EDID);
v4l2_disable_ioctl(&node->video_dev, VIDIOC_G_EDID);
v4l2_disable_ioctl(&node->video_dev,
VIDIOC_DV_TIMINGS_CAP);
v4l2_disable_ioctl(&node->video_dev,
VIDIOC_G_DV_TIMINGS);
v4l2_disable_ioctl(&node->video_dev,
VIDIOC_S_DV_TIMINGS);
v4l2_disable_ioctl(&node->video_dev,
VIDIOC_ENUM_DV_TIMINGS);
v4l2_disable_ioctl(&node->video_dev,
VIDIOC_QUERY_DV_TIMINGS);
}
if (pad_id == METADATA_PAD ||
!v4l2_subdev_has_op(unicam->sensor, pad,
enum_frame_interval))
v4l2_disable_ioctl(&node->video_dev,
VIDIOC_ENUM_FRAMEINTERVALS);
if (pad_id == METADATA_PAD ||
!v4l2_subdev_has_op(unicam->sensor, video,
g_frame_interval))
v4l2_disable_ioctl(&node->video_dev, VIDIOC_G_PARM);
if (pad_id == METADATA_PAD ||
!v4l2_subdev_has_op(unicam->sensor, video,
s_frame_interval))
v4l2_disable_ioctl(&node->video_dev, VIDIOC_S_PARM);
if (pad_id == METADATA_PAD ||
!v4l2_subdev_has_op(unicam->sensor, pad,
enum_frame_size))
v4l2_disable_ioctl(&node->video_dev,
VIDIOC_ENUM_FRAMESIZES);
if (node->pad_id == METADATA_PAD ||
!v4l2_subdev_has_op(unicam->sensor, pad, set_selection))
v4l2_disable_ioctl(&node->video_dev,
VIDIOC_S_SELECTION);
if (node->pad_id == METADATA_PAD ||
!v4l2_subdev_has_op(unicam->sensor, pad, get_selection))
v4l2_disable_ioctl(&node->video_dev,
VIDIOC_G_SELECTION);
}
ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
if (ret) {
unicam_err(unicam, "Unable to register video device %s\n",
vdev->name);
return ret;
}
/*
* Acquire a reference to unicam, which will be released when the video
* device will be unregistered and userspace will have closed all open
* file handles.
*/
unicam_get(unicam);
node->registered = true;
if (pad_id != METADATA_PAD || unicam->sensor_embedded_data) {
ret = media_create_pad_link(&unicam->sensor->entity,
node->src_pad_id,
&node->video_dev.entity, 0,
MEDIA_LNK_FL_ENABLED |
MEDIA_LNK_FL_IMMUTABLE);
if (ret)
unicam_err(unicam, "Unable to create pad link for %s\n",
vdev->name);
}
return ret;
}
static void unregister_nodes(struct unicam_device *unicam)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(unicam->node); i++) {
struct unicam_node *node = &unicam->node[i];
if (node->dummy_buf_cpu_addr) {
dma_free_coherent(&unicam->pdev->dev, DUMMY_BUF_SIZE,
node->dummy_buf_cpu_addr,
node->dummy_buf_dma_addr);
}
if (node->registered) {
node->registered = false;
video_unregister_device(&node->video_dev);
}
}
}
static int unicam_async_complete(struct v4l2_async_notifier *notifier)
{
struct unicam_device *unicam = to_unicam_device(notifier->v4l2_dev);
unsigned int i, source_pads = 0;
int ret;
unicam->v4l2_dev.notify = unicam_notify;
unicam->sensor_state = v4l2_subdev_alloc_state(unicam->sensor);
if (!unicam->sensor_state)
return -ENOMEM;
for (i = 0; i < unicam->sensor->entity.num_pads; i++) {
if (unicam->sensor->entity.pads[i].flags & MEDIA_PAD_FL_SOURCE) {
if (source_pads < MAX_NODES) {
unicam->node[source_pads].src_pad_id = i;
unicam_dbg(3, unicam, "source pad %u is index %u\n",
source_pads, i);
}
source_pads++;
}
}
if (!source_pads) {
unicam_err(unicam, "No source pads on sensor.\n");
ret = -ENODEV;
goto unregister;
}
ret = register_node(unicam, &unicam->node[IMAGE_PAD],
V4L2_BUF_TYPE_VIDEO_CAPTURE, IMAGE_PAD);
if (ret) {
unicam_err(unicam, "Unable to register image video device.\n");
goto unregister;
}
if (source_pads >= 2) {
unicam->sensor_embedded_data = true;
ret = register_node(unicam, &unicam->node[METADATA_PAD],
V4L2_BUF_TYPE_META_CAPTURE, METADATA_PAD);
if (ret) {
unicam_err(unicam, "Unable to register metadata video device.\n");
goto unregister;
}
}
if (unicam->mc_api)
ret = v4l2_device_register_subdev_nodes(&unicam->v4l2_dev);
else
ret = v4l2_device_register_ro_subdev_nodes(&unicam->v4l2_dev);
if (ret) {
unicam_err(unicam, "Unable to register subdev nodes.\n");
goto unregister;
}
/*
* Release the initial reference, all references are now owned by the
* video devices.
*/
unicam_put(unicam);
return 0;
unregister:
unregister_nodes(unicam);
unicam_put(unicam);
return ret;
}
static const struct v4l2_async_notifier_operations unicam_async_ops = {
.bound = unicam_async_bound,
.complete = unicam_async_complete,
};
static int of_unicam_connect_subdevs(struct unicam_device *dev)
{
struct platform_device *pdev = dev->pdev;
struct v4l2_fwnode_endpoint ep = { };
struct device_node *ep_node;
struct device_node *sensor_node;
unsigned int lane;
int ret = -EINVAL;
if (of_property_read_u32(pdev->dev.of_node, "brcm,num-data-lanes",
&dev->max_data_lanes) < 0) {
unicam_err(dev, "number of data lanes not set\n");
return -EINVAL;
}
/* Get the local endpoint and remote device. */
ep_node = of_graph_get_next_endpoint(pdev->dev.of_node, NULL);
if (!ep_node) {
unicam_dbg(3, dev, "can't get next endpoint\n");
return -EINVAL;
}
unicam_dbg(3, dev, "ep_node is %pOF\n", ep_node);
sensor_node = of_graph_get_remote_port_parent(ep_node);
if (!sensor_node) {
unicam_dbg(3, dev, "can't get remote parent\n");
goto cleanup_exit;
}
unicam_dbg(1, dev, "found subdevice %pOF\n", sensor_node);
/* Parse the local endpoint and validate its configuration. */
v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), &ep);
unicam_dbg(3, dev, "parsed local endpoint, bus_type %u\n",
ep.bus_type);
dev->bus_type = ep.bus_type;
switch (ep.bus_type) {
case V4L2_MBUS_CSI2_DPHY:
switch (ep.bus.mipi_csi2.num_data_lanes) {
case 1:
case 2:
case 4:
break;
default:
unicam_err(dev, "subdevice %pOF: %u data lanes not supported\n",
sensor_node,
ep.bus.mipi_csi2.num_data_lanes);
goto cleanup_exit;
}
for (lane = 0; lane < ep.bus.mipi_csi2.num_data_lanes; lane++) {
if (ep.bus.mipi_csi2.data_lanes[lane] != lane + 1) {
unicam_err(dev, "subdevice %pOF: data lanes reordering not supported\n",
sensor_node);
goto cleanup_exit;
}
}
if (ep.bus.mipi_csi2.num_data_lanes > dev->max_data_lanes) {
unicam_err(dev, "subdevice requires %u data lanes when %u are supported\n",
ep.bus.mipi_csi2.num_data_lanes,
dev->max_data_lanes);
}
dev->max_data_lanes = ep.bus.mipi_csi2.num_data_lanes;
dev->bus_flags = ep.bus.mipi_csi2.flags;
break;
case V4L2_MBUS_CCP2:
if (ep.bus.mipi_csi1.clock_lane != 0 ||
ep.bus.mipi_csi1.data_lane != 1) {
unicam_err(dev, "subdevice %pOF: unsupported lanes configuration\n",
sensor_node);
goto cleanup_exit;
}
dev->max_data_lanes = 1;
dev->bus_flags = ep.bus.mipi_csi1.strobe;
break;
default:
/* Unsupported bus type */
unicam_err(dev, "subdevice %pOF: unsupported bus type %u\n",
sensor_node, ep.bus_type);
goto cleanup_exit;
}
unicam_dbg(3, dev, "subdevice %pOF: %s bus, %u data lanes, flags=0x%08x\n",
sensor_node,
dev->bus_type == V4L2_MBUS_CSI2_DPHY ? "CSI-2" : "CCP2",
dev->max_data_lanes, dev->bus_flags);
/* Initialize and register the async notifier. */
v4l2_async_nf_init(&dev->notifier);
dev->notifier.ops = &unicam_async_ops;
dev->asd.match_type = V4L2_ASYNC_MATCH_FWNODE;
dev->asd.match.fwnode = fwnode_graph_get_remote_endpoint(of_fwnode_handle(ep_node));
ret = __v4l2_async_nf_add_subdev(&dev->notifier, &dev->asd);
if (ret) {
unicam_err(dev, "Error adding subdevice: %d\n", ret);
goto cleanup_exit;
}
ret = v4l2_async_nf_register(&dev->v4l2_dev, &dev->notifier);
if (ret) {
unicam_err(dev, "Error registering async notifier: %d\n", ret);
ret = -EINVAL;
}
cleanup_exit:
of_node_put(sensor_node);
of_node_put(ep_node);
return ret;
}
static int unicam_probe(struct platform_device *pdev)
{
struct unicam_device *unicam;
int ret;
unicam = kzalloc(sizeof(*unicam), GFP_KERNEL);
if (!unicam)
return -ENOMEM;
kref_init(&unicam->kref);
unicam->pdev = pdev;
/*
* Adopt the current setting of the module parameter, and check if
* device tree requests it.
*/
unicam->mc_api = media_controller;
if (of_property_read_bool(pdev->dev.of_node, "brcm,media-controller"))
unicam->mc_api = true;
unicam->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(unicam->base)) {
unicam_err(unicam, "Failed to get main io block\n");
ret = PTR_ERR(unicam->base);
goto err_unicam_put;
}
unicam->clk_gate_base = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(unicam->clk_gate_base)) {
unicam_err(unicam, "Failed to get 2nd io block\n");
ret = PTR_ERR(unicam->clk_gate_base);
goto err_unicam_put;
}
unicam->clock = devm_clk_get(&pdev->dev, "lp");
if (IS_ERR(unicam->clock)) {
unicam_err(unicam, "Failed to get lp clock\n");
ret = PTR_ERR(unicam->clock);
goto err_unicam_put;
}
unicam->vpu_clock = devm_clk_get(&pdev->dev, "vpu");
if (IS_ERR(unicam->vpu_clock)) {
unicam_err(unicam, "Failed to get vpu clock\n");
ret = PTR_ERR(unicam->vpu_clock);
goto err_unicam_put;
}
ret = platform_get_irq(pdev, 0);
if (ret <= 0) {
dev_err(&pdev->dev, "No IRQ resource\n");
ret = -EINVAL;
goto err_unicam_put;
}
ret = devm_request_irq(&pdev->dev, ret, unicam_isr, 0,
"unicam_capture0", unicam);
if (ret) {
dev_err(&pdev->dev, "Unable to request interrupt\n");
ret = -EINVAL;
goto err_unicam_put;
}
unicam->mdev.dev = &pdev->dev;
strscpy(unicam->mdev.model, UNICAM_MODULE_NAME,
sizeof(unicam->mdev.model));
strscpy(unicam->mdev.serial, "", sizeof(unicam->mdev.serial));
snprintf(unicam->mdev.bus_info, sizeof(unicam->mdev.bus_info),
"platform:%s", dev_name(&pdev->dev));
unicam->mdev.hw_revision = 0;
media_device_init(&unicam->mdev);
unicam->v4l2_dev.mdev = &unicam->mdev;
ret = v4l2_device_register(&pdev->dev, &unicam->v4l2_dev);
if (ret) {
unicam_err(unicam,
"Unable to register v4l2 device.\n");
goto err_unicam_put;
}
ret = media_device_register(&unicam->mdev);
if (ret < 0) {
unicam_err(unicam,
"Unable to register media-controller device.\n");
goto err_v4l2_unregister;
}
/* Reserve space for the controls */
ret = v4l2_ctrl_handler_init(&unicam->ctrl_handler, 16);
if (ret < 0)
goto err_media_unregister;
/* set the driver data in platform device */
platform_set_drvdata(pdev, unicam);
ret = of_unicam_connect_subdevs(unicam);
if (ret) {
dev_err(&pdev->dev, "Failed to connect subdevs\n");
goto err_media_unregister;
}
/* Enable the block power domain */
pm_runtime_enable(&pdev->dev);
return 0;
err_media_unregister:
media_device_unregister(&unicam->mdev);
err_v4l2_unregister:
v4l2_device_unregister(&unicam->v4l2_dev);
err_unicam_put:
unicam_put(unicam);
return ret;
}
static int unicam_remove(struct platform_device *pdev)
{
struct unicam_device *unicam = platform_get_drvdata(pdev);
unicam_dbg(2, unicam, "%s\n", __func__);
v4l2_async_nf_unregister(&unicam->notifier);
v4l2_device_unregister(&unicam->v4l2_dev);
media_device_unregister(&unicam->mdev);
unregister_nodes(unicam);
pm_runtime_disable(&pdev->dev);
return 0;
}
static const struct of_device_id unicam_of_match[] = {
{ .compatible = "brcm,bcm2835-unicam", },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, unicam_of_match);
static struct platform_driver unicam_driver = {
.probe = unicam_probe,
.remove = unicam_remove,
.driver = {
.name = UNICAM_MODULE_NAME,
.of_match_table = of_match_ptr(unicam_of_match),
},
};
module_platform_driver(unicam_driver);
MODULE_AUTHOR("Dave Stevenson <dave.stevenson@raspberrypi.com>");
MODULE_DESCRIPTION("BCM2835 Unicam driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(UNICAM_VERSION);