mirror of
https://github.com/Qortal/Brooklyn.git
synced 2025-02-14 11:15:54 +00:00
143 lines
5.3 KiB
C++
143 lines
5.3 KiB
C++
//
|
|
// Copyright © 2017 Arm Ltd. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
#include "../InferenceTest.hpp"
|
|
#include "../ImagePreprocessor.hpp"
|
|
#include "armnnTfLiteParser/ITfLiteParser.hpp"
|
|
|
|
#include <cxxopts/cxxopts.hpp>
|
|
#include <fstream>
|
|
|
|
using namespace armnnTfLiteParser;
|
|
|
|
std::vector<ImageSet> ParseDataset(const std::string& filename)
|
|
{
|
|
std::ifstream read(filename);
|
|
std::vector<ImageSet> imageSet;
|
|
if (read.is_open())
|
|
{
|
|
// Get the images and the correct corresponding label from the given file
|
|
for (std::string line; std::getline(read, line);)
|
|
{
|
|
stringstream ss(line);
|
|
std::string image_name;
|
|
std::string label;
|
|
getline(ss, image_name, ' ');
|
|
getline(ss, label, ' ');
|
|
imageSet.push_back(ImageSet(image_name, std::stoi(label)));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Use the default images
|
|
imageSet.push_back(ImageSet("Dog.jpg", 209));
|
|
// top five predictions in tensorflow:
|
|
// -----------------------------------
|
|
// 209:Labrador retriever 0.949995
|
|
// 160:Rhodesian ridgeback 0.0270182
|
|
// 208:golden retriever 0.0192866
|
|
// 853:tennis ball 0.000470382
|
|
// 239:Greater Swiss Mountain dog 0.000464451
|
|
imageSet.push_back(ImageSet("Cat.jpg", 283));
|
|
// top five predictions in tensorflow:
|
|
// -----------------------------------
|
|
// 283:tiger cat 0.579016
|
|
// 286:Egyptian cat 0.319676
|
|
// 282:tabby, tabby cat 0.0873346
|
|
// 288:lynx, catamount 0.011163
|
|
// 289:leopard, Panthera pardus 0.000856755
|
|
imageSet.push_back(ImageSet("shark.jpg", 3));
|
|
// top five predictions in tensorflow:
|
|
// -----------------------------------
|
|
// 3:great white shark, white shark, ... 0.996926
|
|
// 4:tiger shark, Galeocerdo cuvieri 0.00270528
|
|
// 149:killer whale, killer, orca, ... 0.000121848
|
|
// 395:sturgeon 7.78977e-05
|
|
// 5:hammerhead, hammerhead shark 6.44127e-055
|
|
};
|
|
return imageSet;
|
|
}
|
|
|
|
std::string GetLabelsFilenameFromOptions(int argc, char* argv[])
|
|
{
|
|
cxxopts::Options options("TfLiteMobilenetQuantized-Armnn","Validation Options");
|
|
|
|
std::string fileName;
|
|
try
|
|
{
|
|
options
|
|
.allow_unrecognised_options()
|
|
.add_options()
|
|
("l,labels",
|
|
"Filename of a text file where in each line contains an image "
|
|
"filename and the correct label the network should predict when fed that image",
|
|
cxxopts::value<std::string>(fileName));
|
|
|
|
auto result = options.parse(argc, argv);
|
|
}
|
|
catch (const cxxopts::OptionException& e)
|
|
{
|
|
std::cerr << e.what() << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
catch (const std::exception& e)
|
|
{
|
|
std::cerr << "Fatal internal error: [" << e.what() << "]" << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
return fileName;
|
|
}
|
|
|
|
|
|
int main(int argc, char* argv[])
|
|
{
|
|
int retVal = EXIT_FAILURE;
|
|
try
|
|
{
|
|
// Coverity fix: The following code may throw an exception of type std::length_error.
|
|
const std::string labels_file = GetLabelsFilenameFromOptions(argc,argv);
|
|
std::vector<ImageSet> imageSet = ParseDataset(labels_file);
|
|
std::vector<unsigned int> indices(imageSet.size());
|
|
std::generate(indices.begin(), indices.end(), [n = 0] () mutable { return n++; });
|
|
|
|
armnn::TensorShape inputTensorShape({ 1, 224, 224, 3 });
|
|
|
|
using DataType = uint8_t;
|
|
using DatabaseType = ImagePreprocessor<DataType>;
|
|
using ParserType = armnnTfLiteParser::ITfLiteParser;
|
|
using ModelType = InferenceModel<ParserType, DataType>;
|
|
|
|
// Coverity fix: ClassifierInferenceTestMain() may throw uncaught exceptions.
|
|
retVal = armnn::test::ClassifierInferenceTestMain<DatabaseType,
|
|
ParserType>(
|
|
argc, argv,
|
|
"mobilenet_v1_1.0_224_quant.tflite", // model name
|
|
true, // model is binary
|
|
"input", // input tensor name
|
|
"MobilenetV1/Predictions/Reshape_1", // output tensor name
|
|
indices, // vector of indices to select which images to validate
|
|
[&imageSet](const char* dataDir, const ModelType &) {
|
|
// we need to get the input quantization parameters from
|
|
// the parsed model
|
|
return DatabaseType(
|
|
dataDir,
|
|
224,
|
|
224,
|
|
imageSet,
|
|
1);
|
|
},
|
|
&inputTensorShape);
|
|
}
|
|
catch (const std::exception& e)
|
|
{
|
|
// Coverity fix: BOOST_LOG_TRIVIAL (typically used to report errors) may throw an
|
|
// exception of type std::length_error.
|
|
// Using stderr instead in this context as there is no point in nesting try-catch blocks here.
|
|
std::cerr << "WARNING: " << *argv << ": An error has occurred when running "
|
|
"the classifier inference tests: " << e.what() << std::endl;
|
|
}
|
|
return retVal;
|
|
}
|