mirror of
https://github.com/Qortal/Brooklyn.git
synced 2025-02-07 06:44:18 +00:00
209 lines
7.2 KiB
Plaintext
209 lines
7.2 KiB
Plaintext
/// Copyright (c) 2021 ARM Limited and Contributors. All rights reserved.
|
|
///
|
|
/// SPDX-License-Identifier: MIT
|
|
///
|
|
|
|
namespace armnn
|
|
{
|
|
/**
|
|
@page parsers Parsers
|
|
|
|
@tableofcontents
|
|
Execute models from different machine learning platforms efficiently with our parsers. Simply choose a parser according
|
|
to the model you want to run e.g. If you've got a model in onnx format (<model_name>.onnx) use our onnx-parser.
|
|
|
|
If you would like to run a Tensorflow Lite (TfLite) model you probably also want to take a look at our @ref delegate.
|
|
|
|
All parsers are written in C++ but it is also possible to use them in python. For more information on our python
|
|
bindings take a look into the @ref md_python_pyarmnn_README section.
|
|
|
|
<br/><br/>
|
|
|
|
|
|
|
|
|
|
@section S5_onnx_parser Arm NN Onnx Parser
|
|
|
|
`armnnOnnxParser` is a library for loading neural networks defined in ONNX protobuf files into the Arm NN runtime.
|
|
|
|
## ONNX operators that the Arm NN SDK supports
|
|
|
|
This reference guide provides a list of ONNX operators the Arm NN SDK currently supports.
|
|
|
|
The Arm NN SDK ONNX parser currently only supports fp32 operators.
|
|
|
|
### Fully supported
|
|
|
|
- Add
|
|
- See the ONNX [Add documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Add) for more information
|
|
|
|
- AveragePool
|
|
- See the ONNX [AveragePool documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#AveragePool) for more information.
|
|
|
|
- Concat
|
|
- See the ONNX [Concat documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Concat) for more information.
|
|
|
|
- Constant
|
|
- See the ONNX [Constant documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Constant) for more information.
|
|
|
|
- Clip
|
|
- See the ONNX [Clip documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Clip) for more information.
|
|
|
|
- Flatten
|
|
- See the ONNX [Flatten documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Flatten) for more information.
|
|
|
|
- Gather
|
|
- See the ONNX [Gather documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Gather) for more information.
|
|
|
|
- GlobalAveragePool
|
|
- See the ONNX [GlobalAveragePool documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#GlobalAveragePool) for more information.
|
|
|
|
- LeakyRelu
|
|
- See the ONNX [LeakyRelu documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#LeakyRelu) for more information.
|
|
|
|
- MaxPool
|
|
- See the ONNX [max_pool documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#MaxPool) for more information.
|
|
|
|
- Relu
|
|
- See the ONNX [Relu documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Relu) for more information.
|
|
|
|
- Reshape
|
|
- See the ONNX [Reshape documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Reshape) for more information.
|
|
|
|
- Shape
|
|
- See the ONNX [Shape documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Shape) for more information.
|
|
|
|
- Sigmoid
|
|
- See the ONNX [Sigmoid documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Sigmoid) for more information.
|
|
|
|
- Tanh
|
|
- See the ONNX [Tanh documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Tanh) for more information.
|
|
|
|
- Unsqueeze
|
|
- See the ONNX [Unsqueeze documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Unsqueeze) for more information.
|
|
|
|
### Partially supported
|
|
|
|
- Conv
|
|
- The parser only supports 2D convolutions with a group = 1 or group = #Nb_of_channel (depthwise convolution)
|
|
- BatchNormalization
|
|
- The parser does not support training mode. See the ONNX [BatchNormalization documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#BatchNormalization) for more information.
|
|
- Gemm
|
|
- The parser only supports constant bias or non-constant bias where bias dimension = 1. See the ONNX [Gemm documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Gemm) for more information.
|
|
- MatMul
|
|
- The parser only supports constant weights in a fully connected layer. See the ONNX [MatMul documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md#MatMul) for more information.
|
|
|
|
## Tested networks
|
|
|
|
Arm tested these operators with the following ONNX fp32 neural networks:
|
|
- Mobilenet_v2. See the ONNX [MobileNet documentation](https://github.com/onnx/models/tree/master/vision/classification/mobilenet) for more information.
|
|
- Simple MNIST. This is no longer directly documented by ONNX. The model and test data may be downloaded [from the ONNX model zoo](https://onnxzoo.blob.core.windows.net/models/opset_8/mnist/mnist.tar.gz).
|
|
|
|
More machine learning operators will be supported in future releases.
|
|
<br/><br/><br/><br/>
|
|
|
|
|
|
|
|
|
|
@section S6_tf_lite_parser Arm NN Tf Lite Parser
|
|
|
|
`armnnTfLiteParser` is a library for loading neural networks defined by TensorFlow Lite FlatBuffers files
|
|
into the Arm NN runtime.
|
|
|
|
## TensorFlow Lite operators that the Arm NN SDK supports
|
|
|
|
This reference guide provides a list of TensorFlow Lite operators the Arm NN SDK currently supports.
|
|
|
|
### Fully supported
|
|
The Arm NN SDK TensorFlow Lite parser currently supports the following operators:
|
|
|
|
- ABS
|
|
- ADD
|
|
- ARG_MAX
|
|
- ARG_MIN
|
|
- AVERAGE_POOL_2D, Supported Fused Activation: RELU , RELU6 , TANH, NONE
|
|
- BATCH_TO_SPACE
|
|
- CONCATENATION, Supported Fused Activation: RELU , RELU6 , TANH, NONE
|
|
- CONV_2D, Supported Fused Activation: RELU , RELU6 , TANH, NONE
|
|
- CONV_3D, Supported Fused Activation: RELU , RELU6 , TANH, NONE
|
|
- DEPTH_TO_SPACE
|
|
- DEPTHWISE_CONV_2D, Supported Fused Activation: RELU , RELU6 , TANH, NONE
|
|
- DEQUANTIZE
|
|
- DIV
|
|
- ELU
|
|
- EQUAL
|
|
- EXP
|
|
- EXPAND_DIMS
|
|
- FULLY_CONNECTED, Supported Fused Activation: RELU , RELU6 , TANH, NONE
|
|
- GATHER
|
|
- GREATER
|
|
- GREATER_EQUAL
|
|
- HARD_SWISH
|
|
- LEAKY_RELU
|
|
- LESS
|
|
- LESS_EQUAL
|
|
- LOGICAL_NOT
|
|
- LOGISTIC
|
|
- L2_NORMALIZATION
|
|
- MAX_POOL_2D, Supported Fused Activation: RELU , RELU6 , TANH, NONE
|
|
- MAXIMUM
|
|
- MEAN
|
|
- MINIMUM
|
|
- MIRROR_PAD
|
|
- MUL
|
|
- NEG
|
|
- NOT_EQUAL
|
|
- PACK
|
|
- PAD
|
|
- PADV2
|
|
- PRELU
|
|
- QUANTIZE
|
|
- RELU
|
|
- RELU6
|
|
- REDUCE_MAX
|
|
- REDUCE_MIN
|
|
- REDUCE_PROD
|
|
- RESHAPE
|
|
- RESIZE_BILINEAR
|
|
- RESIZE_NEAREST_NEIGHBOR
|
|
- RSQRT
|
|
- SHAPE
|
|
- SLICE
|
|
- SOFTMAX
|
|
- SPACE_TO_BATCH
|
|
- SPLIT
|
|
- SPLIT_V
|
|
- SQUEEZE
|
|
- STRIDED_SLICE
|
|
- SUB
|
|
- SUM
|
|
- TANH
|
|
- TRANSPOSE
|
|
- TRANSPOSE_CONV
|
|
- UNPACK
|
|
|
|
### Custom Operator
|
|
- TFLite_Detection_PostProcess
|
|
|
|
## Tested networks
|
|
Arm tested these operators with the following TensorFlow Lite neural network:
|
|
- [Quantized MobileNet](http://download.tensorflow.org/models/mobilenet_v1_2018_02_22/mobilenet_v1_1.0_224_quant.tgz)
|
|
- [Quantized SSD MobileNet](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_quantized_300x300_coco14_sync_2018_07_18.tar.gz)
|
|
- DeepSpeech v1 converted from [TensorFlow model](https://github.com/mozilla/DeepSpeech/releases/tag/v0.4.1)
|
|
- DeepSpeaker
|
|
- [DeepLab v3+](https://www.tensorflow.org/lite/models/segmentation/overview)
|
|
- FSRCNN
|
|
- EfficientNet-lite
|
|
- RDN converted from [TensorFlow model](https://github.com/hengchuan/RDN-TensorFlow)
|
|
- Quantized RDN (CpuRef)
|
|
- [Quantized Inception v3](http://download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz)
|
|
- [Quantized Inception v4](http://download.tensorflow.org/models/inception_v4_299_quant_20181026.tgz) (CpuRef)
|
|
- Quantized ResNet v2 50 (CpuRef)
|
|
- Quantized Yolo v3 (CpuRef)
|
|
|
|
More machine learning operators will be supported in future releases.
|
|
|
|
**/
|
|
}
|
|
|