mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-07-30 20:11:23 +00:00
Improve Field::pow API and impl
Renamed to Field::pow_vartime to indicate it is still variable time with respect to the exponent.
This commit is contained in:
@@ -464,7 +464,7 @@ fn test_frob_coeffs() {
|
||||
assert_eq!(FROBENIUS_COEFF_FQ2_C1[0], Fq::one());
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ2_C1[1],
|
||||
nqr.pow([
|
||||
nqr.pow_vartime([
|
||||
0xdcff7fffffffd555,
|
||||
0xf55ffff58a9ffff,
|
||||
0xb39869507b587b12,
|
||||
@@ -482,7 +482,7 @@ fn test_frob_coeffs() {
|
||||
assert_eq!(FROBENIUS_COEFF_FQ6_C1[0], Fq2::one());
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ6_C1[1],
|
||||
nqr.pow([
|
||||
nqr.pow_vartime([
|
||||
0x9354ffffffffe38e,
|
||||
0xa395554e5c6aaaa,
|
||||
0xcd104635a790520c,
|
||||
@@ -493,7 +493,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ6_C1[2],
|
||||
nqr.pow([
|
||||
nqr.pow_vartime([
|
||||
0xb78e0000097b2f68,
|
||||
0xd44f23b47cbd64e3,
|
||||
0x5cb9668120b069a9,
|
||||
@@ -510,7 +510,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ6_C1[3],
|
||||
nqr.pow([
|
||||
nqr.pow_vartime([
|
||||
0xdbc6fcd6f35b9e06,
|
||||
0x997dead10becd6aa,
|
||||
0x9dbbd24c17206460,
|
||||
@@ -533,7 +533,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ6_C1[4],
|
||||
nqr.pow([
|
||||
nqr.pow_vartime([
|
||||
0x4649add3c71c6d90,
|
||||
0x43caa6528972a865,
|
||||
0xcda8445bbaaa0fbb,
|
||||
@@ -562,7 +562,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ6_C1[5],
|
||||
nqr.pow([
|
||||
nqr.pow_vartime([
|
||||
0xf896f792732eb2be,
|
||||
0x49c86a6d1dc593a1,
|
||||
0xe5b31e94581f91c3,
|
||||
@@ -599,7 +599,7 @@ fn test_frob_coeffs() {
|
||||
assert_eq!(FROBENIUS_COEFF_FQ6_C2[0], Fq2::one());
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ6_C2[1],
|
||||
nqr.pow([
|
||||
nqr.pow_vartime([
|
||||
0x26a9ffffffffc71c,
|
||||
0x1472aaa9cb8d5555,
|
||||
0x9a208c6b4f20a418,
|
||||
@@ -610,7 +610,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ6_C2[2],
|
||||
nqr.pow([
|
||||
nqr.pow_vartime([
|
||||
0x6f1c000012f65ed0,
|
||||
0xa89e4768f97ac9c7,
|
||||
0xb972cd024160d353,
|
||||
@@ -627,7 +627,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ6_C2[3],
|
||||
nqr.pow([
|
||||
nqr.pow_vartime([
|
||||
0xb78df9ade6b73c0c,
|
||||
0x32fbd5a217d9ad55,
|
||||
0x3b77a4982e40c8c1,
|
||||
@@ -650,7 +650,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ6_C2[4],
|
||||
nqr.pow([
|
||||
nqr.pow_vartime([
|
||||
0x8c935ba78e38db20,
|
||||
0x87954ca512e550ca,
|
||||
0x9b5088b775541f76,
|
||||
@@ -679,7 +679,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ6_C2[5],
|
||||
nqr.pow([
|
||||
nqr.pow_vartime([
|
||||
0xf12def24e65d657c,
|
||||
0x9390d4da3b8b2743,
|
||||
0xcb663d28b03f2386,
|
||||
@@ -716,7 +716,7 @@ fn test_frob_coeffs() {
|
||||
assert_eq!(FROBENIUS_COEFF_FQ12_C1[0], Fq2::one());
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ12_C1[1],
|
||||
nqr.pow([
|
||||
nqr.pow_vartime([
|
||||
0x49aa7ffffffff1c7,
|
||||
0x51caaaa72e35555,
|
||||
0xe688231ad3c82906,
|
||||
@@ -727,7 +727,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ12_C1[2],
|
||||
nqr.pow([
|
||||
nqr.pow_vartime([
|
||||
0xdbc7000004bd97b4,
|
||||
0xea2791da3e5eb271,
|
||||
0x2e5cb340905834d4,
|
||||
@@ -744,7 +744,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ12_C1[3],
|
||||
nqr.pow(vec![
|
||||
nqr.pow_vartime(vec![
|
||||
0x6de37e6b79adcf03,
|
||||
0x4cbef56885f66b55,
|
||||
0x4edde9260b903230,
|
||||
@@ -767,7 +767,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ12_C1[4],
|
||||
nqr.pow(vec![
|
||||
nqr.pow_vartime(vec![
|
||||
0xa324d6e9e38e36c8,
|
||||
0xa1e5532944b95432,
|
||||
0x66d4222ddd5507dd,
|
||||
@@ -796,7 +796,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ12_C1[5],
|
||||
nqr.pow(vec![
|
||||
nqr.pow_vartime(vec![
|
||||
0xfc4b7bc93997595f,
|
||||
0xa4e435368ee2c9d0,
|
||||
0xf2d98f4a2c0fc8e1,
|
||||
@@ -831,7 +831,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ12_C1[6],
|
||||
nqr.pow(vec![
|
||||
nqr.pow_vartime(vec![
|
||||
0x21219610a012ba3c,
|
||||
0xa5c19ad35375325,
|
||||
0x4e9df1e497674396,
|
||||
@@ -872,7 +872,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ12_C1[7],
|
||||
nqr.pow(vec![
|
||||
nqr.pow_vartime(vec![
|
||||
0x742754a1f22fdb,
|
||||
0x2a1955c2dec3a702,
|
||||
0x9747b28c796d134e,
|
||||
@@ -919,7 +919,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ12_C1[8],
|
||||
nqr.pow(vec![
|
||||
nqr.pow_vartime(vec![
|
||||
0x802f5720d0b25710,
|
||||
0x6714f0a258b85c7c,
|
||||
0x31394c90afdf16e,
|
||||
@@ -972,7 +972,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ12_C1[9],
|
||||
nqr.pow(vec![
|
||||
nqr.pow_vartime(vec![
|
||||
0x4af4accf7de0b977,
|
||||
0x742485e21805b4ee,
|
||||
0xee388fbc4ac36dec,
|
||||
@@ -1031,7 +1031,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ12_C1[10],
|
||||
nqr.pow(vec![
|
||||
nqr.pow_vartime(vec![
|
||||
0xe5953a4f96cdda44,
|
||||
0x336b2d734cbc32bb,
|
||||
0x3f79bfe3cd7410e,
|
||||
@@ -1096,7 +1096,7 @@ fn test_frob_coeffs() {
|
||||
);
|
||||
assert_eq!(
|
||||
FROBENIUS_COEFF_FQ12_C1[11],
|
||||
nqr.pow(vec![
|
||||
nqr.pow_vartime(vec![
|
||||
0x107db680942de533,
|
||||
0x6262b24d2052393b,
|
||||
0x6136df824159ebc,
|
||||
@@ -2032,7 +2032,7 @@ fn test_fq_pow() {
|
||||
// Exponentiate by various small numbers and ensure it consists with repeated
|
||||
// multiplication.
|
||||
let a = Fq::random(&mut rng);
|
||||
let target = a.pow(&[i]);
|
||||
let target = a.pow_vartime(&[i]);
|
||||
let mut c = Fq::one();
|
||||
for _ in 0..i {
|
||||
c.mul_assign(&a);
|
||||
@@ -2044,7 +2044,7 @@ fn test_fq_pow() {
|
||||
// Exponentiating by the modulus should have no effect in a prime field.
|
||||
let a = Fq::random(&mut rng);
|
||||
|
||||
assert_eq!(a, a.pow(Fq::char()));
|
||||
assert_eq!(a, a.pow_vartime(Fq::char()));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2195,7 +2195,7 @@ fn test_fq_root_of_unity() {
|
||||
Fq::from_repr(FqRepr::from(2)).unwrap()
|
||||
);
|
||||
assert_eq!(
|
||||
Fq::multiplicative_generator().pow([
|
||||
Fq::multiplicative_generator().pow_vartime([
|
||||
0xdcff7fffffffd555,
|
||||
0xf55ffff58a9ffff,
|
||||
0xb39869507b587b12,
|
||||
@@ -2205,7 +2205,7 @@ fn test_fq_root_of_unity() {
|
||||
]),
|
||||
Fq::root_of_unity()
|
||||
);
|
||||
assert_eq!(Fq::root_of_unity().pow([1 << Fq::S]), Fq::one());
|
||||
assert_eq!(Fq::root_of_unity().pow_vartime([1 << Fq::S]), Fq::one());
|
||||
assert!(bool::from(Fq::multiplicative_generator().sqrt().is_none()));
|
||||
}
|
||||
|
||||
|
@@ -253,7 +253,7 @@ impl SqrtField for Fq2 {
|
||||
CtOption::new(Self::zero(), Choice::from(1))
|
||||
} else {
|
||||
// a1 = self^((q - 3) / 4)
|
||||
let mut a1 = self.pow([
|
||||
let mut a1 = self.pow_vartime([
|
||||
0xee7fbfffffffeaaa,
|
||||
0x7aaffffac54ffff,
|
||||
0xd9cc34a83dac3d89,
|
||||
@@ -285,7 +285,7 @@ impl SqrtField for Fq2 {
|
||||
} else {
|
||||
alpha.add_assign(&Fq2::one());
|
||||
// alpha = alpha^((q - 1) / 2)
|
||||
alpha = alpha.pow([
|
||||
alpha = alpha.pow_vartime([
|
||||
0xdcff7fffffffd555,
|
||||
0xf55ffff58a9ffff,
|
||||
0xb39869507b587b12,
|
||||
|
@@ -767,7 +767,7 @@ fn test_fr_pow() {
|
||||
// Exponentiate by various small numbers and ensure it consists with repeated
|
||||
// multiplication.
|
||||
let a = Fr::random(&mut rng);
|
||||
let target = a.pow(&[i]);
|
||||
let target = a.pow_vartime(&[i]);
|
||||
let mut c = Fr::one();
|
||||
for _ in 0..i {
|
||||
c.mul_assign(&a);
|
||||
@@ -779,7 +779,7 @@ fn test_fr_pow() {
|
||||
// Exponentiating by the modulus should have no effect in a prime field.
|
||||
let a = Fr::random(&mut rng);
|
||||
|
||||
assert_eq!(a, a.pow(Fr::char()));
|
||||
assert_eq!(a, a.pow_vartime(Fr::char()));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -964,7 +964,7 @@ fn test_fr_root_of_unity() {
|
||||
Fr::from_repr(FrRepr::from(7)).unwrap()
|
||||
);
|
||||
assert_eq!(
|
||||
Fr::multiplicative_generator().pow([
|
||||
Fr::multiplicative_generator().pow_vartime([
|
||||
0xfffe5bfeffffffff,
|
||||
0x9a1d80553bda402,
|
||||
0x299d7d483339d808,
|
||||
@@ -972,7 +972,7 @@ fn test_fr_root_of_unity() {
|
||||
]),
|
||||
Fr::root_of_unity()
|
||||
);
|
||||
assert_eq!(Fr::root_of_unity().pow([1 << Fr::S]), Fr::one());
|
||||
assert_eq!(Fr::root_of_unity().pow_vartime([1 << Fr::S]), Fr::one());
|
||||
assert!(bool::from(Fr::multiplicative_generator().sqrt().is_none()));
|
||||
}
|
||||
|
||||
|
@@ -124,7 +124,7 @@ impl Engine for Bls12 {
|
||||
r.mul_assign(&f2);
|
||||
|
||||
fn exp_by_x(f: &mut Fq12, x: u64) {
|
||||
*f = f.pow(&[x]);
|
||||
*f = f.pow_vartime(&[x]);
|
||||
if BLS_X_IS_NEGATIVE {
|
||||
f.conjugate();
|
||||
}
|
||||
|
@@ -130,7 +130,7 @@ fn random_bilinearity_tests<E: Engine>() {
|
||||
let mut cd = c;
|
||||
cd.mul_assign(&d);
|
||||
|
||||
let abcd = E::pairing(a, b).pow(cd.into_repr());
|
||||
let abcd = E::pairing(a, b).pow_vartime(cd.into_repr());
|
||||
|
||||
assert_eq!(acbd, adbc);
|
||||
assert_eq!(acbd, abcd);
|
||||
|
@@ -14,7 +14,7 @@ pub fn random_frobenius_tests<F: Field, C: AsRef<[u64]>>(characteristic: C, maxp
|
||||
let mut b = a;
|
||||
|
||||
for _ in 0..i {
|
||||
a = a.pow(&characteristic);
|
||||
a = a.pow_vartime(&characteristic);
|
||||
}
|
||||
b.frobenius_map(i);
|
||||
|
||||
|
Reference in New Issue
Block a user