Merge branch 'develop'

This commit is contained in:
Jack Grigg
2020-03-14 10:36:58 +13:00
124 changed files with 15961 additions and 2084 deletions

View File

@@ -11,13 +11,15 @@ repository = "https://github.com/ebfull/ff"
edition = "2018"
[dependencies]
byteorder = "1"
byteorder = { version = "1", optional = true }
ff_derive = { version = "0.6", path = "ff_derive", optional = true }
rand_core = "0.5"
rand_core = { version = "0.5", default-features = false }
subtle = { version = "2.2.1", default-features = false, features = ["i128"] }
[features]
default = []
default = ["std"]
derive = ["ff_derive"]
std = ["byteorder"]
[badges]
maintenance = { status = "actively-developed" }

View File

@@ -40,18 +40,18 @@ pub fn prime_field(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
let mut cur = BigUint::one() << 64; // always 64-bit limbs for now
while cur < mod2 {
limbs += 1;
cur = cur << 64;
cur <<= 64;
}
}
let mut gen = proc_macro2::TokenStream::new();
let (constants_impl, sqrt_impl) =
prime_field_constants_and_sqrt(&ast.ident, &repr_ident, modulus, limbs, generator);
prime_field_constants_and_sqrt(&ast.ident, &repr_ident, &modulus, limbs, generator);
gen.extend(constants_impl);
gen.extend(prime_field_repr_impl(&repr_ident, limbs));
gen.extend(prime_field_impl(&ast.ident, &repr_ident, limbs));
gen.extend(prime_field_impl(&ast.ident, &repr_ident, &modulus, limbs));
gen.extend(sqrt_impl);
// Return the generated impl
@@ -60,23 +60,16 @@ pub fn prime_field(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
/// Fetches the ident being wrapped by the type we're deriving.
fn fetch_wrapped_ident(body: &syn::Data) -> Option<syn::Ident> {
match body {
&syn::Data::Struct(ref variant_data) => match variant_data.fields {
syn::Fields::Unnamed(ref fields) => {
if fields.unnamed.len() == 1 {
match fields.unnamed[0].ty {
syn::Type::Path(ref path) => {
if path.path.segments.len() == 1 {
return Some(path.path.segments[0].ident.clone());
}
}
_ => {}
if let syn::Data::Struct(ref variant_data) = body {
if let syn::Fields::Unnamed(ref fields) = variant_data.fields {
if fields.unnamed.len() == 1 {
if let syn::Type::Path(ref path) = fields.unnamed[0].ty {
if path.path.segments.len() == 1 {
return Some(path.path.segments[0].ident.clone());
}
}
}
_ => {}
},
_ => {}
}
};
None
@@ -113,9 +106,9 @@ fn prime_field_repr_impl(repr: &syn::Ident, limbs: usize) -> proc_macro2::TokenS
#[derive(Copy, Clone, PartialEq, Eq, Default)]
pub struct #repr(pub [u64; #limbs]);
impl ::std::fmt::Debug for #repr
impl ::core::fmt::Debug for #repr
{
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
write!(f, "0x")?;
for i in self.0.iter().rev() {
write!(f, "{:016x}", *i)?;
@@ -125,8 +118,8 @@ fn prime_field_repr_impl(repr: &syn::Ident, limbs: usize) -> proc_macro2::TokenS
}
}
impl ::std::fmt::Display for #repr {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
impl ::core::fmt::Display for #repr {
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
write!(f, "0x")?;
for i in self.0.iter().rev() {
write!(f, "{:016x}", *i)?;
@@ -153,7 +146,7 @@ fn prime_field_repr_impl(repr: &syn::Ident, limbs: usize) -> proc_macro2::TokenS
impl From<u64> for #repr {
#[inline(always)]
fn from(val: u64) -> #repr {
use std::default::Default;
use core::default::Default;
let mut repr = Self::default();
repr.0[0] = val;
@@ -163,22 +156,22 @@ fn prime_field_repr_impl(repr: &syn::Ident, limbs: usize) -> proc_macro2::TokenS
impl Ord for #repr {
#[inline(always)]
fn cmp(&self, other: &#repr) -> ::std::cmp::Ordering {
fn cmp(&self, other: &#repr) -> ::core::cmp::Ordering {
for (a, b) in self.0.iter().rev().zip(other.0.iter().rev()) {
if a < b {
return ::std::cmp::Ordering::Less
return ::core::cmp::Ordering::Less
} else if a > b {
return ::std::cmp::Ordering::Greater
return ::core::cmp::Ordering::Greater
}
}
::std::cmp::Ordering::Equal
::core::cmp::Ordering::Equal
}
}
impl PartialOrd for #repr {
#[inline(always)]
fn partial_cmp(&self, other: &#repr) -> Option<::std::cmp::Ordering> {
fn partial_cmp(&self, other: &#repr) -> Option<::core::cmp::Ordering> {
Some(self.cmp(other))
}
}
@@ -209,7 +202,7 @@ fn prime_field_repr_impl(repr: &syn::Ident, limbs: usize) -> proc_macro2::TokenS
while n >= 64 {
let mut t = 0;
for i in self.0.iter_mut().rev() {
::std::mem::swap(&mut t, i);
::core::mem::swap(&mut t, i);
}
n -= 64;
}
@@ -257,7 +250,7 @@ fn prime_field_repr_impl(repr: &syn::Ident, limbs: usize) -> proc_macro2::TokenS
while n >= 64 {
let mut t = 0;
for i in &mut self.0 {
::std::mem::swap(&mut t, i);
::core::mem::swap(&mut t, i);
}
n -= 64;
}
@@ -315,7 +308,7 @@ fn biguint_to_real_u64_vec(mut v: BigUint, limbs: usize) -> Vec<u64> {
while v > BigUint::zero() {
ret.push((&v % &m).to_u64().unwrap());
v = v >> 64;
v >>= 64;
}
while ret.len() < limbs {
@@ -337,7 +330,7 @@ fn biguint_num_bits(mut v: BigUint) -> u32 {
let mut bits = 0;
while v != BigUint::zero() {
v = v >> 1;
v >>= 1;
bits += 1;
}
@@ -383,7 +376,7 @@ fn test_exp() {
fn prime_field_constants_and_sqrt(
name: &syn::Ident,
repr: &syn::Ident,
modulus: BigUint,
modulus: &BigUint,
limbs: usize,
generator: BigUint,
) -> (proc_macro2::TokenStream, proc_macro2::TokenStream) {
@@ -396,129 +389,102 @@ fn prime_field_constants_and_sqrt(
let repr_shave_bits = (64 * limbs as u32) - biguint_num_bits(modulus.clone());
// Compute R = 2**(64 * limbs) mod m
let r = (BigUint::one() << (limbs * 64)) % &modulus;
let r = (BigUint::one() << (limbs * 64)) % modulus;
// modulus - 1 = 2^s * t
let mut s: u32 = 0;
let mut t = &modulus - BigUint::from_str("1").unwrap();
let mut t = modulus - BigUint::from_str("1").unwrap();
while t.is_even() {
t = t >> 1;
t >>= 1;
s += 1;
}
// Compute 2^s root of unity given the generator
let root_of_unity = biguint_to_u64_vec(
(exp(generator.clone(), &t, &modulus) * &r) % &modulus,
limbs,
);
let generator = biguint_to_u64_vec((generator.clone() * &r) % &modulus, limbs);
let root_of_unity =
biguint_to_u64_vec((exp(generator.clone(), &t, &modulus) * &r) % modulus, limbs);
let generator = biguint_to_u64_vec((generator.clone() * &r) % modulus, limbs);
let mod_minus_1_over_2 =
biguint_to_u64_vec((&modulus - BigUint::from_str("1").unwrap()) >> 1, limbs);
let legendre_impl = quote! {
fn legendre(&self) -> ::ff::LegendreSymbol {
// s = self^((modulus - 1) // 2)
let s = self.pow(#mod_minus_1_over_2);
if s == Self::zero() {
::ff::LegendreSymbol::Zero
} else if s == Self::one() {
::ff::LegendreSymbol::QuadraticResidue
} else {
::ff::LegendreSymbol::QuadraticNonResidue
let sqrt_impl = if (modulus % BigUint::from_str("4").unwrap())
== BigUint::from_str("3").unwrap()
{
let mod_plus_1_over_4 =
biguint_to_u64_vec((modulus + BigUint::from_str("1").unwrap()) >> 2, limbs);
quote! {
impl ::ff::SqrtField for #name {
fn sqrt(&self) -> ::subtle::CtOption<Self> {
use ::subtle::ConstantTimeEq;
// Because r = 3 (mod 4)
// sqrt can be done with only one exponentiation,
// via the computation of self^((r + 1) // 4) (mod r)
let sqrt = self.pow_vartime(#mod_plus_1_over_4);
::subtle::CtOption::new(
sqrt,
(sqrt * &sqrt).ct_eq(self), // Only return Some if it's the square root.
)
}
}
}
} else if (modulus % BigUint::from_str("16").unwrap()) == BigUint::from_str("1").unwrap() {
let t_minus_1_over_2 = biguint_to_u64_vec((&t - BigUint::one()) >> 1, limbs);
quote! {
impl ::ff::SqrtField for #name {
fn sqrt(&self) -> ::subtle::CtOption<Self> {
// Tonelli-Shank's algorithm for q mod 16 = 1
// https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
use ::subtle::{ConditionallySelectable, ConstantTimeEq};
// w = self^((t - 1) // 2)
let w = self.pow_vartime(#t_minus_1_over_2);
let mut v = S;
let mut x = *self * &w;
let mut b = x * &w;
// Initialize z as the 2^S root of unity.
let mut z = #name(ROOT_OF_UNITY);
for max_v in (1..=S).rev() {
let mut k = 1;
let mut tmp = b.square();
let mut j_less_than_v: ::subtle::Choice = 1.into();
for j in 2..max_v {
let tmp_is_one = tmp.ct_eq(&#name::one());
let squared = #name::conditional_select(&tmp, &z, tmp_is_one).square();
tmp = #name::conditional_select(&squared, &tmp, tmp_is_one);
let new_z = #name::conditional_select(&z, &squared, tmp_is_one);
j_less_than_v &= !j.ct_eq(&v);
k = u32::conditional_select(&j, &k, tmp_is_one);
z = #name::conditional_select(&z, &new_z, j_less_than_v);
}
let result = x * &z;
x = #name::conditional_select(&result, &x, b.ct_eq(&#name::one()));
z = z.square();
b *= &z;
v = k;
}
::subtle::CtOption::new(
x,
(x * &x).ct_eq(self), // Only return Some if it's the square root.
)
}
}
}
} else {
quote! {}
};
let sqrt_impl =
if (&modulus % BigUint::from_str("4").unwrap()) == BigUint::from_str("3").unwrap() {
let mod_minus_3_over_4 =
biguint_to_u64_vec((&modulus - BigUint::from_str("3").unwrap()) >> 2, limbs);
// Compute -R as (m - r)
let rneg = biguint_to_u64_vec(&modulus - &r, limbs);
quote! {
impl ::ff::SqrtField for #name {
#legendre_impl
fn sqrt(&self) -> Option<Self> {
// Shank's algorithm for q mod 4 = 3
// https://eprint.iacr.org/2012/685.pdf (page 9, algorithm 2)
let mut a1 = self.pow(#mod_minus_3_over_4);
let mut a0 = a1;
a0.square();
a0.mul_assign(self);
if a0.0 == #repr(#rneg) {
None
} else {
a1.mul_assign(self);
Some(a1)
}
}
}
}
} else if (&modulus % BigUint::from_str("16").unwrap()) == BigUint::from_str("1").unwrap() {
let t_plus_1_over_2 = biguint_to_u64_vec((&t + BigUint::one()) >> 1, limbs);
let t = biguint_to_u64_vec(t.clone(), limbs);
quote! {
impl ::ff::SqrtField for #name {
#legendre_impl
fn sqrt(&self) -> Option<Self> {
// Tonelli-Shank's algorithm for q mod 16 = 1
// https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
match self.legendre() {
::ff::LegendreSymbol::Zero => Some(*self),
::ff::LegendreSymbol::QuadraticNonResidue => None,
::ff::LegendreSymbol::QuadraticResidue => {
let mut c = #name(ROOT_OF_UNITY);
let mut r = self.pow(#t_plus_1_over_2);
let mut t = self.pow(#t);
let mut m = S;
while t != Self::one() {
let mut i = 1;
{
let mut t2i = t;
t2i.square();
loop {
if t2i == Self::one() {
break;
}
t2i.square();
i += 1;
}
}
for _ in 0..(m - i - 1) {
c.square();
}
r.mul_assign(&c);
c.square();
t.mul_assign(&c);
m = i;
}
Some(r)
}
}
}
}
}
} else {
quote! {}
};
// Compute R^2 mod m
let r2 = biguint_to_u64_vec((&r * &r) % &modulus, limbs);
let r2 = biguint_to_u64_vec((&r * &r) % modulus, limbs);
let r = biguint_to_u64_vec(r, limbs);
let modulus = biguint_to_real_u64_vec(modulus, limbs);
let modulus = biguint_to_real_u64_vec(modulus.clone(), limbs);
// Compute -m^-1 mod 2**64 by exponentiating by totient(2**64) - 1
let mut inv = 1u64;
@@ -567,6 +533,7 @@ fn prime_field_constants_and_sqrt(
fn prime_field_impl(
name: &syn::Ident,
repr: &syn::Ident,
modulus: &BigUint,
limbs: usize,
) -> proc_macro2::TokenStream {
// Returns r{n} as an ident.
@@ -710,12 +677,14 @@ fn prime_field_impl(
let mut mont_calling = proc_macro2::TokenStream::new();
mont_calling.append_separated(
(0..(limbs * 2)).map(|i| get_temp(i)),
(0..(limbs * 2)).map(get_temp),
proc_macro2::Punct::new(',', proc_macro2::Spacing::Alone),
);
gen.extend(quote! {
self.mont_reduce(#mont_calling);
let mut ret = *self;
ret.mont_reduce(#mont_calling);
ret
});
gen
@@ -756,7 +725,7 @@ fn prime_field_impl(
let mut mont_calling = proc_macro2::TokenStream::new();
mont_calling.append_separated(
(0..(limbs * 2)).map(|i| get_temp(i)),
(0..(limbs * 2)).map(get_temp),
proc_macro2::Punct::new(',', proc_macro2::Spacing::Alone),
);
@@ -767,10 +736,44 @@ fn prime_field_impl(
gen
}
/// Generates an implementation of multiplicative inversion within the target prime
/// field.
fn inv_impl(
a: proc_macro2::TokenStream,
name: &syn::Ident,
modulus: &BigUint,
limbs: usize,
) -> proc_macro2::TokenStream {
let mod_minus_2 = biguint_to_u64_vec(modulus - BigUint::from(2u64), limbs);
// TODO: Improve on this by computing an addition chain for mod_minus_two
quote! {
use ::subtle::ConstantTimeEq;
// By Euler's theorem, if `a` is coprime to `p` (i.e. `gcd(a, p) = 1`), then:
// a^-1 ≡ a^(phi(p) - 1) mod p
//
// `ff_derive` requires that `p` is prime; in this case, `phi(p) = p - 1`, and
// thus:
// a^-1 ≡ a^(p - 2) mod p
let inv = #a.pow_vartime(#mod_minus_2);
::subtle::CtOption::new(inv, !#a.ct_eq(&#name::zero()))
}
}
let squaring_impl = sqr_impl(quote! {self}, limbs);
let multiply_impl = mul_impl(quote! {self}, quote! {other}, limbs);
let invert_impl = inv_impl(quote! {self}, name, modulus, limbs);
let montgomery_impl = mont_impl(limbs);
// (self.0).0[0].ct_eq(&(other.0).0[0]) & (self.0).0[1].ct_eq(&(other.0).0[1]) & ...
let mut ct_eq_impl = proc_macro2::TokenStream::new();
ct_eq_impl.append_separated(
(0..limbs).map(|i| quote! { (self.0).0[#i].ct_eq(&(other.0).0[#i]) }),
proc_macro2::Punct::new('&', proc_macro2::Spacing::Alone),
);
// (self.0).0[0], (self.0).0[1], ..., 0, 0, 0, 0, ...
let mut into_repr_params = proc_macro2::TokenStream::new();
into_repr_params.append_separated(
@@ -783,25 +786,37 @@ fn prime_field_impl(
let top_limb_index = limbs - 1;
quote! {
impl ::std::marker::Copy for #name { }
impl ::core::marker::Copy for #name { }
impl ::std::clone::Clone for #name {
impl ::core::clone::Clone for #name {
fn clone(&self) -> #name {
*self
}
}
impl ::std::cmp::PartialEq for #name {
impl ::core::default::Default for #name {
fn default() -> #name {
#name::zero()
}
}
impl ::subtle::ConstantTimeEq for #name {
fn ct_eq(&self, other: &#name) -> ::subtle::Choice {
#ct_eq_impl
}
}
impl ::core::cmp::PartialEq for #name {
fn eq(&self, other: &#name) -> bool {
self.0 == other.0
}
}
impl ::std::cmp::Eq for #name { }
impl ::core::cmp::Eq for #name { }
impl ::std::fmt::Debug for #name
impl ::core::fmt::Debug for #name
{
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
write!(f, "{}({:?})", stringify!(#name), self.into_repr())
}
}
@@ -809,20 +824,20 @@ fn prime_field_impl(
/// Elements are ordered lexicographically.
impl Ord for #name {
#[inline(always)]
fn cmp(&self, other: &#name) -> ::std::cmp::Ordering {
fn cmp(&self, other: &#name) -> ::core::cmp::Ordering {
self.into_repr().cmp(&other.into_repr())
}
}
impl PartialOrd for #name {
#[inline(always)]
fn partial_cmp(&self, other: &#name) -> Option<::std::cmp::Ordering> {
fn partial_cmp(&self, other: &#name) -> Option<::core::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl ::std::fmt::Display for #name {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
impl ::core::fmt::Display for #name {
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
write!(f, "{}({})", stringify!(#name), self.into_repr())
}
}
@@ -833,6 +848,144 @@ fn prime_field_impl(
}
}
impl ::subtle::ConditionallySelectable for #name {
fn conditional_select(a: &#name, b: &#name, choice: ::subtle::Choice) -> #name {
let mut res = [0u64; #limbs];
for i in 0..#limbs {
res[i] = u64::conditional_select(&(a.0).0[i], &(b.0).0[i], choice);
}
#name(#repr(res))
}
}
impl ::core::ops::Neg for #name {
type Output = #name;
#[inline]
fn neg(self) -> #name {
let mut ret = self;
if !ret.is_zero() {
let mut tmp = MODULUS;
tmp.sub_noborrow(&ret.0);
ret.0 = tmp;
}
ret
}
}
impl<'r> ::core::ops::Add<&'r #name> for #name {
type Output = #name;
#[inline]
fn add(self, other: &#name) -> #name {
let mut ret = self;
ret.add_assign(other);
ret
}
}
impl ::core::ops::Add for #name {
type Output = #name;
#[inline]
fn add(self, other: #name) -> Self {
self + &other
}
}
impl<'r> ::core::ops::AddAssign<&'r #name> for #name {
#[inline]
fn add_assign(&mut self, other: &#name) {
// This cannot exceed the backing capacity.
self.0.add_nocarry(&other.0);
// However, it may need to be reduced.
self.reduce();
}
}
impl ::core::ops::AddAssign for #name {
#[inline]
fn add_assign(&mut self, other: #name) {
self.add_assign(&other);
}
}
impl<'r> ::core::ops::Sub<&'r #name> for #name {
type Output = #name;
#[inline]
fn sub(self, other: &#name) -> Self {
let mut ret = self;
ret.sub_assign(other);
ret
}
}
impl ::core::ops::Sub for #name {
type Output = #name;
#[inline]
fn sub(self, other: #name) -> Self {
self - &other
}
}
impl<'r> ::core::ops::SubAssign<&'r #name> for #name {
#[inline]
fn sub_assign(&mut self, other: &#name) {
// If `other` is larger than `self`, we'll need to add the modulus to self first.
if other.0 > self.0 {
self.0.add_nocarry(&MODULUS);
}
self.0.sub_noborrow(&other.0);
}
}
impl ::core::ops::SubAssign for #name {
#[inline]
fn sub_assign(&mut self, other: #name) {
self.sub_assign(&other);
}
}
impl<'r> ::core::ops::Mul<&'r #name> for #name {
type Output = #name;
#[inline]
fn mul(self, other: &#name) -> Self {
let mut ret = self;
ret.mul_assign(other);
ret
}
}
impl ::core::ops::Mul for #name {
type Output = #name;
#[inline]
fn mul(self, other: #name) -> Self {
self * &other
}
}
impl<'r> ::core::ops::MulAssign<&'r #name> for #name {
#[inline]
fn mul_assign(&mut self, other: &#name)
{
#multiply_impl
}
}
impl ::core::ops::MulAssign for #name {
#[inline]
fn mul_assign(&mut self, other: #name)
{
self.mul_assign(&other);
}
}
impl ::ff::PrimeField for #name {
type Repr = #repr;
@@ -843,7 +996,7 @@ fn prime_field_impl(
Ok(r)
} else {
Err(PrimeFieldDecodingError::NotInField(format!("{}", r.0)))
Err(PrimeFieldDecodingError::NotInField)
}
}
@@ -912,95 +1065,20 @@ fn prime_field_impl(
}
#[inline]
fn add_assign(&mut self, other: &#name) {
fn double(&self) -> Self {
let mut ret = *self;
// This cannot exceed the backing capacity.
self.0.add_nocarry(&other.0);
ret.0.mul2();
// However, it may need to be reduced.
self.reduce();
ret.reduce();
ret
}
#[inline]
fn double(&mut self) {
// This cannot exceed the backing capacity.
self.0.mul2();
// However, it may need to be reduced.
self.reduce();
}
#[inline]
fn sub_assign(&mut self, other: &#name) {
// If `other` is larger than `self`, we'll need to add the modulus to self first.
if other.0 > self.0 {
self.0.add_nocarry(&MODULUS);
}
self.0.sub_noborrow(&other.0);
}
#[inline]
fn negate(&mut self) {
if !self.is_zero() {
let mut tmp = MODULUS;
tmp.sub_noborrow(&self.0);
self.0 = tmp;
}
}
fn inverse(&self) -> Option<Self> {
if self.is_zero() {
None
} else {
// Guajardo Kumar Paar Pelzl
// Efficient Software-Implementation of Finite Fields with Applications to Cryptography
// Algorithm 16 (BEA for Inversion in Fp)
let one = #repr::from(1);
let mut u = self.0;
let mut v = MODULUS;
let mut b = #name(R2); // Avoids unnecessary reduction step.
let mut c = Self::zero();
while u != one && v != one {
while u.is_even() {
u.div2();
if b.0.is_even() {
b.0.div2();
} else {
b.0.add_nocarry(&MODULUS);
b.0.div2();
}
}
while v.is_even() {
v.div2();
if c.0.is_even() {
c.0.div2();
} else {
c.0.add_nocarry(&MODULUS);
c.0.div2();
}
}
if v < u {
u.sub_noborrow(&v);
b.sub_assign(&c);
} else {
v.sub_noborrow(&u);
c.sub_assign(&b);
}
}
if u == one {
Some(b)
} else {
Some(c)
}
}
fn invert(&self) -> ::subtle::CtOption<Self> {
#invert_impl
}
#[inline(always)]
@@ -1009,13 +1087,7 @@ fn prime_field_impl(
}
#[inline]
fn mul_assign(&mut self, other: &#name)
{
#multiply_impl
}
#[inline]
fn square(&mut self)
fn square(&self) -> Self
{
#squaring_impl
}

View File

@@ -1,20 +1,50 @@
//! This crate provides traits for working with finite fields.
// Catch documentation errors caused by code changes.
#![no_std]
#![deny(intra_doc_link_resolution_failure)]
#![allow(unused_imports)]
#[cfg(feature = "std")]
#[macro_use]
extern crate std;
#[cfg(feature = "derive")]
pub use ff_derive::*;
use core::fmt;
use core::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use rand_core::RngCore;
use std::error::Error;
use std::fmt;
#[cfg(feature = "std")]
use std::io::{self, Read, Write};
use subtle::{ConditionallySelectable, CtOption};
/// This trait represents an element of a field.
pub trait Field:
Sized + Eq + Copy + Clone + Send + Sync + fmt::Debug + fmt::Display + 'static
Sized
+ Eq
+ Copy
+ Clone
+ Default
+ Send
+ Sync
+ fmt::Debug
+ fmt::Display
+ 'static
+ ConditionallySelectable
+ Add<Output = Self>
+ Sub<Output = Self>
+ Mul<Output = Self>
+ Neg<Output = Self>
+ for<'a> Add<&'a Self, Output = Self>
+ for<'a> Mul<&'a Self, Output = Self>
+ for<'a> Sub<&'a Self, Output = Self>
+ MulAssign
+ AddAssign
+ SubAssign
+ for<'a> MulAssign<&'a Self>
+ for<'a> AddAssign<&'a Self>
+ for<'a> SubAssign<&'a Self>
{
/// Returns an element chosen uniformly at random using a user-provided RNG.
fn random<R: RngCore + ?std::marker::Sized>(rng: &mut R) -> Self;
@@ -29,46 +59,35 @@ pub trait Field:
fn is_zero(&self) -> bool;
/// Squares this element.
fn square(&mut self);
#[must_use]
fn square(&self) -> Self;
/// Doubles this element.
fn double(&mut self);
#[must_use]
fn double(&self) -> Self;
/// Negates this element.
fn negate(&mut self);
/// Adds another element to this element.
fn add_assign(&mut self, other: &Self);
/// Subtracts another element from this element.
fn sub_assign(&mut self, other: &Self);
/// Multiplies another element by this element.
fn mul_assign(&mut self, other: &Self);
/// Computes the multiplicative inverse of this element, if nonzero.
fn inverse(&self) -> Option<Self>;
/// Computes the multiplicative inverse of this element,
/// failing if the element is zero.
fn invert(&self) -> CtOption<Self>;
/// Exponentiates this element by a power of the base prime modulus via
/// the Frobenius automorphism.
fn frobenius_map(&mut self, power: usize);
/// Exponentiates this element by a number represented with `u64` limbs,
/// least significant digit first.
fn pow<S: AsRef<[u64]>>(&self, exp: S) -> Self {
/// Exponentiates `self` by `exp`, where `exp` is a little-endian order
/// integer exponent.
///
/// **This operation is variable time with respect to the exponent.** If the
/// exponent is fixed, this operation is effectively constant time.
fn pow_vartime<S: AsRef<[u64]>>(&self, exp: S) -> Self {
let mut res = Self::one();
for e in exp.as_ref().iter().rev() {
for i in (0..64).rev() {
res = res.square();
let mut found_one = false;
for i in BitIterator::new(exp) {
if found_one {
res.square();
} else {
found_one = i;
}
if i {
res.mul_assign(self);
if ((*e >> i) & 1) == 1 {
res.mul_assign(self);
}
}
}
@@ -78,12 +97,9 @@ pub trait Field:
/// This trait represents an element of a field that has a square root operation described for it.
pub trait SqrtField: Field {
/// Returns the Legendre symbol of the field element.
fn legendre(&self) -> LegendreSymbol;
/// Returns the square root of the field element, if it is
/// quadratic residue.
fn sqrt(&self) -> Option<Self>;
fn sqrt(&self) -> CtOption<Self>;
}
/// This trait represents a wrapper around a biginteger which can encode any element of a particular
@@ -139,6 +155,7 @@ pub trait PrimeFieldRepr:
fn shl(&mut self, amt: u32);
/// Writes this `PrimeFieldRepr` as a big endian integer.
#[cfg(feature = "std")]
fn write_be<W: Write>(&self, mut writer: W) -> io::Result<()> {
use byteorder::{BigEndian, WriteBytesExt};
@@ -150,6 +167,7 @@ pub trait PrimeFieldRepr:
}
/// Reads a big endian integer into this representation.
#[cfg(feature = "std")]
fn read_be<R: Read>(&mut self, mut reader: R) -> io::Result<()> {
use byteorder::{BigEndian, ReadBytesExt};
@@ -161,6 +179,7 @@ pub trait PrimeFieldRepr:
}
/// Writes this `PrimeFieldRepr` as a little endian integer.
#[cfg(feature = "std")]
fn write_le<W: Write>(&self, mut writer: W) -> io::Result<()> {
use byteorder::{LittleEndian, WriteBytesExt};
@@ -172,6 +191,7 @@ pub trait PrimeFieldRepr:
}
/// Reads a little endian integer into this representation.
#[cfg(feature = "std")]
fn read_le<R: Read>(&mut self, mut reader: R) -> io::Result<()> {
use byteorder::{LittleEndian, ReadBytesExt};
@@ -183,25 +203,19 @@ pub trait PrimeFieldRepr:
}
}
#[derive(Debug, PartialEq)]
pub enum LegendreSymbol {
Zero = 0,
QuadraticResidue = 1,
QuadraticNonResidue = -1,
}
/// An error that may occur when trying to interpret a `PrimeFieldRepr` as a
/// `PrimeField` element.
#[derive(Debug)]
pub enum PrimeFieldDecodingError {
/// The encoded value is not in the field
NotInField(String),
NotInField,
}
impl Error for PrimeFieldDecodingError {
#[cfg(feature = "std")]
impl std::error::Error for PrimeFieldDecodingError {
fn description(&self) -> &str {
match *self {
PrimeFieldDecodingError::NotInField(..) => "not an element of the field",
PrimeFieldDecodingError::NotInField => "not an element of the field",
}
}
}
@@ -209,9 +223,7 @@ impl Error for PrimeFieldDecodingError {
impl fmt::Display for PrimeFieldDecodingError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
match *self {
PrimeFieldDecodingError::NotInField(ref repr) => {
write!(f, "{} is not an element of the field", repr)
}
PrimeFieldDecodingError::NotInField => write!(f, "not an element of the field"),
}
}
}
@@ -330,7 +342,7 @@ impl<E: AsRef<[u64]>> Iterator for BitIterator<E> {
#[test]
fn test_bit_iterator() {
let mut a = BitIterator::new([0xa953d79b83f6ab59, 0x6dea2059e200bd39]);
let mut a = BitIterator::new([0xa953_d79b_83f6_ab59, 0x6dea_2059_e200_bd39]);
let expected = "01101101111010100010000001011001111000100000000010111101001110011010100101010011110101111001101110000011111101101010101101011001";
for e in expected.chars() {
@@ -342,10 +354,10 @@ fn test_bit_iterator() {
let expected = "1010010101111110101010000101101011101000011101110101001000011001100100100011011010001011011011010001011011101100110100111011010010110001000011110100110001100110011101101000101100011100100100100100001010011101010111110011101011000011101000111011011101011001";
let mut a = BitIterator::new([
0x429d5f3ac3a3b759,
0xb10f4c66768b1c92,
0x92368b6d16ecd3b4,
0xa57ea85ae8775219,
0x429d_5f3a_c3a3_b759,
0xb10f_4c66_768b_1c92,
0x9236_8b6d_16ec_d3b4,
0xa57e_a85a_e877_5219,
]);
for e in expected.chars() {