mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-07-30 20:11:23 +00:00
Merge branch 'develop'
This commit is contained in:
@@ -28,13 +28,19 @@ rand_core = "0.5.1"
|
||||
ripemd160 = { version = "0.8", optional = true }
|
||||
secp256k1 = { version = "=0.15.0", optional = true }
|
||||
sha2 = "0.8"
|
||||
subtle = "2.2.1"
|
||||
|
||||
[dev-dependencies]
|
||||
criterion = "0.3"
|
||||
hex-literal = "0.2"
|
||||
rand_xorshift = "0.2"
|
||||
|
||||
[features]
|
||||
transparent-inputs = ["ripemd160", "secp256k1"]
|
||||
|
||||
[[bench]]
|
||||
name = "pedersen_hash"
|
||||
harness = false
|
||||
|
||||
[badges]
|
||||
maintenance = { status = "actively-developed" }
|
||||
|
@@ -1,17 +1,10 @@
|
||||
#![feature(test)]
|
||||
|
||||
extern crate pairing;
|
||||
extern crate rand_core;
|
||||
extern crate test;
|
||||
extern crate zcash_primitives;
|
||||
|
||||
use criterion::{criterion_group, criterion_main, Criterion};
|
||||
use pairing::bls12_381::Bls12;
|
||||
use rand_core::{OsRng, RngCore};
|
||||
use zcash_primitives::jubjub::JubjubBls12;
|
||||
use zcash_primitives::pedersen_hash::{pedersen_hash, Personalization};
|
||||
|
||||
#[bench]
|
||||
fn bench_pedersen_hash(b: &mut test::Bencher) {
|
||||
fn bench_pedersen_hash(c: &mut Criterion) {
|
||||
let params = JubjubBls12::new();
|
||||
let rng = &mut OsRng;
|
||||
let bits = (0..510)
|
||||
@@ -19,5 +12,10 @@ fn bench_pedersen_hash(b: &mut test::Bencher) {
|
||||
.collect::<Vec<_>>();
|
||||
let personalization = Personalization::MerkleTree(31);
|
||||
|
||||
b.iter(|| pedersen_hash::<Bls12, _>(personalization, bits.clone(), ¶ms));
|
||||
c.bench_function("Pedersen hash", |b| {
|
||||
b.iter(|| pedersen_hash::<Bls12, _>(personalization, bits.clone(), ¶ms))
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(benches, bench_pedersen_hash);
|
||||
criterion_main!(benches);
|
||||
|
@@ -1,4 +1,6 @@
|
||||
use ff::{BitIterator, Field, PrimeField, PrimeFieldRepr, SqrtField};
|
||||
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
|
||||
use subtle::CtOption;
|
||||
|
||||
use super::{montgomery, JubjubEngine, JubjubParams, PrimeOrder, Unknown};
|
||||
|
||||
@@ -89,8 +91,14 @@ impl<E: JubjubEngine> Point<E, Unknown> {
|
||||
y_repr.as_mut()[3] &= 0x7fffffffffffffff;
|
||||
|
||||
match E::Fr::from_repr(y_repr) {
|
||||
Ok(y) => Self::get_for_y(y, x_sign, params)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidInput, "not on curve")),
|
||||
Ok(y) => {
|
||||
let p = Self::get_for_y(y, x_sign, params);
|
||||
if bool::from(p.is_some()) {
|
||||
Ok(p.unwrap())
|
||||
} else {
|
||||
Err(io::Error::new(io::ErrorKind::InvalidInput, "not on curve"))
|
||||
}
|
||||
}
|
||||
Err(_) => Err(io::Error::new(
|
||||
io::ErrorKind::InvalidInput,
|
||||
"y is not in field",
|
||||
@@ -98,14 +106,13 @@ impl<E: JubjubEngine> Point<E, Unknown> {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_for_y(y: E::Fr, sign: bool, params: &E::Params) -> Option<Self> {
|
||||
pub fn get_for_y(y: E::Fr, sign: bool, params: &E::Params) -> CtOption<Self> {
|
||||
// Given a y on the curve, x^2 = (y^2 - 1) / (dy^2 + 1)
|
||||
// This is defined for all valid y-coordinates,
|
||||
// as dy^2 + 1 = 0 has no solution in Fr.
|
||||
|
||||
// tmp1 = y^2
|
||||
let mut tmp1 = y;
|
||||
tmp1.square();
|
||||
let mut tmp1 = y.square();
|
||||
|
||||
// tmp2 = (y^2 * d) + 1
|
||||
let mut tmp2 = tmp1;
|
||||
@@ -115,33 +122,27 @@ impl<E: JubjubEngine> Point<E, Unknown> {
|
||||
// tmp1 = y^2 - 1
|
||||
tmp1.sub_assign(&E::Fr::one());
|
||||
|
||||
match tmp2.inverse() {
|
||||
Some(tmp2) => {
|
||||
// tmp1 = (y^2 - 1) / (dy^2 + 1)
|
||||
tmp1.mul_assign(&tmp2);
|
||||
tmp2.invert().and_then(|tmp2| {
|
||||
// tmp1 = (y^2 - 1) / (dy^2 + 1)
|
||||
tmp1.mul_assign(&tmp2);
|
||||
|
||||
match tmp1.sqrt() {
|
||||
Some(mut x) => {
|
||||
if x.into_repr().is_odd() != sign {
|
||||
x.negate();
|
||||
}
|
||||
|
||||
let mut t = x;
|
||||
t.mul_assign(&y);
|
||||
|
||||
Some(Point {
|
||||
x,
|
||||
y,
|
||||
t,
|
||||
z: E::Fr::one(),
|
||||
_marker: PhantomData,
|
||||
})
|
||||
}
|
||||
None => None,
|
||||
tmp1.sqrt().map(|mut x| {
|
||||
if x.into_repr().is_odd() != sign {
|
||||
x = x.neg();
|
||||
}
|
||||
}
|
||||
None => None,
|
||||
}
|
||||
|
||||
let mut t = x;
|
||||
t.mul_assign(&y);
|
||||
|
||||
Point {
|
||||
x,
|
||||
y,
|
||||
t,
|
||||
z: E::Fr::one(),
|
||||
_marker: PhantomData,
|
||||
}
|
||||
})
|
||||
})
|
||||
}
|
||||
|
||||
/// This guarantees the point is in the prime order subgroup
|
||||
@@ -157,8 +158,9 @@ impl<E: JubjubEngine> Point<E, Unknown> {
|
||||
let y = E::Fr::random(rng);
|
||||
let sign = rng.next_u32() % 2 != 0;
|
||||
|
||||
if let Some(p) = Self::get_for_y(y, sign, params) {
|
||||
return p;
|
||||
let p = Self::get_for_y(y, sign, params);
|
||||
if bool::from(p.is_some()) {
|
||||
return p.unwrap();
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -210,12 +212,9 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
// only point of order 2 that is not the neutral element.
|
||||
if y.is_zero() {
|
||||
// This must be the point (0, 0) as above.
|
||||
let mut neg1 = E::Fr::one();
|
||||
neg1.negate();
|
||||
|
||||
Point {
|
||||
x: E::Fr::zero(),
|
||||
y: neg1,
|
||||
y: E::Fr::one().neg(),
|
||||
t: E::Fr::zero(),
|
||||
z: E::Fr::one(),
|
||||
_marker: PhantomData,
|
||||
@@ -306,7 +305,7 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
|
||||
/// Convert to affine coordinates
|
||||
pub fn to_xy(&self) -> (E::Fr, E::Fr) {
|
||||
let zinv = self.z.inverse().unwrap();
|
||||
let zinv = self.z.invert().unwrap();
|
||||
|
||||
let mut x = self.x;
|
||||
x.mul_assign(&zinv);
|
||||
@@ -321,8 +320,8 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
pub fn negate(&self) -> Self {
|
||||
let mut p = self.clone();
|
||||
|
||||
p.x.negate();
|
||||
p.t.negate();
|
||||
p.x = p.x.neg();
|
||||
p.t = p.t.neg();
|
||||
|
||||
p
|
||||
}
|
||||
@@ -335,27 +334,22 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
// http://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#doubling-dbl-2008-hwcd
|
||||
|
||||
// A = X1^2
|
||||
let mut a = self.x;
|
||||
a.square();
|
||||
let a = self.x.square();
|
||||
|
||||
// B = Y1^2
|
||||
let mut b = self.y;
|
||||
b.square();
|
||||
let b = self.y.square();
|
||||
|
||||
// C = 2*Z1^2
|
||||
let mut c = self.z;
|
||||
c.square();
|
||||
c.double();
|
||||
let c = self.z.square().double();
|
||||
|
||||
// D = a*A
|
||||
// = -A
|
||||
let mut d = a;
|
||||
d.negate();
|
||||
let d = a.neg();
|
||||
|
||||
// E = (X1+Y1)^2 - A - B
|
||||
let mut e = self.x;
|
||||
e.add_assign(&self.y);
|
||||
e.square();
|
||||
e = e.square();
|
||||
e.add_assign(&d); // -A = D
|
||||
e.sub_assign(&b);
|
||||
|
||||
|
@@ -1,10 +1,11 @@
|
||||
use byteorder::{ByteOrder, LittleEndian};
|
||||
use ff::{
|
||||
adc, mac_with_carry, sbb, BitIterator, Field,
|
||||
LegendreSymbol::{self, *},
|
||||
PrimeField, PrimeFieldDecodingError, PrimeFieldRepr, SqrtField,
|
||||
adc, mac_with_carry, sbb, BitIterator, Field, PrimeField, PrimeFieldDecodingError,
|
||||
PrimeFieldRepr, SqrtField,
|
||||
};
|
||||
use rand_core::RngCore;
|
||||
use std::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
|
||||
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
|
||||
|
||||
use super::ToUniform;
|
||||
|
||||
@@ -256,6 +257,21 @@ impl PrimeFieldRepr for FsRepr {
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
||||
pub struct Fs(FsRepr);
|
||||
|
||||
impl Default for Fs {
|
||||
fn default() -> Self {
|
||||
Fs::zero()
|
||||
}
|
||||
}
|
||||
|
||||
impl ConstantTimeEq for Fs {
|
||||
fn ct_eq(&self, other: &Fs) -> Choice {
|
||||
(self.0).0[0].ct_eq(&(other.0).0[0])
|
||||
& (self.0).0[1].ct_eq(&(other.0).0[1])
|
||||
& (self.0).0[2].ct_eq(&(other.0).0[2])
|
||||
& (self.0).0[3].ct_eq(&(other.0).0[3])
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::fmt::Display for Fs {
|
||||
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
|
||||
write!(f, "Fs({})", self.into_repr())
|
||||
@@ -268,6 +284,166 @@ impl From<Fs> for FsRepr {
|
||||
}
|
||||
}
|
||||
|
||||
impl ConditionallySelectable for Fs {
|
||||
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
|
||||
Fs(FsRepr([
|
||||
u64::conditional_select(&(a.0).0[0], &(b.0).0[0], choice),
|
||||
u64::conditional_select(&(a.0).0[1], &(b.0).0[1], choice),
|
||||
u64::conditional_select(&(a.0).0[2], &(b.0).0[2], choice),
|
||||
u64::conditional_select(&(a.0).0[3], &(b.0).0[3], choice),
|
||||
]))
|
||||
}
|
||||
}
|
||||
|
||||
impl Neg for Fs {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn neg(mut self) -> Self {
|
||||
if !self.is_zero() {
|
||||
let mut tmp = MODULUS;
|
||||
tmp.sub_noborrow(&self.0);
|
||||
self.0 = tmp;
|
||||
}
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> Add<&'r Fs> for Fs {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn add(self, other: &Self) -> Self {
|
||||
let mut ret = self;
|
||||
ret.add_assign(other);
|
||||
ret
|
||||
}
|
||||
}
|
||||
|
||||
impl Add for Fs {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn add(self, other: Self) -> Self {
|
||||
self + &other
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> AddAssign<&'r Fs> for Fs {
|
||||
#[inline]
|
||||
fn add_assign(&mut self, other: &Self) {
|
||||
// This cannot exceed the backing capacity.
|
||||
self.0.add_nocarry(&other.0);
|
||||
|
||||
// However, it may need to be reduced.
|
||||
self.reduce();
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign for Fs {
|
||||
#[inline]
|
||||
fn add_assign(&mut self, other: Self) {
|
||||
self.add_assign(&other);
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> Sub<&'r Fs> for Fs {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, other: &Self) -> Self {
|
||||
let mut ret = self;
|
||||
ret.sub_assign(other);
|
||||
ret
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub for Fs {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, other: Self) -> Self {
|
||||
self - &other
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> SubAssign<&'r Fs> for Fs {
|
||||
#[inline]
|
||||
fn sub_assign(&mut self, other: &Self) {
|
||||
// If `other` is larger than `self`, we'll need to add the modulus to self first.
|
||||
if other.0 > self.0 {
|
||||
self.0.add_nocarry(&MODULUS);
|
||||
}
|
||||
|
||||
self.0.sub_noborrow(&other.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign for Fs {
|
||||
#[inline]
|
||||
fn sub_assign(&mut self, other: Self) {
|
||||
self.sub_assign(&other);
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> Mul<&'r Fs> for Fs {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, other: &Self) -> Self {
|
||||
let mut ret = self;
|
||||
ret.mul_assign(other);
|
||||
ret
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul for Fs {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, other: Self) -> Self {
|
||||
self * &other
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> MulAssign<&'r Fs> for Fs {
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, other: &Self) {
|
||||
let mut carry = 0;
|
||||
let r0 = mac_with_carry(0, (self.0).0[0], (other.0).0[0], &mut carry);
|
||||
let r1 = mac_with_carry(0, (self.0).0[0], (other.0).0[1], &mut carry);
|
||||
let r2 = mac_with_carry(0, (self.0).0[0], (other.0).0[2], &mut carry);
|
||||
let r3 = mac_with_carry(0, (self.0).0[0], (other.0).0[3], &mut carry);
|
||||
let r4 = carry;
|
||||
let mut carry = 0;
|
||||
let r1 = mac_with_carry(r1, (self.0).0[1], (other.0).0[0], &mut carry);
|
||||
let r2 = mac_with_carry(r2, (self.0).0[1], (other.0).0[1], &mut carry);
|
||||
let r3 = mac_with_carry(r3, (self.0).0[1], (other.0).0[2], &mut carry);
|
||||
let r4 = mac_with_carry(r4, (self.0).0[1], (other.0).0[3], &mut carry);
|
||||
let r5 = carry;
|
||||
let mut carry = 0;
|
||||
let r2 = mac_with_carry(r2, (self.0).0[2], (other.0).0[0], &mut carry);
|
||||
let r3 = mac_with_carry(r3, (self.0).0[2], (other.0).0[1], &mut carry);
|
||||
let r4 = mac_with_carry(r4, (self.0).0[2], (other.0).0[2], &mut carry);
|
||||
let r5 = mac_with_carry(r5, (self.0).0[2], (other.0).0[3], &mut carry);
|
||||
let r6 = carry;
|
||||
let mut carry = 0;
|
||||
let r3 = mac_with_carry(r3, (self.0).0[3], (other.0).0[0], &mut carry);
|
||||
let r4 = mac_with_carry(r4, (self.0).0[3], (other.0).0[1], &mut carry);
|
||||
let r5 = mac_with_carry(r5, (self.0).0[3], (other.0).0[2], &mut carry);
|
||||
let r6 = mac_with_carry(r6, (self.0).0[3], (other.0).0[3], &mut carry);
|
||||
let r7 = carry;
|
||||
self.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7);
|
||||
}
|
||||
}
|
||||
|
||||
impl MulAssign for Fs {
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, other: Self) {
|
||||
self.mul_assign(&other);
|
||||
}
|
||||
}
|
||||
|
||||
impl PrimeField for Fs {
|
||||
type Repr = FsRepr;
|
||||
|
||||
@@ -278,7 +454,7 @@ impl PrimeField for Fs {
|
||||
|
||||
Ok(r)
|
||||
} else {
|
||||
Err(PrimeFieldDecodingError::NotInField(format!("{}", r.0)))
|
||||
Err(PrimeFieldDecodingError::NotInField)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -352,45 +528,23 @@ impl Field for Fs {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn add_assign(&mut self, other: &Fs) {
|
||||
fn double(&self) -> Self {
|
||||
let mut ret = *self;
|
||||
|
||||
// This cannot exceed the backing capacity.
|
||||
self.0.add_nocarry(&other.0);
|
||||
ret.0.mul2();
|
||||
|
||||
// However, it may need to be reduced.
|
||||
self.reduce();
|
||||
ret.reduce();
|
||||
|
||||
ret
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn double(&mut self) {
|
||||
// This cannot exceed the backing capacity.
|
||||
self.0.mul2();
|
||||
|
||||
// However, it may need to be reduced.
|
||||
self.reduce();
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn sub_assign(&mut self, other: &Fs) {
|
||||
// If `other` is larger than `self`, we'll need to add the modulus to self first.
|
||||
if other.0 > self.0 {
|
||||
self.0.add_nocarry(&MODULUS);
|
||||
}
|
||||
|
||||
self.0.sub_noborrow(&other.0);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn negate(&mut self) {
|
||||
if !self.is_zero() {
|
||||
let mut tmp = MODULUS;
|
||||
tmp.sub_noborrow(&self.0);
|
||||
self.0 = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
fn inverse(&self) -> Option<Self> {
|
||||
/// WARNING: THIS IS NOT ACTUALLY CONSTANT TIME YET!
|
||||
/// THIS WILL BE REPLACED BY THE jubjub CRATE, WHICH IS CONSTANT TIME!
|
||||
fn invert(&self) -> CtOption<Self> {
|
||||
if self.is_zero() {
|
||||
None
|
||||
CtOption::new(Self::zero(), Choice::from(0))
|
||||
} else {
|
||||
// Guajardo Kumar Paar Pelzl
|
||||
// Efficient Software-Implementation of Finite Fields with Applications to Cryptography
|
||||
@@ -436,9 +590,9 @@ impl Field for Fs {
|
||||
}
|
||||
|
||||
if u == one {
|
||||
Some(b)
|
||||
CtOption::new(b, Choice::from(1))
|
||||
} else {
|
||||
Some(c)
|
||||
CtOption::new(c, Choice::from(1))
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -449,36 +603,7 @@ impl Field for Fs {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, other: &Fs) {
|
||||
let mut carry = 0;
|
||||
let r0 = mac_with_carry(0, (self.0).0[0], (other.0).0[0], &mut carry);
|
||||
let r1 = mac_with_carry(0, (self.0).0[0], (other.0).0[1], &mut carry);
|
||||
let r2 = mac_with_carry(0, (self.0).0[0], (other.0).0[2], &mut carry);
|
||||
let r3 = mac_with_carry(0, (self.0).0[0], (other.0).0[3], &mut carry);
|
||||
let r4 = carry;
|
||||
let mut carry = 0;
|
||||
let r1 = mac_with_carry(r1, (self.0).0[1], (other.0).0[0], &mut carry);
|
||||
let r2 = mac_with_carry(r2, (self.0).0[1], (other.0).0[1], &mut carry);
|
||||
let r3 = mac_with_carry(r3, (self.0).0[1], (other.0).0[2], &mut carry);
|
||||
let r4 = mac_with_carry(r4, (self.0).0[1], (other.0).0[3], &mut carry);
|
||||
let r5 = carry;
|
||||
let mut carry = 0;
|
||||
let r2 = mac_with_carry(r2, (self.0).0[2], (other.0).0[0], &mut carry);
|
||||
let r3 = mac_with_carry(r3, (self.0).0[2], (other.0).0[1], &mut carry);
|
||||
let r4 = mac_with_carry(r4, (self.0).0[2], (other.0).0[2], &mut carry);
|
||||
let r5 = mac_with_carry(r5, (self.0).0[2], (other.0).0[3], &mut carry);
|
||||
let r6 = carry;
|
||||
let mut carry = 0;
|
||||
let r3 = mac_with_carry(r3, (self.0).0[3], (other.0).0[0], &mut carry);
|
||||
let r4 = mac_with_carry(r4, (self.0).0[3], (other.0).0[1], &mut carry);
|
||||
let r5 = mac_with_carry(r5, (self.0).0[3], (other.0).0[2], &mut carry);
|
||||
let r6 = mac_with_carry(r6, (self.0).0[3], (other.0).0[3], &mut carry);
|
||||
let r7 = carry;
|
||||
self.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn square(&mut self) {
|
||||
fn square(&self) -> Self {
|
||||
let mut carry = 0;
|
||||
let r1 = mac_with_carry(0, (self.0).0[0], (self.0).0[1], &mut carry);
|
||||
let r2 = mac_with_carry(0, (self.0).0[0], (self.0).0[2], &mut carry);
|
||||
@@ -509,7 +634,10 @@ impl Field for Fs {
|
||||
let r5 = adc(r5, 0, &mut carry);
|
||||
let r6 = mac_with_carry(r6, (self.0).0[3], (self.0).0[3], &mut carry);
|
||||
let r7 = adc(r7, 0, &mut carry);
|
||||
self.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7);
|
||||
|
||||
let mut ret = *self;
|
||||
ret.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7);
|
||||
ret
|
||||
}
|
||||
}
|
||||
|
||||
@@ -587,7 +715,7 @@ impl Fs {
|
||||
fn mul_bits<S: AsRef<[u64]>>(&self, bits: BitIterator<S>) -> Self {
|
||||
let mut res = Self::zero();
|
||||
for bit in bits {
|
||||
res.double();
|
||||
res = res.double();
|
||||
|
||||
if bit {
|
||||
res.add_assign(self)
|
||||
@@ -611,51 +739,28 @@ impl ToUniform for Fs {
|
||||
}
|
||||
|
||||
impl SqrtField for Fs {
|
||||
fn legendre(&self) -> LegendreSymbol {
|
||||
// s = self^((s - 1) // 2)
|
||||
let s = self.pow([
|
||||
0x684b872f6b7b965b,
|
||||
0x53341049e6640841,
|
||||
0x83339d80809a1d80,
|
||||
0x73eda753299d7d4,
|
||||
]);
|
||||
if s == Self::zero() {
|
||||
Zero
|
||||
} else if s == Self::one() {
|
||||
QuadraticResidue
|
||||
} else {
|
||||
QuadraticNonResidue
|
||||
}
|
||||
}
|
||||
|
||||
fn sqrt(&self) -> Option<Self> {
|
||||
fn sqrt(&self) -> CtOption<Self> {
|
||||
// Shank's algorithm for s mod 4 = 3
|
||||
// https://eprint.iacr.org/2012/685.pdf (page 9, algorithm 2)
|
||||
|
||||
// a1 = self^((s - 3) // 4)
|
||||
let mut a1 = self.pow([
|
||||
let mut a1 = self.pow_vartime([
|
||||
0xb425c397b5bdcb2d,
|
||||
0x299a0824f3320420,
|
||||
0x4199cec0404d0ec0,
|
||||
0x39f6d3a994cebea,
|
||||
]);
|
||||
let mut a0 = a1;
|
||||
a0.square();
|
||||
let mut a0 = a1.square();
|
||||
a0.mul_assign(self);
|
||||
a1.mul_assign(self);
|
||||
|
||||
if a0 == NEGATIVE_ONE {
|
||||
None
|
||||
} else {
|
||||
a1.mul_assign(self);
|
||||
Some(a1)
|
||||
}
|
||||
CtOption::new(a1, !a0.ct_eq(&NEGATIVE_ONE))
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_neg_one() {
|
||||
let mut o = Fs::one();
|
||||
o.negate();
|
||||
let o = Fs::one().neg();
|
||||
|
||||
assert_eq!(NEGATIVE_ONE, o);
|
||||
}
|
||||
@@ -907,27 +1012,6 @@ fn test_fs_repr_sub_noborrow() {
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fs_legendre() {
|
||||
assert_eq!(QuadraticResidue, Fs::one().legendre());
|
||||
assert_eq!(Zero, Fs::zero().legendre());
|
||||
|
||||
let e = FsRepr([
|
||||
0x8385eec23df1f88e,
|
||||
0x9a01fb412b2dba16,
|
||||
0x4c928edcdd6c22f,
|
||||
0x9f2df7ef69ecef9,
|
||||
]);
|
||||
assert_eq!(QuadraticResidue, Fs::from_repr(e).unwrap().legendre());
|
||||
let e = FsRepr([
|
||||
0xe8ed9f299da78568,
|
||||
0x35efdebc88b2209,
|
||||
0xc82125cb1f916dbe,
|
||||
0x6813d2b38c39bd0,
|
||||
]);
|
||||
assert_eq!(QuadraticNonResidue, Fs::from_repr(e).unwrap().legendre());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fr_repr_add_nocarry() {
|
||||
let mut rng = XorShiftRng::from_seed([
|
||||
@@ -1307,16 +1391,15 @@ fn test_fs_mul_assign() {
|
||||
|
||||
#[test]
|
||||
fn test_fr_squaring() {
|
||||
let mut a = Fs(FsRepr([
|
||||
let a = Fs(FsRepr([
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xe7db4ea6533afa8,
|
||||
]));
|
||||
assert!(a.is_valid());
|
||||
a.square();
|
||||
assert_eq!(
|
||||
a,
|
||||
a.square(),
|
||||
Fs::from_repr(FsRepr([
|
||||
0x12c7f55cbc52fbaa,
|
||||
0xdedc98a0b5e6ce9e,
|
||||
@@ -1335,8 +1418,7 @@ fn test_fr_squaring() {
|
||||
// Ensure that (a * a) = a^2
|
||||
let a = Fs::random(&mut rng);
|
||||
|
||||
let mut tmp = a;
|
||||
tmp.square();
|
||||
let tmp = a.square();
|
||||
|
||||
let mut tmp2 = a;
|
||||
tmp2.mul_assign(&a);
|
||||
@@ -1346,8 +1428,8 @@ fn test_fr_squaring() {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fs_inverse() {
|
||||
assert!(Fs::zero().inverse().is_none());
|
||||
fn test_fs_invert() {
|
||||
assert!(bool::from(Fs::zero().invert().is_none()));
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([
|
||||
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
|
||||
@@ -1359,7 +1441,7 @@ fn test_fs_inverse() {
|
||||
for _ in 0..1000 {
|
||||
// Ensure that a * a^-1 = 1
|
||||
let mut a = Fs::random(&mut rng);
|
||||
let ainv = a.inverse().unwrap();
|
||||
let ainv = a.invert().unwrap();
|
||||
a.mul_assign(&ainv);
|
||||
assert_eq!(a, one);
|
||||
}
|
||||
@@ -1374,19 +1456,15 @@ fn test_fs_double() {
|
||||
|
||||
for _ in 0..1000 {
|
||||
// Ensure doubling a is equivalent to adding a to itself.
|
||||
let mut a = Fs::random(&mut rng);
|
||||
let mut b = a;
|
||||
b.add_assign(&a);
|
||||
a.double();
|
||||
assert_eq!(a, b);
|
||||
let a = Fs::random(&mut rng);
|
||||
assert_eq!(a.double(), a + a);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fs_negate() {
|
||||
fn test_fs_neg() {
|
||||
{
|
||||
let mut a = Fs::zero();
|
||||
a.negate();
|
||||
let a = Fs::zero().neg();
|
||||
|
||||
assert!(a.is_zero());
|
||||
}
|
||||
@@ -1399,8 +1477,7 @@ fn test_fs_negate() {
|
||||
for _ in 0..1000 {
|
||||
// Ensure (a - (-a)) = 0.
|
||||
let mut a = Fs::random(&mut rng);
|
||||
let mut b = a;
|
||||
b.negate();
|
||||
let b = a.neg();
|
||||
a.add_assign(&b);
|
||||
|
||||
assert!(a.is_zero());
|
||||
@@ -1418,7 +1495,7 @@ fn test_fs_pow() {
|
||||
// Exponentiate by various small numbers and ensure it consists with repeated
|
||||
// multiplication.
|
||||
let a = Fs::random(&mut rng);
|
||||
let target = a.pow(&[i]);
|
||||
let target = a.pow_vartime(&[i]);
|
||||
let mut c = Fs::one();
|
||||
for _ in 0..i {
|
||||
c.mul_assign(&a);
|
||||
@@ -1430,7 +1507,7 @@ fn test_fs_pow() {
|
||||
// Exponentiating by the modulus should have no effect in a prime field.
|
||||
let a = Fs::random(&mut rng);
|
||||
|
||||
assert_eq!(a, a.pow(Fs::char()));
|
||||
assert_eq!(a, a.pow_vartime(Fs::char()));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1446,10 +1523,8 @@ fn test_fs_sqrt() {
|
||||
for _ in 0..1000 {
|
||||
// Ensure sqrt(a^2) = a or -a
|
||||
let a = Fs::random(&mut rng);
|
||||
let mut nega = a;
|
||||
nega.negate();
|
||||
let mut b = a;
|
||||
b.square();
|
||||
let nega = a.neg();
|
||||
let b = a.square();
|
||||
|
||||
let b = b.sqrt().unwrap();
|
||||
|
||||
@@ -1460,10 +1535,9 @@ fn test_fs_sqrt() {
|
||||
// Ensure sqrt(a)^2 = a for random a
|
||||
let a = Fs::random(&mut rng);
|
||||
|
||||
if let Some(mut tmp) = a.sqrt() {
|
||||
tmp.square();
|
||||
|
||||
assert_eq!(a, tmp);
|
||||
let tmp = a.sqrt();
|
||||
if tmp.is_some().into() {
|
||||
assert_eq!(a, tmp.unwrap().square());
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1614,7 +1688,7 @@ fn test_fs_root_of_unity() {
|
||||
Fs::from_repr(FsRepr::from(6)).unwrap()
|
||||
);
|
||||
assert_eq!(
|
||||
Fs::multiplicative_generator().pow([
|
||||
Fs::multiplicative_generator().pow_vartime([
|
||||
0x684b872f6b7b965b,
|
||||
0x53341049e6640841,
|
||||
0x83339d80809a1d80,
|
||||
@@ -1622,6 +1696,6 @@ fn test_fs_root_of_unity() {
|
||||
]),
|
||||
Fs::root_of_unity()
|
||||
);
|
||||
assert_eq!(Fs::root_of_unity().pow([1 << Fs::S]), Fs::one());
|
||||
assert!(Fs::multiplicative_generator().sqrt().is_none());
|
||||
assert_eq!(Fs::root_of_unity().pow_vartime([1 << Fs::S]), Fs::one());
|
||||
assert!(bool::from(Fs::multiplicative_generator().sqrt().is_none()));
|
||||
}
|
||||
|
@@ -195,8 +195,7 @@ impl JubjubParams<Bls12> for JubjubBls12 {
|
||||
impl JubjubBls12 {
|
||||
pub fn new() -> Self {
|
||||
let montgomery_a = Fr::from_str("40962").unwrap();
|
||||
let mut montgomery_2a = montgomery_a;
|
||||
montgomery_2a.double();
|
||||
let montgomery_2a = montgomery_a.double();
|
||||
|
||||
let mut tmp_params = JubjubBls12 {
|
||||
// d = -(10240/10241)
|
||||
|
@@ -1,4 +1,6 @@
|
||||
use ff::{BitIterator, Field, PrimeField, PrimeFieldRepr, SqrtField};
|
||||
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
|
||||
use subtle::CtOption;
|
||||
|
||||
use super::{edwards, JubjubEngine, JubjubParams, PrimeOrder, Unknown};
|
||||
|
||||
@@ -46,11 +48,10 @@ impl<E: JubjubEngine, Subgroup> PartialEq for Point<E, Subgroup> {
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> Point<E, Unknown> {
|
||||
pub fn get_for_x(x: E::Fr, sign: bool, params: &E::Params) -> Option<Self> {
|
||||
pub fn get_for_x(x: E::Fr, sign: bool, params: &E::Params) -> CtOption<Self> {
|
||||
// Given an x on the curve, y = sqrt(x^3 + A*x^2 + x)
|
||||
|
||||
let mut x2 = x;
|
||||
x2.square();
|
||||
let mut x2 = x.square();
|
||||
|
||||
let mut rhs = x2;
|
||||
rhs.mul_assign(params.montgomery_a());
|
||||
@@ -58,21 +59,18 @@ impl<E: JubjubEngine> Point<E, Unknown> {
|
||||
x2.mul_assign(&x);
|
||||
rhs.add_assign(&x2);
|
||||
|
||||
match rhs.sqrt() {
|
||||
Some(mut y) => {
|
||||
if y.into_repr().is_odd() != sign {
|
||||
y.negate();
|
||||
}
|
||||
|
||||
Some(Point {
|
||||
x,
|
||||
y,
|
||||
infinity: false,
|
||||
_marker: PhantomData,
|
||||
})
|
||||
rhs.sqrt().map(|mut y| {
|
||||
if y.into_repr().is_odd() != sign {
|
||||
y = y.neg();
|
||||
}
|
||||
None => None,
|
||||
}
|
||||
|
||||
Point {
|
||||
x,
|
||||
y,
|
||||
infinity: false,
|
||||
_marker: PhantomData,
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
/// This guarantees the point is in the prime order subgroup
|
||||
@@ -88,8 +86,9 @@ impl<E: JubjubEngine> Point<E, Unknown> {
|
||||
let x = E::Fr::random(rng);
|
||||
let sign = rng.next_u32() % 2 != 0;
|
||||
|
||||
if let Some(p) = Self::get_for_x(x, sign, params) {
|
||||
return p;
|
||||
let p = Self::get_for_x(x, sign, params);
|
||||
if p.is_some().into() {
|
||||
return p.unwrap();
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -139,11 +138,11 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
{
|
||||
let mut tmp = E::Fr::one();
|
||||
tmp.sub_assign(&y);
|
||||
u.mul_assign(&tmp.inverse().unwrap())
|
||||
u.mul_assign(&tmp.invert().unwrap())
|
||||
}
|
||||
|
||||
let mut v = u;
|
||||
v.mul_assign(&x.inverse().unwrap());
|
||||
v.mul_assign(&x.invert().unwrap());
|
||||
|
||||
// Scale it into the correct curve constants
|
||||
v.mul_assign(params.scale());
|
||||
@@ -189,7 +188,7 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
pub fn negate(&self) -> Self {
|
||||
let mut p = self.clone();
|
||||
|
||||
p.y.negate();
|
||||
p.y = p.y.neg();
|
||||
|
||||
p
|
||||
}
|
||||
@@ -215,24 +214,22 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
{
|
||||
let mut tmp = *params.montgomery_a();
|
||||
tmp.mul_assign(&self.x);
|
||||
tmp.double();
|
||||
tmp = tmp.double();
|
||||
delta.add_assign(&tmp);
|
||||
}
|
||||
{
|
||||
let mut tmp = self.x;
|
||||
tmp.square();
|
||||
let mut tmp = self.x.square();
|
||||
delta.add_assign(&tmp);
|
||||
tmp.double();
|
||||
tmp = tmp.double();
|
||||
delta.add_assign(&tmp);
|
||||
}
|
||||
{
|
||||
let mut tmp = self.y;
|
||||
tmp.double();
|
||||
delta.mul_assign(&tmp.inverse().expect("y is nonzero so this must be nonzero"));
|
||||
let tmp = self.y.double();
|
||||
// y is nonzero so this must be nonzero
|
||||
delta.mul_assign(&tmp.invert().unwrap());
|
||||
}
|
||||
|
||||
let mut x3 = delta;
|
||||
x3.square();
|
||||
let mut x3 = delta.square();
|
||||
x3.sub_assign(params.montgomery_a());
|
||||
x3.sub_assign(&self.x);
|
||||
x3.sub_assign(&self.x);
|
||||
@@ -241,7 +238,7 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
y3.sub_assign(&self.x);
|
||||
y3.mul_assign(&delta);
|
||||
y3.add_assign(&self.y);
|
||||
y3.negate();
|
||||
y3 = y3.neg();
|
||||
|
||||
Point {
|
||||
x: x3,
|
||||
@@ -275,14 +272,11 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
{
|
||||
let mut tmp = other.x;
|
||||
tmp.sub_assign(&self.x);
|
||||
delta.mul_assign(
|
||||
&tmp.inverse()
|
||||
.expect("self.x != other.x, so this must be nonzero"),
|
||||
);
|
||||
// self.x != other.x, so this must be nonzero
|
||||
delta.mul_assign(&tmp.invert().unwrap());
|
||||
}
|
||||
|
||||
let mut x3 = delta;
|
||||
x3.square();
|
||||
let mut x3 = delta.square();
|
||||
x3.sub_assign(params.montgomery_a());
|
||||
x3.sub_assign(&self.x);
|
||||
x3.sub_assign(&other.x);
|
||||
@@ -291,7 +285,7 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
y3.sub_assign(&self.x);
|
||||
y3.mul_assign(&delta);
|
||||
y3.add_assign(&self.y);
|
||||
y3.negate();
|
||||
y3 = y3.neg();
|
||||
|
||||
Point {
|
||||
x: x3,
|
||||
|
@@ -1,6 +1,7 @@
|
||||
use super::{edwards, montgomery, JubjubEngine, JubjubParams, PrimeOrder};
|
||||
|
||||
use ff::{Field, LegendreSymbol, PrimeField, PrimeFieldRepr, SqrtField};
|
||||
use ff::{Field, PrimeField, PrimeFieldRepr, SqrtField};
|
||||
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
|
||||
|
||||
use rand_core::{RngCore, SeedableRng};
|
||||
use rand_xorshift::XorShiftRng;
|
||||
@@ -19,11 +20,9 @@ pub fn test_suite<E: JubjubEngine>(params: &E::Params) {
|
||||
}
|
||||
|
||||
fn is_on_mont_curve<E: JubjubEngine, P: JubjubParams<E>>(x: E::Fr, y: E::Fr, params: &P) -> bool {
|
||||
let mut lhs = y;
|
||||
lhs.square();
|
||||
let lhs = y.square();
|
||||
|
||||
let mut x2 = x;
|
||||
x2.square();
|
||||
let x2 = x.square();
|
||||
|
||||
let mut x3 = x2;
|
||||
x3.mul_assign(&x);
|
||||
@@ -41,11 +40,9 @@ fn is_on_twisted_edwards_curve<E: JubjubEngine, P: JubjubParams<E>>(
|
||||
y: E::Fr,
|
||||
params: &P,
|
||||
) -> bool {
|
||||
let mut x2 = x;
|
||||
x2.square();
|
||||
let x2 = x.square();
|
||||
|
||||
let mut y2 = y;
|
||||
y2.square();
|
||||
let y2 = y.square();
|
||||
|
||||
// -x^2 + y^2
|
||||
let mut lhs = y2;
|
||||
@@ -237,7 +234,9 @@ fn test_get_for<E: JubjubEngine>(params: &E::Params) {
|
||||
let y = E::Fr::random(rng);
|
||||
let sign = rng.next_u32() % 2 == 1;
|
||||
|
||||
if let Some(mut p) = edwards::Point::<E, _>::get_for_y(y, sign, params) {
|
||||
let p = edwards::Point::<E, _>::get_for_y(y, sign, params);
|
||||
if bool::from(p.is_some()) {
|
||||
let mut p = p.unwrap();
|
||||
assert!(p.to_xy().0.into_repr().is_odd() == sign);
|
||||
p = p.negate();
|
||||
assert!(edwards::Point::<E, _>::get_for_y(y, !sign, params).unwrap() == p);
|
||||
@@ -309,23 +308,19 @@ fn test_back_and_forth<E: JubjubEngine>(params: &E::Params) {
|
||||
|
||||
fn test_jubjub_params<E: JubjubEngine>(params: &E::Params) {
|
||||
// a = -1
|
||||
let mut a = E::Fr::one();
|
||||
a.negate();
|
||||
let a = E::Fr::one().neg();
|
||||
|
||||
{
|
||||
// Check that 2A is consistent with A
|
||||
let mut tmp = *params.montgomery_a();
|
||||
tmp.double();
|
||||
|
||||
assert_eq!(&tmp, params.montgomery_2a());
|
||||
assert_eq!(¶ms.montgomery_a().double(), params.montgomery_2a());
|
||||
}
|
||||
|
||||
{
|
||||
// The twisted Edwards addition law is complete when d is nonsquare
|
||||
// and a is square.
|
||||
|
||||
assert!(params.edwards_d().legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
assert!(a.legendre() == LegendreSymbol::QuadraticResidue);
|
||||
assert!(bool::from(params.edwards_d().sqrt().is_none()));
|
||||
assert!(bool::from(a.sqrt().is_some()));
|
||||
}
|
||||
|
||||
{
|
||||
@@ -335,38 +330,37 @@ fn test_jubjub_params<E: JubjubEngine>(params: &E::Params) {
|
||||
let mut tmp = *params.edwards_d();
|
||||
|
||||
// 1 / d is nonsquare
|
||||
assert!(tmp.inverse().unwrap().legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
assert!(bool::from(tmp.invert().unwrap().sqrt().is_none()));
|
||||
|
||||
// tmp = -d
|
||||
tmp.negate();
|
||||
tmp = tmp.neg();
|
||||
|
||||
// -d is nonsquare
|
||||
assert!(tmp.legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
assert!(bool::from(tmp.sqrt().is_none()));
|
||||
|
||||
// 1 / -d is nonsquare
|
||||
assert!(tmp.inverse().unwrap().legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
assert!(bool::from(tmp.invert().unwrap().sqrt().is_none()));
|
||||
}
|
||||
|
||||
{
|
||||
// Check that A^2 - 4 is nonsquare:
|
||||
let mut tmp = params.montgomery_a().clone();
|
||||
tmp.square();
|
||||
let mut tmp = params.montgomery_a().square();
|
||||
tmp.sub_assign(&E::Fr::from_str("4").unwrap());
|
||||
assert!(tmp.legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
assert!(bool::from(tmp.sqrt().is_none()));
|
||||
}
|
||||
|
||||
{
|
||||
// Check that A - 2 is nonsquare:
|
||||
let mut tmp = params.montgomery_a().clone();
|
||||
tmp.sub_assign(&E::Fr::from_str("2").unwrap());
|
||||
assert!(tmp.legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
assert!(bool::from(tmp.sqrt().is_none()));
|
||||
}
|
||||
|
||||
{
|
||||
// Check the validity of the scaling factor
|
||||
let mut tmp = a;
|
||||
tmp.sub_assign(¶ms.edwards_d());
|
||||
tmp = tmp.inverse().unwrap();
|
||||
tmp = tmp.invert().unwrap();
|
||||
tmp.mul_assign(&E::Fr::from_str("4").unwrap());
|
||||
tmp = tmp.sqrt().unwrap();
|
||||
assert_eq!(&tmp, params.scale());
|
||||
|
@@ -2,6 +2,7 @@
|
||||
|
||||
use crate::jubjub::*;
|
||||
use ff::{Field, PrimeField, PrimeFieldRepr};
|
||||
use std::ops::{AddAssign, Neg};
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub enum Personalization {
|
||||
@@ -57,14 +58,14 @@ where
|
||||
if a {
|
||||
tmp.add_assign(&cur);
|
||||
}
|
||||
cur.double(); // 2^1 * cur
|
||||
cur = cur.double(); // 2^1 * cur
|
||||
if b {
|
||||
tmp.add_assign(&cur);
|
||||
}
|
||||
|
||||
// conditionally negate
|
||||
if c {
|
||||
tmp.negate();
|
||||
tmp = tmp.neg();
|
||||
}
|
||||
|
||||
acc.add_assign(&tmp);
|
||||
@@ -74,9 +75,7 @@ where
|
||||
if chunks_remaining == 0 {
|
||||
break;
|
||||
} else {
|
||||
cur.double(); // 2^2 * cur
|
||||
cur.double(); // 2^3 * cur
|
||||
cur.double(); // 2^4 * cur
|
||||
cur = cur.double().double().double(); // 2^4 * cur
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -7,6 +7,7 @@ use crate::jubjub::{edwards::Point, FixedGenerators, JubjubEngine, JubjubParams,
|
||||
use ff::{Field, PrimeField, PrimeFieldRepr};
|
||||
use rand_core::RngCore;
|
||||
use std::io::{self, Read, Write};
|
||||
use std::ops::{AddAssign, MulAssign, Neg};
|
||||
|
||||
use crate::util::hash_to_scalar;
|
||||
|
||||
@@ -188,7 +189,7 @@ pub fn batch_verify<'a, E: JubjubEngine, R: RngCore>(
|
||||
let z = E::Fs::random(rng);
|
||||
|
||||
s.mul_assign(&z);
|
||||
s.negate();
|
||||
s = s.neg();
|
||||
|
||||
r = r.mul(z, params);
|
||||
|
||||
|
@@ -5,9 +5,9 @@
|
||||
use aes::Aes256;
|
||||
use blake2b_simd::Params as Blake2bParams;
|
||||
use byteorder::{ByteOrder, LittleEndian, ReadBytesExt, WriteBytesExt};
|
||||
use ff::Field;
|
||||
use fpe::ff1::{BinaryNumeralString, FF1};
|
||||
use pairing::bls12_381::Bls12;
|
||||
use std::ops::AddAssign;
|
||||
|
||||
use crate::{
|
||||
jubjub::{fs::Fs, FixedGenerators, JubjubEngine, JubjubParams, ToUniform},
|
||||
|
Reference in New Issue
Block a user