mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-01-30 23:42:13 +00:00
Merge pull request #1 from str4d/from-pairing
Migrate curve traits and tests, and WNAF, from pairing
This commit is contained in:
commit
2ffa94f714
@ -1,7 +1,10 @@
|
||||
[package]
|
||||
name = "group"
|
||||
version = "0.0.0"
|
||||
authors = ["Sean Bowe <ewillbefull@gmail.com>"]
|
||||
authors = [
|
||||
"Sean Bowe <ewillbefull@gmail.com>",
|
||||
"Jack Grigg <jack@z.cash>",
|
||||
]
|
||||
license = "MIT/Apache-2.0"
|
||||
|
||||
description = "Elliptic curve group traits and utilities"
|
||||
@ -10,3 +13,5 @@ homepage = "https://github.com/ebfull/group"
|
||||
repository = "https://github.com/ebfull/group"
|
||||
|
||||
[dependencies]
|
||||
ff = "0.4"
|
||||
rand = "0.4"
|
||||
|
196
src/lib.rs
196
src/lib.rs
@ -0,0 +1,196 @@
|
||||
extern crate ff;
|
||||
extern crate rand;
|
||||
|
||||
use ff::{PrimeField, PrimeFieldDecodingError, ScalarEngine, SqrtField};
|
||||
use std::error::Error;
|
||||
use std::fmt;
|
||||
|
||||
pub mod tests;
|
||||
|
||||
mod wnaf;
|
||||
pub use self::wnaf::Wnaf;
|
||||
|
||||
/// Projective representation of an elliptic curve point guaranteed to be
|
||||
/// in the correct prime order subgroup.
|
||||
pub trait CurveProjective:
|
||||
PartialEq
|
||||
+ Eq
|
||||
+ Sized
|
||||
+ Copy
|
||||
+ Clone
|
||||
+ Send
|
||||
+ Sync
|
||||
+ fmt::Debug
|
||||
+ fmt::Display
|
||||
+ rand::Rand
|
||||
+ 'static
|
||||
{
|
||||
type Engine: ScalarEngine<Fr = Self::Scalar>;
|
||||
type Scalar: PrimeField + SqrtField;
|
||||
type Base: SqrtField;
|
||||
type Affine: CurveAffine<Projective = Self, Scalar = Self::Scalar>;
|
||||
|
||||
/// Returns the additive identity.
|
||||
fn zero() -> Self;
|
||||
|
||||
/// Returns a fixed generator of unknown exponent.
|
||||
fn one() -> Self;
|
||||
|
||||
/// Determines if this point is the point at infinity.
|
||||
fn is_zero(&self) -> bool;
|
||||
|
||||
/// Normalizes a slice of projective elements so that
|
||||
/// conversion to affine is cheap.
|
||||
fn batch_normalization(v: &mut [Self]);
|
||||
|
||||
/// Checks if the point is already "normalized" so that
|
||||
/// cheap affine conversion is possible.
|
||||
fn is_normalized(&self) -> bool;
|
||||
|
||||
/// Doubles this element.
|
||||
fn double(&mut self);
|
||||
|
||||
/// Adds another element to this element.
|
||||
fn add_assign(&mut self, other: &Self);
|
||||
|
||||
/// Subtracts another element from this element.
|
||||
fn sub_assign(&mut self, other: &Self) {
|
||||
let mut tmp = *other;
|
||||
tmp.negate();
|
||||
self.add_assign(&tmp);
|
||||
}
|
||||
|
||||
/// Adds an affine element to this element.
|
||||
fn add_assign_mixed(&mut self, other: &Self::Affine);
|
||||
|
||||
/// Negates this element.
|
||||
fn negate(&mut self);
|
||||
|
||||
/// Performs scalar multiplication of this element.
|
||||
fn mul_assign<S: Into<<Self::Scalar as PrimeField>::Repr>>(&mut self, other: S);
|
||||
|
||||
/// Converts this element into its affine representation.
|
||||
fn into_affine(&self) -> Self::Affine;
|
||||
|
||||
/// Recommends a wNAF window table size given a scalar. Always returns a number
|
||||
/// between 2 and 22, inclusive.
|
||||
fn recommended_wnaf_for_scalar(scalar: <Self::Scalar as PrimeField>::Repr) -> usize;
|
||||
|
||||
/// Recommends a wNAF window size given the number of scalars you intend to multiply
|
||||
/// a base by. Always returns a number between 2 and 22, inclusive.
|
||||
fn recommended_wnaf_for_num_scalars(num_scalars: usize) -> usize;
|
||||
}
|
||||
|
||||
/// Affine representation of an elliptic curve point guaranteed to be
|
||||
/// in the correct prime order subgroup.
|
||||
pub trait CurveAffine:
|
||||
Copy + Clone + Sized + Send + Sync + fmt::Debug + fmt::Display + PartialEq + Eq + 'static
|
||||
{
|
||||
type Engine: ScalarEngine<Fr = Self::Scalar>;
|
||||
type Scalar: PrimeField + SqrtField;
|
||||
type Base: SqrtField;
|
||||
type Projective: CurveProjective<Affine = Self, Scalar = Self::Scalar>;
|
||||
type Uncompressed: EncodedPoint<Affine = Self>;
|
||||
type Compressed: EncodedPoint<Affine = Self>;
|
||||
|
||||
/// Returns the additive identity.
|
||||
fn zero() -> Self;
|
||||
|
||||
/// Returns a fixed generator of unknown exponent.
|
||||
fn one() -> Self;
|
||||
|
||||
/// Determines if this point represents the point at infinity; the
|
||||
/// additive identity.
|
||||
fn is_zero(&self) -> bool;
|
||||
|
||||
/// Negates this element.
|
||||
fn negate(&mut self);
|
||||
|
||||
/// Performs scalar multiplication of this element with mixed addition.
|
||||
fn mul<S: Into<<Self::Scalar as PrimeField>::Repr>>(&self, other: S) -> Self::Projective;
|
||||
|
||||
/// Converts this element into its affine representation.
|
||||
fn into_projective(&self) -> Self::Projective;
|
||||
|
||||
/// Converts this element into its compressed encoding, so long as it's not
|
||||
/// the point at infinity.
|
||||
fn into_compressed(&self) -> Self::Compressed {
|
||||
<Self::Compressed as EncodedPoint>::from_affine(*self)
|
||||
}
|
||||
|
||||
/// Converts this element into its uncompressed encoding, so long as it's not
|
||||
/// the point at infinity.
|
||||
fn into_uncompressed(&self) -> Self::Uncompressed {
|
||||
<Self::Uncompressed as EncodedPoint>::from_affine(*self)
|
||||
}
|
||||
}
|
||||
|
||||
/// An encoded elliptic curve point, which should essentially wrap a `[u8; N]`.
|
||||
pub trait EncodedPoint:
|
||||
Sized + Send + Sync + AsRef<[u8]> + AsMut<[u8]> + Clone + Copy + 'static
|
||||
{
|
||||
type Affine: CurveAffine;
|
||||
|
||||
/// Creates an empty representation.
|
||||
fn empty() -> Self;
|
||||
|
||||
/// Returns the number of bytes consumed by this representation.
|
||||
fn size() -> usize;
|
||||
|
||||
/// Converts an `EncodedPoint` into a `CurveAffine` element,
|
||||
/// if the encoding represents a valid element.
|
||||
fn into_affine(&self) -> Result<Self::Affine, GroupDecodingError>;
|
||||
|
||||
/// Converts an `EncodedPoint` into a `CurveAffine` element,
|
||||
/// without guaranteeing that the encoding represents a valid
|
||||
/// element. This is useful when the caller knows the encoding is
|
||||
/// valid already.
|
||||
///
|
||||
/// If the encoding is invalid, this can break API invariants,
|
||||
/// so caution is strongly encouraged.
|
||||
fn into_affine_unchecked(&self) -> Result<Self::Affine, GroupDecodingError>;
|
||||
|
||||
/// Creates an `EncodedPoint` from an affine point, as long as the
|
||||
/// point is not the point at infinity.
|
||||
fn from_affine(affine: Self::Affine) -> Self;
|
||||
}
|
||||
|
||||
/// An error that may occur when trying to decode an `EncodedPoint`.
|
||||
#[derive(Debug)]
|
||||
pub enum GroupDecodingError {
|
||||
/// The coordinate(s) do not lie on the curve.
|
||||
NotOnCurve,
|
||||
/// The element is not part of the r-order subgroup.
|
||||
NotInSubgroup,
|
||||
/// One of the coordinates could not be decoded
|
||||
CoordinateDecodingError(&'static str, PrimeFieldDecodingError),
|
||||
/// The compression mode of the encoded element was not as expected
|
||||
UnexpectedCompressionMode,
|
||||
/// The encoding contained bits that should not have been set
|
||||
UnexpectedInformation,
|
||||
}
|
||||
|
||||
impl Error for GroupDecodingError {
|
||||
fn description(&self) -> &str {
|
||||
match *self {
|
||||
GroupDecodingError::NotOnCurve => "coordinate(s) do not lie on the curve",
|
||||
GroupDecodingError::NotInSubgroup => "the element is not part of an r-order subgroup",
|
||||
GroupDecodingError::CoordinateDecodingError(..) => "coordinate(s) could not be decoded",
|
||||
GroupDecodingError::UnexpectedCompressionMode => {
|
||||
"encoding has unexpected compression mode"
|
||||
}
|
||||
GroupDecodingError::UnexpectedInformation => "encoding has unexpected information",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for GroupDecodingError {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
||||
match *self {
|
||||
GroupDecodingError::CoordinateDecodingError(description, ref err) => {
|
||||
write!(f, "{} decoding error: {}", description, err)
|
||||
}
|
||||
_ => write!(f, "{}", self.description()),
|
||||
}
|
||||
}
|
||||
}
|
421
src/tests/mod.rs
Normal file
421
src/tests/mod.rs
Normal file
@ -0,0 +1,421 @@
|
||||
use rand::{Rand, Rng, SeedableRng, XorShiftRng};
|
||||
|
||||
use {CurveAffine, CurveProjective, EncodedPoint};
|
||||
|
||||
pub fn curve_tests<G: CurveProjective>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
// Negation edge case with zero.
|
||||
{
|
||||
let mut z = G::zero();
|
||||
z.negate();
|
||||
assert!(z.is_zero());
|
||||
}
|
||||
|
||||
// Doubling edge case with zero.
|
||||
{
|
||||
let mut z = G::zero();
|
||||
z.double();
|
||||
assert!(z.is_zero());
|
||||
}
|
||||
|
||||
// Addition edge cases with zero
|
||||
{
|
||||
let mut r = G::rand(&mut rng);
|
||||
let rcopy = r;
|
||||
r.add_assign(&G::zero());
|
||||
assert_eq!(r, rcopy);
|
||||
r.add_assign_mixed(&G::Affine::zero());
|
||||
assert_eq!(r, rcopy);
|
||||
|
||||
let mut z = G::zero();
|
||||
z.add_assign(&G::zero());
|
||||
assert!(z.is_zero());
|
||||
z.add_assign_mixed(&G::Affine::zero());
|
||||
assert!(z.is_zero());
|
||||
|
||||
let mut z2 = z;
|
||||
z2.add_assign(&r);
|
||||
|
||||
z.add_assign_mixed(&r.into_affine());
|
||||
|
||||
assert_eq!(z, z2);
|
||||
assert_eq!(z, r);
|
||||
}
|
||||
|
||||
// Transformations
|
||||
{
|
||||
let a = G::rand(&mut rng);
|
||||
let b = a.into_affine().into_projective();
|
||||
let c = a.into_affine()
|
||||
.into_projective()
|
||||
.into_affine()
|
||||
.into_projective();
|
||||
assert_eq!(a, b);
|
||||
assert_eq!(b, c);
|
||||
}
|
||||
|
||||
random_addition_tests::<G>();
|
||||
random_multiplication_tests::<G>();
|
||||
random_doubling_tests::<G>();
|
||||
random_negation_tests::<G>();
|
||||
random_transformation_tests::<G>();
|
||||
random_wnaf_tests::<G>();
|
||||
random_encoding_tests::<G::Affine>();
|
||||
}
|
||||
|
||||
fn random_wnaf_tests<G: CurveProjective>() {
|
||||
use ff::PrimeField;
|
||||
|
||||
use wnaf::*;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
{
|
||||
let mut table = vec![];
|
||||
let mut wnaf = vec![];
|
||||
|
||||
for w in 2..14 {
|
||||
for _ in 0..100 {
|
||||
let g = G::rand(&mut rng);
|
||||
let s = G::Scalar::rand(&mut rng).into_repr();
|
||||
let mut g1 = g;
|
||||
g1.mul_assign(s);
|
||||
|
||||
wnaf_table(&mut table, g, w);
|
||||
wnaf_form(&mut wnaf, s, w);
|
||||
let g2 = wnaf_exp(&table, &wnaf);
|
||||
|
||||
assert_eq!(g1, g2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
fn only_compiles_if_send<S: Send>(_: &S) {}
|
||||
|
||||
for _ in 0..100 {
|
||||
let g = G::rand(&mut rng);
|
||||
let s = G::Scalar::rand(&mut rng).into_repr();
|
||||
let mut g1 = g;
|
||||
g1.mul_assign(s);
|
||||
|
||||
let g2 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
wnaf.base(g, 1).scalar(s)
|
||||
};
|
||||
let g3 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
wnaf.scalar(s).base(g)
|
||||
};
|
||||
let g4 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
let mut shared = wnaf.base(g, 1).shared();
|
||||
|
||||
only_compiles_if_send(&shared);
|
||||
|
||||
shared.scalar(s)
|
||||
};
|
||||
let g5 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
let mut shared = wnaf.scalar(s).shared();
|
||||
|
||||
only_compiles_if_send(&shared);
|
||||
|
||||
shared.base(g)
|
||||
};
|
||||
|
||||
let g6 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
{
|
||||
// Populate the vectors.
|
||||
wnaf.base(rng.gen(), 1).scalar(rng.gen());
|
||||
}
|
||||
wnaf.base(g, 1).scalar(s)
|
||||
};
|
||||
let g7 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
{
|
||||
// Populate the vectors.
|
||||
wnaf.base(rng.gen(), 1).scalar(rng.gen());
|
||||
}
|
||||
wnaf.scalar(s).base(g)
|
||||
};
|
||||
let g8 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
{
|
||||
// Populate the vectors.
|
||||
wnaf.base(rng.gen(), 1).scalar(rng.gen());
|
||||
}
|
||||
let mut shared = wnaf.base(g, 1).shared();
|
||||
|
||||
only_compiles_if_send(&shared);
|
||||
|
||||
shared.scalar(s)
|
||||
};
|
||||
let g9 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
{
|
||||
// Populate the vectors.
|
||||
wnaf.base(rng.gen(), 1).scalar(rng.gen());
|
||||
}
|
||||
let mut shared = wnaf.scalar(s).shared();
|
||||
|
||||
only_compiles_if_send(&shared);
|
||||
|
||||
shared.base(g)
|
||||
};
|
||||
|
||||
assert_eq!(g1, g2);
|
||||
assert_eq!(g1, g3);
|
||||
assert_eq!(g1, g4);
|
||||
assert_eq!(g1, g5);
|
||||
assert_eq!(g1, g6);
|
||||
assert_eq!(g1, g7);
|
||||
assert_eq!(g1, g8);
|
||||
assert_eq!(g1, g9);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn random_negation_tests<G: CurveProjective>() {
|
||||
use ff::Field;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let r = G::rand(&mut rng);
|
||||
|
||||
let s = G::Scalar::rand(&mut rng);
|
||||
let mut sneg = s;
|
||||
sneg.negate();
|
||||
|
||||
let mut t1 = r;
|
||||
t1.mul_assign(s);
|
||||
|
||||
let mut t2 = r;
|
||||
t2.mul_assign(sneg);
|
||||
|
||||
let mut t3 = t1;
|
||||
t3.add_assign(&t2);
|
||||
assert!(t3.is_zero());
|
||||
|
||||
let mut t4 = t1;
|
||||
t4.add_assign_mixed(&t2.into_affine());
|
||||
assert!(t4.is_zero());
|
||||
|
||||
t1.negate();
|
||||
assert_eq!(t1, t2);
|
||||
}
|
||||
}
|
||||
|
||||
fn random_doubling_tests<G: CurveProjective>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut a = G::rand(&mut rng);
|
||||
let mut b = G::rand(&mut rng);
|
||||
|
||||
// 2(a + b)
|
||||
let mut tmp1 = a;
|
||||
tmp1.add_assign(&b);
|
||||
tmp1.double();
|
||||
|
||||
// 2a + 2b
|
||||
a.double();
|
||||
b.double();
|
||||
|
||||
let mut tmp2 = a;
|
||||
tmp2.add_assign(&b);
|
||||
|
||||
let mut tmp3 = a;
|
||||
tmp3.add_assign_mixed(&b.into_affine());
|
||||
|
||||
assert_eq!(tmp1, tmp2);
|
||||
assert_eq!(tmp1, tmp3);
|
||||
}
|
||||
}
|
||||
|
||||
fn random_multiplication_tests<G: CurveProjective>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut a = G::rand(&mut rng);
|
||||
let mut b = G::rand(&mut rng);
|
||||
let a_affine = a.into_affine();
|
||||
let b_affine = b.into_affine();
|
||||
|
||||
let s = G::Scalar::rand(&mut rng);
|
||||
|
||||
// s ( a + b )
|
||||
let mut tmp1 = a;
|
||||
tmp1.add_assign(&b);
|
||||
tmp1.mul_assign(s);
|
||||
|
||||
// sa + sb
|
||||
a.mul_assign(s);
|
||||
b.mul_assign(s);
|
||||
|
||||
let mut tmp2 = a;
|
||||
tmp2.add_assign(&b);
|
||||
|
||||
// Affine multiplication
|
||||
let mut tmp3 = a_affine.mul(s);
|
||||
tmp3.add_assign(&b_affine.mul(s));
|
||||
|
||||
assert_eq!(tmp1, tmp2);
|
||||
assert_eq!(tmp1, tmp3);
|
||||
}
|
||||
}
|
||||
|
||||
fn random_addition_tests<G: CurveProjective>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let a = G::rand(&mut rng);
|
||||
let b = G::rand(&mut rng);
|
||||
let c = G::rand(&mut rng);
|
||||
let a_affine = a.into_affine();
|
||||
let b_affine = b.into_affine();
|
||||
let c_affine = c.into_affine();
|
||||
|
||||
// a + a should equal the doubling
|
||||
{
|
||||
let mut aplusa = a;
|
||||
aplusa.add_assign(&a);
|
||||
|
||||
let mut aplusamixed = a;
|
||||
aplusamixed.add_assign_mixed(&a.into_affine());
|
||||
|
||||
let mut adouble = a;
|
||||
adouble.double();
|
||||
|
||||
assert_eq!(aplusa, adouble);
|
||||
assert_eq!(aplusa, aplusamixed);
|
||||
}
|
||||
|
||||
let mut tmp = vec![G::zero(); 6];
|
||||
|
||||
// (a + b) + c
|
||||
tmp[0] = a;
|
||||
tmp[0].add_assign(&b);
|
||||
tmp[0].add_assign(&c);
|
||||
|
||||
// a + (b + c)
|
||||
tmp[1] = b;
|
||||
tmp[1].add_assign(&c);
|
||||
tmp[1].add_assign(&a);
|
||||
|
||||
// (a + c) + b
|
||||
tmp[2] = a;
|
||||
tmp[2].add_assign(&c);
|
||||
tmp[2].add_assign(&b);
|
||||
|
||||
// Mixed addition
|
||||
|
||||
// (a + b) + c
|
||||
tmp[3] = a_affine.into_projective();
|
||||
tmp[3].add_assign_mixed(&b_affine);
|
||||
tmp[3].add_assign_mixed(&c_affine);
|
||||
|
||||
// a + (b + c)
|
||||
tmp[4] = b_affine.into_projective();
|
||||
tmp[4].add_assign_mixed(&c_affine);
|
||||
tmp[4].add_assign_mixed(&a_affine);
|
||||
|
||||
// (a + c) + b
|
||||
tmp[5] = a_affine.into_projective();
|
||||
tmp[5].add_assign_mixed(&c_affine);
|
||||
tmp[5].add_assign_mixed(&b_affine);
|
||||
|
||||
// Comparisons
|
||||
for i in 0..6 {
|
||||
for j in 0..6 {
|
||||
assert_eq!(tmp[i], tmp[j]);
|
||||
assert_eq!(tmp[i].into_affine(), tmp[j].into_affine());
|
||||
}
|
||||
|
||||
assert!(tmp[i] != a);
|
||||
assert!(tmp[i] != b);
|
||||
assert!(tmp[i] != c);
|
||||
|
||||
assert!(a != tmp[i]);
|
||||
assert!(b != tmp[i]);
|
||||
assert!(c != tmp[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn random_transformation_tests<G: CurveProjective>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let g = G::rand(&mut rng);
|
||||
let g_affine = g.into_affine();
|
||||
let g_projective = g_affine.into_projective();
|
||||
assert_eq!(g, g_projective);
|
||||
}
|
||||
|
||||
// Batch normalization
|
||||
for _ in 0..10 {
|
||||
let mut v = (0..1000).map(|_| G::rand(&mut rng)).collect::<Vec<_>>();
|
||||
|
||||
for i in &v {
|
||||
assert!(!i.is_normalized());
|
||||
}
|
||||
|
||||
use rand::distributions::{IndependentSample, Range};
|
||||
let between = Range::new(0, 1000);
|
||||
// Sprinkle in some normalized points
|
||||
for _ in 0..5 {
|
||||
v[between.ind_sample(&mut rng)] = G::zero();
|
||||
}
|
||||
for _ in 0..5 {
|
||||
let s = between.ind_sample(&mut rng);
|
||||
v[s] = v[s].into_affine().into_projective();
|
||||
}
|
||||
|
||||
let expected_v = v.iter()
|
||||
.map(|v| v.into_affine().into_projective())
|
||||
.collect::<Vec<_>>();
|
||||
G::batch_normalization(&mut v);
|
||||
|
||||
for i in &v {
|
||||
assert!(i.is_normalized());
|
||||
}
|
||||
|
||||
assert_eq!(v, expected_v);
|
||||
}
|
||||
}
|
||||
|
||||
fn random_encoding_tests<G: CurveAffine>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
assert_eq!(
|
||||
G::zero().into_uncompressed().into_affine().unwrap(),
|
||||
G::zero()
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
G::zero().into_compressed().into_affine().unwrap(),
|
||||
G::zero()
|
||||
);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut r = G::Projective::rand(&mut rng).into_affine();
|
||||
|
||||
let uncompressed = r.into_uncompressed();
|
||||
let de_uncompressed = uncompressed.into_affine().unwrap();
|
||||
assert_eq!(de_uncompressed, r);
|
||||
|
||||
let compressed = r.into_compressed();
|
||||
let de_compressed = compressed.into_affine().unwrap();
|
||||
assert_eq!(de_compressed, r);
|
||||
|
||||
r.negate();
|
||||
|
||||
let compressed = r.into_compressed();
|
||||
let de_compressed = compressed.into_affine().unwrap();
|
||||
assert_eq!(de_compressed, r);
|
||||
}
|
||||
}
|
181
src/wnaf.rs
Normal file
181
src/wnaf.rs
Normal file
@ -0,0 +1,181 @@
|
||||
use ff::{PrimeField, PrimeFieldRepr};
|
||||
|
||||
use super::CurveProjective;
|
||||
|
||||
/// Replaces the contents of `table` with a w-NAF window table for the given window size.
|
||||
pub(crate) fn wnaf_table<G: CurveProjective>(table: &mut Vec<G>, mut base: G, window: usize) {
|
||||
table.truncate(0);
|
||||
table.reserve(1 << (window - 1));
|
||||
|
||||
let mut dbl = base;
|
||||
dbl.double();
|
||||
|
||||
for _ in 0..(1 << (window - 1)) {
|
||||
table.push(base);
|
||||
base.add_assign(&dbl);
|
||||
}
|
||||
}
|
||||
|
||||
/// Replaces the contents of `wnaf` with the w-NAF representation of a scalar.
|
||||
pub(crate) fn wnaf_form<S: PrimeFieldRepr>(wnaf: &mut Vec<i64>, mut c: S, window: usize) {
|
||||
wnaf.truncate(0);
|
||||
|
||||
while !c.is_zero() {
|
||||
let mut u;
|
||||
if c.is_odd() {
|
||||
u = (c.as_ref()[0] % (1 << (window + 1))) as i64;
|
||||
|
||||
if u > (1 << window) {
|
||||
u -= 1 << (window + 1);
|
||||
}
|
||||
|
||||
if u > 0 {
|
||||
c.sub_noborrow(&S::from(u as u64));
|
||||
} else {
|
||||
c.add_nocarry(&S::from((-u) as u64));
|
||||
}
|
||||
} else {
|
||||
u = 0;
|
||||
}
|
||||
|
||||
wnaf.push(u);
|
||||
|
||||
c.div2();
|
||||
}
|
||||
}
|
||||
|
||||
/// Performs w-NAF exponentiation with the provided window table and w-NAF form scalar.
|
||||
///
|
||||
/// This function must be provided a `table` and `wnaf` that were constructed with
|
||||
/// the same window size; otherwise, it may panic or produce invalid results.
|
||||
pub(crate) fn wnaf_exp<G: CurveProjective>(table: &[G], wnaf: &[i64]) -> G {
|
||||
let mut result = G::zero();
|
||||
|
||||
let mut found_one = false;
|
||||
|
||||
for n in wnaf.iter().rev() {
|
||||
if found_one {
|
||||
result.double();
|
||||
}
|
||||
|
||||
if *n != 0 {
|
||||
found_one = true;
|
||||
|
||||
if *n > 0 {
|
||||
result.add_assign(&table[(n / 2) as usize]);
|
||||
} else {
|
||||
result.sub_assign(&table[((-n) / 2) as usize]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
/// A "w-ary non-adjacent form" exponentiation context.
|
||||
#[derive(Debug)]
|
||||
pub struct Wnaf<W, B, S> {
|
||||
base: B,
|
||||
scalar: S,
|
||||
window_size: W,
|
||||
}
|
||||
|
||||
impl<G: CurveProjective> Wnaf<(), Vec<G>, Vec<i64>> {
|
||||
/// Construct a new wNAF context without allocating.
|
||||
pub fn new() -> Self {
|
||||
Wnaf {
|
||||
base: vec![],
|
||||
scalar: vec![],
|
||||
window_size: (),
|
||||
}
|
||||
}
|
||||
|
||||
/// Given a base and a number of scalars, compute a window table and return a `Wnaf` object that
|
||||
/// can perform exponentiations with `.scalar(..)`.
|
||||
pub fn base(&mut self, base: G, num_scalars: usize) -> Wnaf<usize, &[G], &mut Vec<i64>> {
|
||||
// Compute the appropriate window size based on the number of scalars.
|
||||
let window_size = G::recommended_wnaf_for_num_scalars(num_scalars);
|
||||
|
||||
// Compute a wNAF table for the provided base and window size.
|
||||
wnaf_table(&mut self.base, base, window_size);
|
||||
|
||||
// Return a Wnaf object that immutably borrows the computed base storage location,
|
||||
// but mutably borrows the scalar storage location.
|
||||
Wnaf {
|
||||
base: &self.base[..],
|
||||
scalar: &mut self.scalar,
|
||||
window_size,
|
||||
}
|
||||
}
|
||||
|
||||
/// Given a scalar, compute its wNAF representation and return a `Wnaf` object that can perform
|
||||
/// exponentiations with `.base(..)`.
|
||||
pub fn scalar(
|
||||
&mut self,
|
||||
scalar: <<G as CurveProjective>::Scalar as PrimeField>::Repr,
|
||||
) -> Wnaf<usize, &mut Vec<G>, &[i64]> {
|
||||
// Compute the appropriate window size for the scalar.
|
||||
let window_size = G::recommended_wnaf_for_scalar(scalar);
|
||||
|
||||
// Compute the wNAF form of the scalar.
|
||||
wnaf_form(&mut self.scalar, scalar, window_size);
|
||||
|
||||
// Return a Wnaf object that mutably borrows the base storage location, but
|
||||
// immutably borrows the computed wNAF form scalar location.
|
||||
Wnaf {
|
||||
base: &mut self.base,
|
||||
scalar: &self.scalar[..],
|
||||
window_size,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, G: CurveProjective> Wnaf<usize, &'a [G], &'a mut Vec<i64>> {
|
||||
/// Constructs new space for the scalar representation while borrowing
|
||||
/// the computed window table, for sending the window table across threads.
|
||||
pub fn shared(&self) -> Wnaf<usize, &'a [G], Vec<i64>> {
|
||||
Wnaf {
|
||||
base: self.base,
|
||||
scalar: vec![],
|
||||
window_size: self.window_size,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, G: CurveProjective> Wnaf<usize, &'a mut Vec<G>, &'a [i64]> {
|
||||
/// Constructs new space for the window table while borrowing
|
||||
/// the computed scalar representation, for sending the scalar representation
|
||||
/// across threads.
|
||||
pub fn shared(&self) -> Wnaf<usize, Vec<G>, &'a [i64]> {
|
||||
Wnaf {
|
||||
base: vec![],
|
||||
scalar: self.scalar,
|
||||
window_size: self.window_size,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<B, S: AsRef<[i64]>> Wnaf<usize, B, S> {
|
||||
/// Performs exponentiation given a base.
|
||||
pub fn base<G: CurveProjective>(&mut self, base: G) -> G
|
||||
where
|
||||
B: AsMut<Vec<G>>,
|
||||
{
|
||||
wnaf_table(self.base.as_mut(), base, self.window_size);
|
||||
wnaf_exp(self.base.as_mut(), self.scalar.as_ref())
|
||||
}
|
||||
}
|
||||
|
||||
impl<B, S: AsMut<Vec<i64>>> Wnaf<usize, B, S> {
|
||||
/// Performs exponentiation given a scalar.
|
||||
pub fn scalar<G: CurveProjective>(
|
||||
&mut self,
|
||||
scalar: <<G as CurveProjective>::Scalar as PrimeField>::Repr,
|
||||
) -> G
|
||||
where
|
||||
B: AsRef<[G]>,
|
||||
{
|
||||
wnaf_form(self.scalar.as_mut(), scalar, self.window_size);
|
||||
wnaf_exp(self.base.as_ref(), self.scalar.as_mut())
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user