ff: Add PrimeField::ReprEndianness associated type

This enables generic code to reliably operate on the bits of an encoded
field element, by converting them to and from a known (little)
endianness.

The BitAnd and Shr bounds on PrimeField are now removed, as users can
perform these operations themselves as needed.
This commit is contained in:
Jack Grigg
2020-05-01 14:20:35 +12:00
parent 55568b4d6e
commit 38f87c2e73
12 changed files with 101 additions and 323 deletions

View File

@@ -1,8 +1,7 @@
use byteorder::{ByteOrder, LittleEndian};
use ff::{adc, mac_with_carry, sbb, BitIterator, Field, PowVartime, PrimeField};
use rand_core::RngCore;
use std::mem;
use std::ops::{Add, AddAssign, BitAnd, Mul, MulAssign, Neg, Shr, Sub, SubAssign};
use std::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
use super::ToUniform;
@@ -328,53 +327,9 @@ impl MulAssign for Fs {
}
}
impl BitAnd<u64> for Fs {
type Output = u64;
#[inline(always)]
fn bitand(mut self, rhs: u64) -> u64 {
self.mont_reduce(self.0[0], self.0[1], self.0[2], self.0[3], 0, 0, 0, 0);
self.0[0] & rhs
}
}
impl Shr<u32> for Fs {
type Output = Self;
#[inline(always)]
fn shr(mut self, mut n: u32) -> Self {
if n as usize >= 64 * 4 {
return Self::from(0);
}
// Convert from Montgomery to native representation.
self.mont_reduce(self.0[0], self.0[1], self.0[2], self.0[3], 0, 0, 0, 0);
while n >= 64 {
let mut t = 0;
for i in self.0.iter_mut().rev() {
mem::swap(&mut t, i);
}
n -= 64;
}
if n > 0 {
let mut t = 0;
for i in self.0.iter_mut().rev() {
let t2 = *i << (64 - n);
*i >>= n;
*i |= t;
t = t2;
}
}
// Convert back to Montgomery representation
self * R2
}
}
impl PrimeField for Fs {
type Repr = FsRepr;
type ReprEndianness = byteorder::LittleEndian;
fn from_repr(r: FsRepr) -> Option<Fs> {
let r = {
@@ -1003,61 +958,6 @@ fn test_fs_mul_assign() {
}
}
#[test]
fn test_fs_shr() {
let mut a = Fs::from_repr(FsRepr([
0x3f, 0x28, 0x2a, 0x48, 0xec, 0xba, 0x3f, 0xb3, 0xdf, 0xb3, 0x8c, 0xa8, 0xd3, 0xe0, 0x7d,
0x99, 0x25, 0x55, 0x0e, 0x9a, 0x2a, 0x2d, 0xf6, 0x9a, 0xa1, 0x0d, 0xe7, 0x8d, 0xb0, 0x3a,
0x00, 0x06,
]))
.unwrap();
a = a >> 0;
assert_eq!(
a.into_repr(),
FsRepr([
0x3f, 0x28, 0x2a, 0x48, 0xec, 0xba, 0x3f, 0xb3, 0xdf, 0xb3, 0x8c, 0xa8, 0xd3, 0xe0,
0x7d, 0x99, 0x25, 0x55, 0x0e, 0x9a, 0x2a, 0x2d, 0xf6, 0x9a, 0xa1, 0x0d, 0xe7, 0x8d,
0xb0, 0x3a, 0x00, 0x06,
])
);
a = a >> 1;
assert_eq!(
a.into_repr(),
FsRepr([
0x1f, 0x14, 0x15, 0x24, 0x76, 0xdd, 0x9f, 0xd9, 0xef, 0x59, 0x46, 0xd4, 0x69, 0xf0,
0xbe, 0xcc, 0x92, 0x2a, 0x07, 0x4d, 0x95, 0x16, 0x7b, 0xcd, 0xd0, 0x86, 0xf3, 0x46,
0x58, 0x1d, 0x00, 0x03,
])
);
a = a >> 50;
assert_eq!(
a.into_repr(),
FsRepr([
0x67, 0xf6, 0x7b, 0x96, 0x11, 0x75, 0x1a, 0xbc, 0x2f, 0xb3, 0xa4, 0xca, 0x41, 0x53,
0xa5, 0xc5, 0x5e, 0x33, 0xb4, 0xe1, 0xbc, 0x11, 0x56, 0x07, 0xc0, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
);
a = a >> 130;
assert_eq!(
a.into_repr(),
FsRepr([
0xd7, 0x0c, 0x6d, 0x38, 0x6f, 0x84, 0xd5, 0x01, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
);
a = a >> 64;
assert_eq!(
a.into_repr(),
FsRepr([
0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
);
}
#[test]
fn test_fs_squaring() {
let a = Fs([

View File

@@ -1,6 +1,6 @@
use super::{edwards, montgomery, JubjubEngine, JubjubParams, PrimeOrder};
use ff::{Field, PrimeField};
use ff::{Endianness, Field, PrimeField};
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
use rand_core::{RngCore, SeedableRng};
@@ -372,7 +372,23 @@ fn test_jubjub_params<E: JubjubEngine>(params: &E::Params) {
let mut cur = E::Fs::one();
let max = (-E::Fs::one()) >> 1;
let max = {
// Grab char - 1 in little endian.
let mut tmp = (-E::Fs::one()).into_repr();
<E::Fs as PrimeField>::ReprEndianness::toggle_little_endian(&mut tmp);
// Shift right by 1 bit.
let mut borrow = 0;
for b in tmp.as_mut().iter_mut().rev() {
let new_borrow = *b & 1;
*b = (borrow << 7) | (*b >> 1);
borrow = new_borrow;
}
// Convert back to a field element.
<E::Fs as PrimeField>::ReprEndianness::toggle_little_endian(&mut tmp);
E::Fs::from_repr(tmp).unwrap()
};
let mut pacc = E::Fs::zero();
let mut nacc = E::Fs::zero();

View File

@@ -1,7 +1,8 @@
//! Implementation of the Pedersen hash function used in Sapling.
use crate::jubjub::*;
use ff::Field;
use byteorder::{ByteOrder, LittleEndian};
use ff::{Endianness, Field, PrimeField};
use std::ops::{AddAssign, Neg};
#[derive(Copy, Clone)]
@@ -85,17 +86,32 @@ where
let mut table: &[Vec<edwards::Point<E, _>>] =
&generators.next().expect("we don't have enough generators");
let window = JubjubBls12::pedersen_hash_exp_window_size();
let window_mask = (1 << window) - 1;
let window = JubjubBls12::pedersen_hash_exp_window_size() as usize;
let window_mask = (1u64 << window) - 1;
let mut acc = acc.into_repr();
<E::Fs as PrimeField>::ReprEndianness::toggle_little_endian(&mut acc);
let num_limbs: usize = acc.as_ref().len() / 8;
let mut limbs = vec![0u64; num_limbs + 1];
LittleEndian::read_u64_into(acc.as_ref(), &mut limbs[..num_limbs]);
let mut tmp = edwards::Point::zero();
while !acc.is_zero() {
let i = (acc & window_mask) as usize;
let mut pos = 0;
while pos < E::Fs::NUM_BITS as usize {
let u64_idx = pos / 64;
let bit_idx = pos % 64;
let i = (if bit_idx + window < 64 {
// This window's bits are contained in a single u64.
limbs[u64_idx] >> bit_idx
} else {
// Combine the current u64's bits with the bits from the next u64.
(limbs[u64_idx] >> bit_idx) | (limbs[u64_idx + 1] << (64 - bit_idx))
} & window_mask) as usize;
tmp = tmp.add(&table[0][i], params);
acc = acc >> window;
pos += window;
table = &table[1..];
}