ff: Add PrimeField::ReprEndianness associated type

This enables generic code to reliably operate on the bits of an encoded
field element, by converting them to and from a known (little)
endianness.

The BitAnd and Shr bounds on PrimeField are now removed, as users can
perform these operations themselves as needed.
This commit is contained in:
Jack Grigg 2020-05-01 14:20:35 +12:00
parent 55568b4d6e
commit 38f87c2e73
12 changed files with 101 additions and 323 deletions

View File

@ -1,6 +1,6 @@
//! Helpers for testing circuit implementations.
use ff::{Field, PowVartime, PrimeField, ScalarEngine};
use ff::{Endianness, Field, PowVartime, PrimeField, ScalarEngine};
use crate::{ConstraintSystem, Index, LinearCombination, SynthesisError, Variable};
@ -106,11 +106,9 @@ fn hash_lc<E: ScalarEngine>(terms: &[(Variable, E::Fr)], h: &mut Blake2sState) {
}
}
// BLS12-381's Fr is canonically serialized in little-endian, but the hasher
// writes its coefficients in big endian. For now, we flip the endianness
// manually, which is not necessarily correct for circuits using other curves.
// TODO: Fix this in a standalone commit, and document the no-op change.
let coeff_be: Vec<_> = coeff.into_repr().as_ref().iter().cloned().rev().collect();
let mut coeff_repr = coeff.into_repr();
<E::Fr as PrimeField>::ReprEndianness::toggle_little_endian(&mut coeff_repr);
let coeff_be: Vec<_> = coeff_repr.as_ref().iter().cloned().rev().collect();
buf[9..].copy_from_slice(&coeff_be[..]);
h.update(&buf);

View File

@ -285,6 +285,7 @@ impl Default for FrRepr {
impl PrimeField for Fr {
type Repr = FrRepr;
type ReprEndianness = byteorder::LittleEndian;
const NUM_BITS: u32 = 16;
const CAPACITY: u32 = 15;

View File

@ -1,6 +1,6 @@
use super::multicore::Worker;
use bit_vec::{self, BitVec};
use ff::{Field, PrimeField, ScalarEngine};
use ff::{Endianness, Field, PrimeField, ScalarEngine};
use futures::Future;
use group::{CurveAffine, CurveProjective};
use std::io;
@ -195,8 +195,18 @@ where
bases.skip(1)?;
}
} else {
let exp = exp >> skip;
let exp = exp & ((1 << c) - 1);
let mut exp = exp.into_repr();
<<G::Engine as ScalarEngine>::Fr as PrimeField>::ReprEndianness::toggle_little_endian(&mut exp);
let exp = exp
.as_ref()
.into_iter()
.map(|b| (0..8).map(move |i| (b >> i) & 1u8))
.flatten()
.skip(skip as usize)
.take(c as usize)
.enumerate()
.fold(0u64, |acc, (i, b)| acc + ((b as u64) << i));
if exp != 0 {
(&mut buckets[(exp - 1) as usize])

View File

@ -11,7 +11,7 @@ repository = "https://github.com/ebfull/ff"
edition = "2018"
[dependencies]
byteorder = { version = "1", optional = true }
byteorder = { version = "1", default-features = false }
ff_derive = { version = "0.6", path = "ff_derive", optional = true }
rand_core = { version = "0.5", default-features = false }
subtle = { version = "2.2.1", default-features = false, features = ["i128"] }
@ -19,7 +19,7 @@ subtle = { version = "2.2.1", default-features = false, features = ["i128"] }
[features]
default = ["std"]
derive = ["ff_derive"]
std = ["byteorder"]
std = []
[badges]
maintenance = { status = "actively-developed" }

View File

@ -31,6 +31,13 @@ impl FromStr for ReprEndianness {
}
impl ReprEndianness {
fn repr_endianness(&self) -> proc_macro2::TokenStream {
match self {
ReprEndianness::Big => quote! {::byteorder::BigEndian},
ReprEndianness::Little => quote! {::byteorder::LittleEndian},
}
}
fn from_repr(&self, name: &syn::Ident, limbs: usize) -> proc_macro2::TokenStream {
let read_repr = match self {
ReprEndianness::Big => quote! {
@ -885,6 +892,7 @@ fn prime_field_impl(
let mont_reduce_self_params = mont_reduce_params(quote! {self}, limbs);
let mont_reduce_other_params = mont_reduce_params(quote! {other}, limbs);
let repr_endianness = endianness.repr_endianness();
let from_repr_impl = endianness.from_repr(name, limbs);
let into_repr_impl = endianness.into_repr(repr, &mont_reduce_self_params, limbs);
@ -1117,58 +1125,9 @@ fn prime_field_impl(
}
}
impl ::core::ops::BitAnd<u64> for #name {
type Output = u64;
#[inline(always)]
fn bitand(mut self, rhs: u64) -> u64 {
self.mont_reduce(
#mont_reduce_self_params
);
self.0[0] & rhs
}
}
impl ::core::ops::Shr<u32> for #name {
type Output = #name;
#[inline(always)]
fn shr(mut self, mut n: u32) -> #name {
if n as usize >= 64 * #limbs {
return Self::from(0);
}
// Convert from Montgomery to native representation.
self.mont_reduce(
#mont_reduce_self_params
);
while n >= 64 {
let mut t = 0;
for i in self.0.iter_mut().rev() {
::core::mem::swap(&mut t, i);
}
n -= 64;
}
if n > 0 {
let mut t = 0;
for i in self.0.iter_mut().rev() {
let t2 = *i << (64 - n);
*i >>= n;
*i |= t;
t = t2;
}
}
// Convert back to Montgomery representation
self * R2
}
}
impl ::ff::PrimeField for #name {
type Repr = #repr;
type ReprEndianness = #repr_endianness;
fn from_repr(r: #repr) -> Option<#name> {
#from_repr_impl

View File

@ -12,6 +12,7 @@ extern crate std;
#[cfg(feature = "derive")]
pub use ff_derive::*;
use byteorder::ByteOrder;
use core::convert::TryFrom;
use core::fmt;
use core::marker::PhantomData;
@ -124,14 +125,36 @@ impl<T: Field> PowVartime<u64> for T {
const LIMB_SIZE: u64 = 64;
}
/// Helper trait for converting the binary representation of a prime field element into a
/// specific endianness. This is useful when you need to act on the bit representation
/// of an element generically, as the native binary representation of a prime field is
/// field-dependent.
pub trait Endianness: ByteOrder {
/// Converts the provided representation between native and little-endian.
fn toggle_little_endian<T: AsMut<[u8]>>(t: &mut T);
}
impl Endianness for byteorder::BigEndian {
fn toggle_little_endian<T: AsMut<[u8]>>(t: &mut T) {
t.as_mut().reverse();
}
}
impl Endianness for byteorder::LittleEndian {
fn toggle_little_endian<T: AsMut<[u8]>>(_: &mut T) {
// No-op
}
}
/// This represents an element of a prime field.
pub trait PrimeField:
Field + Ord + From<u64> + BitAnd<u64, Output = u64> + Shr<u32, Output = Self>
{
pub trait PrimeField: Field + Ord + From<u64> {
/// The prime field can be converted back and forth into this binary
/// representation.
type Repr: Default + AsRef<[u8]> + AsMut<[u8]> + From<Self> + for<'r> From<&'r Self>;
/// This indicates the endianness of [`PrimeField::Repr`].
type ReprEndianness: Endianness;
/// Interpret a string of numbers as a (congruent) prime field element.
/// Does not accept unnecessary leading zeroes or a blank string.
fn from_str(s: &str) -> Option<Self> {
@ -176,16 +199,15 @@ pub trait PrimeField:
/// this prime field, failing if the input is not canonical (is not smaller than the
/// field's modulus).
///
/// The byte representation is interpreted with the same endianness as is returned
/// by [`PrimeField::into_repr`].
/// The byte representation is interpreted with the endianness defined by
/// [`PrimeField::ReprEndianness`].
fn from_repr(_: Self::Repr) -> Option<Self>;
/// Converts an element of the prime field into the standard byte representation for
/// this field.
///
/// Endianness of the byte representation is defined by the field implementation.
/// Callers should assume that it is the standard endianness used to represent encoded
/// elements of this particular field.
/// The endianness of the byte representation is defined by
/// [`PrimeField::ReprEndianness`].
fn into_repr(&self) -> Self::Repr;
/// Returns true iff this element is odd.

View File

@ -1534,67 +1534,6 @@ fn test_fq_mul_assign() {
}
}
#[test]
fn test_fq_shr() {
let mut a = Fq::from_repr(FqRepr([
0x12, 0x25, 0xf2, 0x90, 0x1a, 0xea, 0x51, 0x4e, 0x16, 0x08, 0x0c, 0xf4, 0x07, 0x1e, 0x0b,
0x05, 0xc5, 0x54, 0x1f, 0xd4, 0x80, 0x46, 0xb7, 0xe7, 0x9d, 0xdd, 0x5b, 0x31, 0x2f, 0x3d,
0xd1, 0x04, 0x43, 0x24, 0x2c, 0x06, 0xae, 0xd5, 0x52, 0x87, 0xaa, 0x5c, 0xdd, 0x61, 0x72,
0x84, 0x7f, 0xfd,
]))
.unwrap();
a = a >> 0;
assert_eq!(
a.into_repr(),
FqRepr([
0x12, 0x25, 0xf2, 0x90, 0x1a, 0xea, 0x51, 0x4e, 0x16, 0x08, 0x0c, 0xf4, 0x07, 0x1e,
0x0b, 0x05, 0xc5, 0x54, 0x1f, 0xd4, 0x80, 0x46, 0xb7, 0xe7, 0x9d, 0xdd, 0x5b, 0x31,
0x2f, 0x3d, 0xd1, 0x04, 0x43, 0x24, 0x2c, 0x06, 0xae, 0xd5, 0x52, 0x87, 0xaa, 0x5c,
0xdd, 0x61, 0x72, 0x84, 0x7f, 0xfd,
])
);
a = a >> 1;
assert_eq!(
a.into_repr(),
FqRepr([
0x09, 0x12, 0xf9, 0x48, 0x0d, 0x75, 0x28, 0xa7, 0x0b, 0x04, 0x06, 0x7a, 0x03, 0x8f,
0x05, 0x82, 0xe2, 0xaa, 0x0f, 0xea, 0x40, 0x23, 0x5b, 0xf3, 0xce, 0xee, 0xad, 0x98,
0x97, 0x9e, 0xe8, 0x82, 0x21, 0x92, 0x16, 0x03, 0x57, 0x6a, 0xa9, 0x43, 0xd5, 0x2e,
0x6e, 0xb0, 0xb9, 0x42, 0x3f, 0xfe,
])
);
a = a >> 50;
assert_eq!(
a.into_repr(),
FqRepr([
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x44, 0xbe, 0x52, 0x03, 0x5d, 0x4a, 0x29,
0xc2, 0xc1, 0x01, 0x9e, 0x80, 0xe3, 0xc1, 0x60, 0xb8, 0xaa, 0x83, 0xfa, 0x90, 0x08,
0xd6, 0xfc, 0xf3, 0xbb, 0xab, 0x66, 0x25, 0xe7, 0xba, 0x20, 0x88, 0x64, 0x85, 0x80,
0xd5, 0xda, 0xaa, 0x50, 0xf5, 0x4b,
])
);
a = a >> 130;
assert_eq!(
a.into_repr(),
FqRepr([
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x91, 0x2f, 0x94, 0x80, 0xd7,
0x52, 0x8a, 0x70, 0xb0, 0x40, 0x67, 0xa0, 0x38, 0xf0, 0x58, 0x2e, 0x2a, 0xa0, 0xfe,
0xa4, 0x02, 0x35, 0xbf, 0x3c, 0xee,
])
);
a = a >> 64;
assert_eq!(
a.into_repr(),
FqRepr([
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x91, 0x2f, 0x94, 0x80, 0xd7, 0x52, 0x8a, 0x70, 0xb0, 0x40, 0x67,
0xa0, 0x38, 0xf0, 0x58, 0x2e, 0x2a,
])
);
}
#[test]
fn test_fq_squaring() {
let a = Fq([

View File

@ -323,61 +323,6 @@ fn test_fr_mul_assign() {
}
}
#[test]
fn test_fr_shr() {
let mut a = Fr::from_repr(FrRepr([
0x3f, 0x28, 0x2a, 0x48, 0xec, 0xba, 0x3f, 0xb3, 0xdf, 0xb3, 0x8c, 0xa8, 0xd3, 0xe0, 0x7d,
0x99, 0x25, 0x55, 0x0e, 0x9a, 0x2a, 0x2d, 0xf6, 0x9a, 0xa1, 0x0d, 0xe7, 0x8d, 0xb0, 0x3a,
0x00, 0x36,
]))
.unwrap();
a = a >> 0;
assert_eq!(
a.into_repr(),
FrRepr([
0x3f, 0x28, 0x2a, 0x48, 0xec, 0xba, 0x3f, 0xb3, 0xdf, 0xb3, 0x8c, 0xa8, 0xd3, 0xe0,
0x7d, 0x99, 0x25, 0x55, 0x0e, 0x9a, 0x2a, 0x2d, 0xf6, 0x9a, 0xa1, 0x0d, 0xe7, 0x8d,
0xb0, 0x3a, 0x00, 0x36,
])
);
a = a >> 1;
assert_eq!(
a.into_repr(),
FrRepr([
0x1f, 0x14, 0x15, 0x24, 0x76, 0xdd, 0x9f, 0xd9, 0xef, 0x59, 0x46, 0xd4, 0x69, 0xf0,
0xbe, 0xcc, 0x92, 0x2a, 0x07, 0x4d, 0x95, 0x16, 0x7b, 0xcd, 0xd0, 0x86, 0xf3, 0x46,
0x58, 0x1d, 0x00, 0x1b,
])
);
a = a >> 50;
assert_eq!(
a.into_repr(),
FrRepr([
0x67, 0xf6, 0x7b, 0x96, 0x11, 0x75, 0x1a, 0xbc, 0x2f, 0xb3, 0xa4, 0xca, 0x41, 0x53,
0xa5, 0xc5, 0x5e, 0x33, 0xb4, 0xe1, 0xbc, 0x11, 0x56, 0x07, 0xc0, 0x06, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
);
a = a >> 130;
assert_eq!(
a.into_repr(),
FrRepr([
0xd7, 0x0c, 0x6d, 0x38, 0x6f, 0x84, 0xd5, 0x01, 0xb0, 0x01, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
);
a = a >> 64;
assert_eq!(
a.into_repr(),
FrRepr([
0xb0, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
);
}
#[test]
fn test_fr_squaring() {
let a = Fr([

View File

@ -4,7 +4,6 @@ use rand_xorshift::XorShiftRng;
pub fn random_repr_tests<P: PrimeField>() {
random_encoding_tests::<P>();
random_shr_tests::<P>();
}
fn random_encoding_tests<P: PrimeField>() {
@ -22,30 +21,3 @@ fn random_encoding_tests<P: PrimeField>() {
assert_eq!(r, rdecoded);
}
}
fn random_shr_tests<P: PrimeField>() {
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
for _ in 0..100 {
let r = P::random(&mut rng);
for shift in 0..P::NUM_BITS {
let r1 = r >> shift;
// Doubling the shifted element inserts zeros on the right; re-shifting should
// undo the doubling.
let mut r2 = r1;
for _ in 0..shift {
r2 = r2.double();
}
r2 = r2 >> shift;
assert_eq!(r1, r2);
}
assert_eq!(r >> P::NUM_BITS, P::zero());
}
}

View File

@ -1,8 +1,7 @@
use byteorder::{ByteOrder, LittleEndian};
use ff::{adc, mac_with_carry, sbb, BitIterator, Field, PowVartime, PrimeField};
use rand_core::RngCore;
use std::mem;
use std::ops::{Add, AddAssign, BitAnd, Mul, MulAssign, Neg, Shr, Sub, SubAssign};
use std::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
use super::ToUniform;
@ -328,53 +327,9 @@ impl MulAssign for Fs {
}
}
impl BitAnd<u64> for Fs {
type Output = u64;
#[inline(always)]
fn bitand(mut self, rhs: u64) -> u64 {
self.mont_reduce(self.0[0], self.0[1], self.0[2], self.0[3], 0, 0, 0, 0);
self.0[0] & rhs
}
}
impl Shr<u32> for Fs {
type Output = Self;
#[inline(always)]
fn shr(mut self, mut n: u32) -> Self {
if n as usize >= 64 * 4 {
return Self::from(0);
}
// Convert from Montgomery to native representation.
self.mont_reduce(self.0[0], self.0[1], self.0[2], self.0[3], 0, 0, 0, 0);
while n >= 64 {
let mut t = 0;
for i in self.0.iter_mut().rev() {
mem::swap(&mut t, i);
}
n -= 64;
}
if n > 0 {
let mut t = 0;
for i in self.0.iter_mut().rev() {
let t2 = *i << (64 - n);
*i >>= n;
*i |= t;
t = t2;
}
}
// Convert back to Montgomery representation
self * R2
}
}
impl PrimeField for Fs {
type Repr = FsRepr;
type ReprEndianness = byteorder::LittleEndian;
fn from_repr(r: FsRepr) -> Option<Fs> {
let r = {
@ -1003,61 +958,6 @@ fn test_fs_mul_assign() {
}
}
#[test]
fn test_fs_shr() {
let mut a = Fs::from_repr(FsRepr([
0x3f, 0x28, 0x2a, 0x48, 0xec, 0xba, 0x3f, 0xb3, 0xdf, 0xb3, 0x8c, 0xa8, 0xd3, 0xe0, 0x7d,
0x99, 0x25, 0x55, 0x0e, 0x9a, 0x2a, 0x2d, 0xf6, 0x9a, 0xa1, 0x0d, 0xe7, 0x8d, 0xb0, 0x3a,
0x00, 0x06,
]))
.unwrap();
a = a >> 0;
assert_eq!(
a.into_repr(),
FsRepr([
0x3f, 0x28, 0x2a, 0x48, 0xec, 0xba, 0x3f, 0xb3, 0xdf, 0xb3, 0x8c, 0xa8, 0xd3, 0xe0,
0x7d, 0x99, 0x25, 0x55, 0x0e, 0x9a, 0x2a, 0x2d, 0xf6, 0x9a, 0xa1, 0x0d, 0xe7, 0x8d,
0xb0, 0x3a, 0x00, 0x06,
])
);
a = a >> 1;
assert_eq!(
a.into_repr(),
FsRepr([
0x1f, 0x14, 0x15, 0x24, 0x76, 0xdd, 0x9f, 0xd9, 0xef, 0x59, 0x46, 0xd4, 0x69, 0xf0,
0xbe, 0xcc, 0x92, 0x2a, 0x07, 0x4d, 0x95, 0x16, 0x7b, 0xcd, 0xd0, 0x86, 0xf3, 0x46,
0x58, 0x1d, 0x00, 0x03,
])
);
a = a >> 50;
assert_eq!(
a.into_repr(),
FsRepr([
0x67, 0xf6, 0x7b, 0x96, 0x11, 0x75, 0x1a, 0xbc, 0x2f, 0xb3, 0xa4, 0xca, 0x41, 0x53,
0xa5, 0xc5, 0x5e, 0x33, 0xb4, 0xe1, 0xbc, 0x11, 0x56, 0x07, 0xc0, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
);
a = a >> 130;
assert_eq!(
a.into_repr(),
FsRepr([
0xd7, 0x0c, 0x6d, 0x38, 0x6f, 0x84, 0xd5, 0x01, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
);
a = a >> 64;
assert_eq!(
a.into_repr(),
FsRepr([
0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
);
}
#[test]
fn test_fs_squaring() {
let a = Fs([

View File

@ -1,6 +1,6 @@
use super::{edwards, montgomery, JubjubEngine, JubjubParams, PrimeOrder};
use ff::{Field, PrimeField};
use ff::{Endianness, Field, PrimeField};
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
use rand_core::{RngCore, SeedableRng};
@ -372,7 +372,23 @@ fn test_jubjub_params<E: JubjubEngine>(params: &E::Params) {
let mut cur = E::Fs::one();
let max = (-E::Fs::one()) >> 1;
let max = {
// Grab char - 1 in little endian.
let mut tmp = (-E::Fs::one()).into_repr();
<E::Fs as PrimeField>::ReprEndianness::toggle_little_endian(&mut tmp);
// Shift right by 1 bit.
let mut borrow = 0;
for b in tmp.as_mut().iter_mut().rev() {
let new_borrow = *b & 1;
*b = (borrow << 7) | (*b >> 1);
borrow = new_borrow;
}
// Convert back to a field element.
<E::Fs as PrimeField>::ReprEndianness::toggle_little_endian(&mut tmp);
E::Fs::from_repr(tmp).unwrap()
};
let mut pacc = E::Fs::zero();
let mut nacc = E::Fs::zero();

View File

@ -1,7 +1,8 @@
//! Implementation of the Pedersen hash function used in Sapling.
use crate::jubjub::*;
use ff::Field;
use byteorder::{ByteOrder, LittleEndian};
use ff::{Endianness, Field, PrimeField};
use std::ops::{AddAssign, Neg};
#[derive(Copy, Clone)]
@ -85,17 +86,32 @@ where
let mut table: &[Vec<edwards::Point<E, _>>] =
&generators.next().expect("we don't have enough generators");
let window = JubjubBls12::pedersen_hash_exp_window_size();
let window_mask = (1 << window) - 1;
let window = JubjubBls12::pedersen_hash_exp_window_size() as usize;
let window_mask = (1u64 << window) - 1;
let mut acc = acc.into_repr();
<E::Fs as PrimeField>::ReprEndianness::toggle_little_endian(&mut acc);
let num_limbs: usize = acc.as_ref().len() / 8;
let mut limbs = vec![0u64; num_limbs + 1];
LittleEndian::read_u64_into(acc.as_ref(), &mut limbs[..num_limbs]);
let mut tmp = edwards::Point::zero();
while !acc.is_zero() {
let i = (acc & window_mask) as usize;
let mut pos = 0;
while pos < E::Fs::NUM_BITS as usize {
let u64_idx = pos / 64;
let bit_idx = pos % 64;
let i = (if bit_idx + window < 64 {
// This window's bits are contained in a single u64.
limbs[u64_idx] >> bit_idx
} else {
// Combine the current u64's bits with the bits from the next u64.
(limbs[u64_idx] >> bit_idx) | (limbs[u64_idx + 1] << (64 - bit_idx))
} & window_mask) as usize;
tmp = tmp.add(&table[0][i], params);
acc = acc >> window;
pos += window;
table = &table[1..];
}