mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-07-30 20:11:23 +00:00
Constant-time field square root
WARNING: THIS IS NOT FULLY CONSTANT TIME YET! This will be fixed once we migrate to the jubjub and bls12_381 crates.
This commit is contained in:
@@ -413,105 +413,82 @@ fn prime_field_constants_and_sqrt(
|
||||
);
|
||||
let generator = biguint_to_u64_vec((generator.clone() * &r) % &modulus, limbs);
|
||||
|
||||
let mod_minus_1_over_2 =
|
||||
biguint_to_u64_vec((&modulus - BigUint::from_str("1").unwrap()) >> 1, limbs);
|
||||
let legendre_impl = quote! {
|
||||
fn legendre(&self) -> ::ff::LegendreSymbol {
|
||||
// s = self^((modulus - 1) // 2)
|
||||
let s = self.pow(#mod_minus_1_over_2);
|
||||
if s == Self::zero() {
|
||||
::ff::LegendreSymbol::Zero
|
||||
} else if s == Self::one() {
|
||||
::ff::LegendreSymbol::QuadraticResidue
|
||||
} else {
|
||||
::ff::LegendreSymbol::QuadraticNonResidue
|
||||
let sqrt_impl = if (&modulus % BigUint::from_str("4").unwrap())
|
||||
== BigUint::from_str("3").unwrap()
|
||||
{
|
||||
let mod_plus_1_over_4 =
|
||||
biguint_to_u64_vec((&modulus + BigUint::from_str("1").unwrap()) >> 2, limbs);
|
||||
|
||||
quote! {
|
||||
impl ::ff::SqrtField for #name {
|
||||
fn sqrt(&self) -> ::subtle::CtOption<Self> {
|
||||
use ::subtle::ConstantTimeEq;
|
||||
|
||||
// Because r = 3 (mod 4)
|
||||
// sqrt can be done with only one exponentiation,
|
||||
// via the computation of self^((r + 1) // 4) (mod r)
|
||||
let sqrt = self.pow(#mod_plus_1_over_4);
|
||||
|
||||
::subtle::CtOption::new(
|
||||
sqrt,
|
||||
(sqrt * &sqrt).ct_eq(self), // Only return Some if it's the square root.
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (&modulus % BigUint::from_str("16").unwrap()) == BigUint::from_str("1").unwrap() {
|
||||
let t_minus_1_over_2 = biguint_to_u64_vec((&t - BigUint::one()) >> 1, limbs);
|
||||
|
||||
quote! {
|
||||
impl ::ff::SqrtField for #name {
|
||||
fn sqrt(&self) -> ::subtle::CtOption<Self> {
|
||||
// Tonelli-Shank's algorithm for q mod 16 = 1
|
||||
// https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
|
||||
use ::subtle::{ConditionallySelectable, ConstantTimeEq};
|
||||
|
||||
// w = self^((t - 1) // 2)
|
||||
let w = self.pow(#t_minus_1_over_2);
|
||||
|
||||
let mut v = S;
|
||||
let mut x = *self * &w;
|
||||
let mut b = x * &w;
|
||||
|
||||
// Initialize z as the 2^S root of unity.
|
||||
let mut z = #name(ROOT_OF_UNITY);
|
||||
|
||||
for max_v in (1..=S).rev() {
|
||||
let mut k = 1;
|
||||
let mut tmp = b.square();
|
||||
let mut j_less_than_v: ::subtle::Choice = 1.into();
|
||||
|
||||
for j in 2..max_v {
|
||||
let tmp_is_one = tmp.ct_eq(&#name::one());
|
||||
let squared = #name::conditional_select(&tmp, &z, tmp_is_one).square();
|
||||
tmp = #name::conditional_select(&squared, &tmp, tmp_is_one);
|
||||
let new_z = #name::conditional_select(&z, &squared, tmp_is_one);
|
||||
j_less_than_v &= !j.ct_eq(&v);
|
||||
k = u32::conditional_select(&j, &k, tmp_is_one);
|
||||
z = #name::conditional_select(&z, &new_z, j_less_than_v);
|
||||
}
|
||||
|
||||
let result = x * &z;
|
||||
x = #name::conditional_select(&result, &x, b.ct_eq(&#name::one()));
|
||||
z = z.square();
|
||||
b = b * &z;
|
||||
v = k;
|
||||
}
|
||||
|
||||
::subtle::CtOption::new(
|
||||
x,
|
||||
(x * &x).ct_eq(self), // Only return Some if it's the square root.
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
quote! {}
|
||||
};
|
||||
|
||||
let sqrt_impl =
|
||||
if (&modulus % BigUint::from_str("4").unwrap()) == BigUint::from_str("3").unwrap() {
|
||||
let mod_minus_3_over_4 =
|
||||
biguint_to_u64_vec((&modulus - BigUint::from_str("3").unwrap()) >> 2, limbs);
|
||||
|
||||
// Compute -R as (m - r)
|
||||
let rneg = biguint_to_u64_vec(&modulus - &r, limbs);
|
||||
|
||||
quote! {
|
||||
impl ::ff::SqrtField for #name {
|
||||
#legendre_impl
|
||||
|
||||
fn sqrt(&self) -> Option<Self> {
|
||||
// Shank's algorithm for q mod 4 = 3
|
||||
// https://eprint.iacr.org/2012/685.pdf (page 9, algorithm 2)
|
||||
|
||||
let mut a1 = self.pow(#mod_minus_3_over_4);
|
||||
|
||||
let mut a0 = a1.square();
|
||||
a0.mul_assign(self);
|
||||
|
||||
if a0.0 == #repr(#rneg) {
|
||||
None
|
||||
} else {
|
||||
a1.mul_assign(self);
|
||||
Some(a1)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (&modulus % BigUint::from_str("16").unwrap()) == BigUint::from_str("1").unwrap() {
|
||||
let t_plus_1_over_2 = biguint_to_u64_vec((&t + BigUint::one()) >> 1, limbs);
|
||||
let t = biguint_to_u64_vec(t.clone(), limbs);
|
||||
|
||||
quote! {
|
||||
impl ::ff::SqrtField for #name {
|
||||
#legendre_impl
|
||||
|
||||
fn sqrt(&self) -> Option<Self> {
|
||||
// Tonelli-Shank's algorithm for q mod 16 = 1
|
||||
// https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
|
||||
|
||||
match self.legendre() {
|
||||
::ff::LegendreSymbol::Zero => Some(*self),
|
||||
::ff::LegendreSymbol::QuadraticNonResidue => None,
|
||||
::ff::LegendreSymbol::QuadraticResidue => {
|
||||
let mut c = #name(ROOT_OF_UNITY);
|
||||
let mut r = self.pow(#t_plus_1_over_2);
|
||||
let mut t = self.pow(#t);
|
||||
let mut m = S;
|
||||
|
||||
while t != Self::one() {
|
||||
let mut i = 1;
|
||||
{
|
||||
let mut t2i = t.square();
|
||||
loop {
|
||||
if t2i == Self::one() {
|
||||
break;
|
||||
}
|
||||
t2i = t2i.square();
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
|
||||
for _ in 0..(m - i - 1) {
|
||||
c = c.square();
|
||||
}
|
||||
r.mul_assign(&c);
|
||||
c = c.square();
|
||||
t.mul_assign(&c);
|
||||
m = i;
|
||||
}
|
||||
|
||||
Some(r)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
quote! {}
|
||||
};
|
||||
|
||||
// Compute R^2 mod m
|
||||
let r2 = biguint_to_u64_vec((&r * &r) % &modulus, limbs);
|
||||
|
||||
@@ -771,6 +748,13 @@ fn prime_field_impl(
|
||||
let multiply_impl = mul_impl(quote! {self}, quote! {other}, limbs);
|
||||
let montgomery_impl = mont_impl(limbs);
|
||||
|
||||
// (self.0).0[0].ct_eq(&(other.0).0[0]) & (self.0).0[1].ct_eq(&(other.0).0[1]) & ...
|
||||
let mut ct_eq_impl = proc_macro2::TokenStream::new();
|
||||
ct_eq_impl.append_separated(
|
||||
(0..limbs).map(|i| quote! { (self.0).0[#i].ct_eq(&(other.0).0[#i]) }),
|
||||
proc_macro2::Punct::new('&', proc_macro2::Spacing::Alone),
|
||||
);
|
||||
|
||||
// (self.0).0[0], (self.0).0[1], ..., 0, 0, 0, 0, ...
|
||||
let mut into_repr_params = proc_macro2::TokenStream::new();
|
||||
into_repr_params.append_separated(
|
||||
@@ -797,6 +781,12 @@ fn prime_field_impl(
|
||||
}
|
||||
}
|
||||
|
||||
impl ::subtle::ConstantTimeEq for #name {
|
||||
fn ct_eq(&self, other: &#name) -> ::subtle::Choice {
|
||||
#ct_eq_impl
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::cmp::PartialEq for #name {
|
||||
fn eq(&self, other: &#name) -> bool {
|
||||
self.0 == other.0
|
||||
|
@@ -94,12 +94,9 @@ pub trait Field:
|
||||
|
||||
/// This trait represents an element of a field that has a square root operation described for it.
|
||||
pub trait SqrtField: Field {
|
||||
/// Returns the Legendre symbol of the field element.
|
||||
fn legendre(&self) -> LegendreSymbol;
|
||||
|
||||
/// Returns the square root of the field element, if it is
|
||||
/// quadratic residue.
|
||||
fn sqrt(&self) -> Option<Self>;
|
||||
fn sqrt(&self) -> CtOption<Self>;
|
||||
}
|
||||
|
||||
/// This trait represents a wrapper around a biginteger which can encode any element of a particular
|
||||
@@ -199,13 +196,6 @@ pub trait PrimeFieldRepr:
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq)]
|
||||
pub enum LegendreSymbol {
|
||||
Zero = 0,
|
||||
QuadraticResidue = 1,
|
||||
QuadraticNonResidue = -1,
|
||||
}
|
||||
|
||||
/// An error that may occur when trying to interpret a `PrimeFieldRepr` as a
|
||||
/// `PrimeField` element.
|
||||
#[derive(Debug)]
|
||||
|
Reference in New Issue
Block a user