Constant-time field square root

WARNING: THIS IS NOT FULLY CONSTANT TIME YET!

This will be fixed once we migrate to the jubjub and bls12_381 crates.
This commit is contained in:
Jack Grigg
2019-05-15 10:35:14 +01:00
parent 40749da9a7
commit 3d2acf48ce
14 changed files with 223 additions and 345 deletions

View File

@@ -1,12 +1,11 @@
use byteorder::{ByteOrder, LittleEndian};
use ff::{
adc, mac_with_carry, sbb, BitIterator, Field,
LegendreSymbol::{self, *},
PrimeField, PrimeFieldDecodingError, PrimeFieldRepr, SqrtField,
adc, mac_with_carry, sbb, BitIterator, Field, PrimeField, PrimeFieldDecodingError,
PrimeFieldRepr, SqrtField,
};
use rand_core::RngCore;
use std::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use subtle::{Choice, ConditionallySelectable, CtOption};
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
use super::ToUniform;
@@ -264,6 +263,15 @@ impl Default for Fs {
}
}
impl ConstantTimeEq for Fs {
fn ct_eq(&self, other: &Fs) -> Choice {
(self.0).0[0].ct_eq(&(other.0).0[0])
& (self.0).0[1].ct_eq(&(other.0).0[1])
& (self.0).0[2].ct_eq(&(other.0).0[2])
& (self.0).0[3].ct_eq(&(other.0).0[3])
}
}
impl ::std::fmt::Display for Fs {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
write!(f, "Fs({})", self.into_repr())
@@ -731,24 +739,7 @@ impl ToUniform for Fs {
}
impl SqrtField for Fs {
fn legendre(&self) -> LegendreSymbol {
// s = self^((s - 1) // 2)
let s = self.pow([
0x684b872f6b7b965b,
0x53341049e6640841,
0x83339d80809a1d80,
0x73eda753299d7d4,
]);
if s == Self::zero() {
Zero
} else if s == Self::one() {
QuadraticResidue
} else {
QuadraticNonResidue
}
}
fn sqrt(&self) -> Option<Self> {
fn sqrt(&self) -> CtOption<Self> {
// Shank's algorithm for s mod 4 = 3
// https://eprint.iacr.org/2012/685.pdf (page 9, algorithm 2)
@@ -761,13 +752,9 @@ impl SqrtField for Fs {
]);
let mut a0 = a1.square();
a0.mul_assign(self);
a1.mul_assign(self);
if a0 == NEGATIVE_ONE {
None
} else {
a1.mul_assign(self);
Some(a1)
}
CtOption::new(a1, !a0.ct_eq(&NEGATIVE_ONE))
}
}
@@ -1025,27 +1012,6 @@ fn test_fs_repr_sub_noborrow() {
}
}
#[test]
fn test_fs_legendre() {
assert_eq!(QuadraticResidue, Fs::one().legendre());
assert_eq!(Zero, Fs::zero().legendre());
let e = FsRepr([
0x8385eec23df1f88e,
0x9a01fb412b2dba16,
0x4c928edcdd6c22f,
0x9f2df7ef69ecef9,
]);
assert_eq!(QuadraticResidue, Fs::from_repr(e).unwrap().legendre());
let e = FsRepr([
0xe8ed9f299da78568,
0x35efdebc88b2209,
0xc82125cb1f916dbe,
0x6813d2b38c39bd0,
]);
assert_eq!(QuadraticNonResidue, Fs::from_repr(e).unwrap().legendre());
}
#[test]
fn test_fr_repr_add_nocarry() {
let mut rng = XorShiftRng::from_seed([
@@ -1569,8 +1535,9 @@ fn test_fs_sqrt() {
// Ensure sqrt(a)^2 = a for random a
let a = Fs::random(&mut rng);
if let Some(tmp) = a.sqrt() {
assert_eq!(a, tmp.square());
let tmp = a.sqrt();
if tmp.is_some().into() {
assert_eq!(a, tmp.unwrap().square());
}
}
}
@@ -1730,5 +1697,5 @@ fn test_fs_root_of_unity() {
Fs::root_of_unity()
);
assert_eq!(Fs::root_of_unity().pow([1 << Fs::S]), Fs::one());
assert!(Fs::multiplicative_generator().sqrt().is_none());
assert!(bool::from(Fs::multiplicative_generator().sqrt().is_none()));
}