ff: Remove PrimeFieldRepr trait

The ff::PrimeField::Repr associated type now has the minimal necessary
bounds, which can be satisfied by a newtype around a byte array.
This commit is contained in:
Jack Grigg
2020-04-23 17:32:04 +12:00
parent 1fe3e3784c
commit 49f119fb03
35 changed files with 1705 additions and 3634 deletions

View File

@@ -3,140 +3,9 @@ use rand_core::SeedableRng;
use rand_xorshift::XorShiftRng;
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
use ff::{Field, PrimeField, PrimeFieldRepr, SqrtField};
use ff::{Field, PrimeField, SqrtField};
use pairing::bls12_381::*;
fn bench_fq_repr_add_nocarry(c: &mut Criterion) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
let v: Vec<(FqRepr, FqRepr)> = (0..SAMPLES)
.map(|_| {
let mut tmp1 = Fq::random(&mut rng).into_repr();
let mut tmp2 = Fq::random(&mut rng).into_repr();
// Shave a few bits off to avoid overflow.
for _ in 0..3 {
tmp1.div2();
tmp2.div2();
}
(tmp1, tmp2)
})
.collect();
let mut count = 0;
c.bench_function("FqRepr::add_nocarry", |b| {
b.iter(|| {
let mut tmp = v[count].0;
tmp.add_nocarry(&v[count].1);
count = (count + 1) % SAMPLES;
tmp
})
});
}
fn bench_fq_repr_sub_noborrow(c: &mut Criterion) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
let v: Vec<(FqRepr, FqRepr)> = (0..SAMPLES)
.map(|_| {
let tmp1 = Fq::random(&mut rng).into_repr();
let mut tmp2 = tmp1;
// Ensure tmp2 is smaller than tmp1.
for _ in 0..10 {
tmp2.div2();
}
(tmp1, tmp2)
})
.collect();
let mut count = 0;
c.bench_function("FqRepr::sub_noborrow", |b| {
b.iter(|| {
let mut tmp = v[count].0;
tmp.sub_noborrow(&v[count].1);
count = (count + 1) % SAMPLES;
tmp
})
});
}
fn bench_fq_repr_num_bits(c: &mut Criterion) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
let v: Vec<FqRepr> = (0..SAMPLES)
.map(|_| Fq::random(&mut rng).into_repr())
.collect();
let mut count = 0;
c.bench_function("FqRepr::num_bits", |b| {
b.iter(|| {
let tmp = v[count].num_bits();
count = (count + 1) % SAMPLES;
tmp
})
});
}
fn bench_fq_repr_mul2(c: &mut Criterion) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
let v: Vec<FqRepr> = (0..SAMPLES)
.map(|_| Fq::random(&mut rng).into_repr())
.collect();
let mut count = 0;
c.bench_function("FqRepr::mul2", |b| {
b.iter(|| {
let mut tmp = v[count];
tmp.mul2();
count = (count + 1) % SAMPLES;
tmp
})
});
}
fn bench_fq_repr_div2(c: &mut Criterion) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
let v: Vec<FqRepr> = (0..SAMPLES)
.map(|_| Fq::random(&mut rng).into_repr())
.collect();
let mut count = 0;
c.bench_function("FqRepr::div2", |b| {
b.iter(|| {
let mut tmp = v[count];
tmp.div2();
count = (count + 1) % SAMPLES;
tmp
})
});
}
fn bench_fq_add_assign(c: &mut Criterion) {
const SAMPLES: usize = 1000;
@@ -328,11 +197,6 @@ fn bench_fq_from_repr(c: &mut Criterion) {
criterion_group!(
benches,
bench_fq_repr_add_nocarry,
bench_fq_repr_sub_noborrow,
bench_fq_repr_num_bits,
bench_fq_repr_mul2,
bench_fq_repr_div2,
bench_fq_add_assign,
bench_fq_sub_assign,
bench_fq_mul_assign,

View File

@@ -3,140 +3,9 @@ use rand_core::SeedableRng;
use rand_xorshift::XorShiftRng;
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
use ff::{Field, PrimeField, PrimeFieldRepr, SqrtField};
use ff::{Field, PrimeField, SqrtField};
use pairing::bls12_381::*;
fn bench_fr_repr_add_nocarry(c: &mut Criterion) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
let v: Vec<(FrRepr, FrRepr)> = (0..SAMPLES)
.map(|_| {
let mut tmp1 = Fr::random(&mut rng).into_repr();
let mut tmp2 = Fr::random(&mut rng).into_repr();
// Shave a few bits off to avoid overflow.
for _ in 0..3 {
tmp1.div2();
tmp2.div2();
}
(tmp1, tmp2)
})
.collect();
let mut count = 0;
c.bench_function("FrRepr::add_nocarry", |b| {
b.iter(|| {
let mut tmp = v[count].0;
tmp.add_nocarry(&v[count].1);
count = (count + 1) % SAMPLES;
tmp
})
});
}
fn bench_fr_repr_sub_noborrow(c: &mut Criterion) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
let v: Vec<(FrRepr, FrRepr)> = (0..SAMPLES)
.map(|_| {
let tmp1 = Fr::random(&mut rng).into_repr();
let mut tmp2 = tmp1;
// Ensure tmp2 is smaller than tmp1.
for _ in 0..10 {
tmp2.div2();
}
(tmp1, tmp2)
})
.collect();
let mut count = 0;
c.bench_function("FrRepr::sub_noborrow", |b| {
b.iter(|| {
let mut tmp = v[count].0;
tmp.sub_noborrow(&v[count].1);
count = (count + 1) % SAMPLES;
tmp
})
});
}
fn bench_fr_repr_num_bits(c: &mut Criterion) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
let v: Vec<FrRepr> = (0..SAMPLES)
.map(|_| Fr::random(&mut rng).into_repr())
.collect();
let mut count = 0;
c.bench_function("FrRepr::num_bits", |b| {
b.iter(|| {
let tmp = v[count].num_bits();
count = (count + 1) % SAMPLES;
tmp
})
});
}
fn bench_fr_repr_mul2(c: &mut Criterion) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
let v: Vec<FrRepr> = (0..SAMPLES)
.map(|_| Fr::random(&mut rng).into_repr())
.collect();
let mut count = 0;
c.bench_function("FrRepr::mul2", |b| {
b.iter(|| {
let mut tmp = v[count];
tmp.mul2();
count = (count + 1) % SAMPLES;
tmp
})
});
}
fn bench_fr_repr_div2(c: &mut Criterion) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
let v: Vec<FrRepr> = (0..SAMPLES)
.map(|_| Fr::random(&mut rng).into_repr())
.collect();
let mut count = 0;
c.bench_function("FrRepr::div2", |b| {
b.iter(|| {
let mut tmp = v[count];
tmp.div2();
count = (count + 1) % SAMPLES;
tmp
})
});
}
fn bench_fr_add_assign(c: &mut Criterion) {
const SAMPLES: usize = 1000;
@@ -328,11 +197,6 @@ fn bench_fr_from_repr(c: &mut Criterion) {
criterion_group!(
benches,
bench_fr_repr_add_nocarry,
bench_fr_repr_sub_noborrow,
bench_fr_repr_num_bits,
bench_fr_repr_mul2,
bench_fr_repr_div2,
bench_fr_add_assign,
bench_fr_sub_assign,
bench_fr_mul_assign,

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -302,6 +302,11 @@ impl SqrtField for Fq2 {
}
}
#[cfg(test)]
use super::fq::FqRepr;
#[cfg(test)]
use ff::PrimeField;
#[test]
fn test_fq2_ordering() {
let mut a = Fq2 {
@@ -353,9 +358,6 @@ fn test_fq2_basics() {
#[test]
fn test_fq2_squaring() {
use super::fq::FqRepr;
use ff::PrimeField;
let a = Fq2 {
c0: Fq::one(),
c1: Fq::one(),
@@ -381,21 +383,17 @@ fn test_fq2_squaring() {
let a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x9c2c6309bbf8b598,
0x4eef5c946536f602,
0x90e34aab6fb6a6bd,
0xf7f295a94e58ae7c,
0x41b76dcc1c3fbe5e,
0x7080c5fa1d8e042,
0x07, 0x08, 0x0c, 0x5f, 0xa1, 0xd8, 0xe0, 0x42, 0x41, 0xb7, 0x6d, 0xcc, 0x1c, 0x3f,
0xbe, 0x5e, 0xf7, 0xf2, 0x95, 0xa9, 0x4e, 0x58, 0xae, 0x7c, 0x90, 0xe3, 0x4a, 0xab,
0x6f, 0xb6, 0xa6, 0xbd, 0x4e, 0xef, 0x5c, 0x94, 0x65, 0x36, 0xf6, 0x02, 0x9c, 0x2c,
0x63, 0x09, 0xbb, 0xf8, 0xb5, 0x98,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x38f473b3c870a4ab,
0x6ad3291177c8c7e5,
0xdac5a4c911a4353e,
0xbfb99020604137a0,
0xfc58a7b7be815407,
0x10d1615e75250a21,
0x10, 0xd1, 0x61, 0x5e, 0x75, 0x25, 0x0a, 0x21, 0xfc, 0x58, 0xa7, 0xb7, 0xbe, 0x81,
0x54, 0x07, 0xbf, 0xb9, 0x90, 0x20, 0x60, 0x41, 0x37, 0xa0, 0xda, 0xc5, 0xa4, 0xc9,
0x11, 0xa4, 0x35, 0x3e, 0x6a, 0xd3, 0x29, 0x11, 0x77, 0xc8, 0xc7, 0xe5, 0x38, 0xf4,
0x73, 0xb3, 0xc8, 0x70, 0xa4, 0xab,
]))
.unwrap(),
};
@@ -403,21 +401,17 @@ fn test_fq2_squaring() {
a.square(),
Fq2 {
c0: Fq::from_repr(FqRepr([
0xf262c28c538bcf68,
0xb9f2a66eae1073ba,
0xdc46ab8fad67ae0,
0xcb674157618da176,
0x4cf17b5893c3d327,
0x7eac81369c43361
0x07, 0xea, 0xc8, 0x13, 0x69, 0xc4, 0x33, 0x61, 0x4c, 0xf1, 0x7b, 0x58, 0x93, 0xc3,
0xd3, 0x27, 0xcb, 0x67, 0x41, 0x57, 0x61, 0x8d, 0xa1, 0x76, 0x0d, 0xc4, 0x6a, 0xb8,
0xfa, 0xd6, 0x7a, 0xe0, 0xb9, 0xf2, 0xa6, 0x6e, 0xae, 0x10, 0x73, 0xba, 0xf2, 0x62,
0xc2, 0x8c, 0x53, 0x8b, 0xcf, 0x68,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0xc1579cf58e980cf8,
0xa23eb7e12dd54d98,
0xe75138bce4cec7aa,
0x38d0d7275a9689e1,
0x739c983042779a65,
0x1542a61c8a8db994
0x15, 0x42, 0xa6, 0x1c, 0x8a, 0x8d, 0xb9, 0x94, 0x73, 0x9c, 0x98, 0x30, 0x42, 0x77,
0x9a, 0x65, 0x38, 0xd0, 0xd7, 0x27, 0x5a, 0x96, 0x89, 0xe1, 0xe7, 0x51, 0x38, 0xbc,
0xe4, 0xce, 0xc7, 0xaa, 0xa2, 0x3e, 0xb7, 0xe1, 0x2d, 0xd5, 0x4d, 0x98, 0xc1, 0x57,
0x9c, 0xf5, 0x8e, 0x98, 0x0c, 0xf8,
]))
.unwrap(),
}
@@ -431,41 +425,33 @@ fn test_fq2_mul() {
let mut a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x85c9f989e1461f03,
0xa2e33c333449a1d6,
0x41e461154a7354a3,
0x9ee53e7e84d7532e,
0x1c202d8ed97afb45,
0x51d3f9253e2516f,
0x05, 0x1d, 0x3f, 0x92, 0x53, 0xe2, 0x51, 0x6f, 0x1c, 0x20, 0x2d, 0x8e, 0xd9, 0x7a,
0xfb, 0x45, 0x9e, 0xe5, 0x3e, 0x7e, 0x84, 0xd7, 0x53, 0x2e, 0x41, 0xe4, 0x61, 0x15,
0x4a, 0x73, 0x54, 0xa3, 0xa2, 0xe3, 0x3c, 0x33, 0x34, 0x49, 0xa1, 0xd6, 0x85, 0xc9,
0xf9, 0x89, 0xe1, 0x46, 0x1f, 0x03,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0xa7348a8b511aedcf,
0x143c215d8176b319,
0x4cc48081c09b8903,
0x9533e4a9a5158be,
0x7a5e1ecb676d65f9,
0x180c3ee46656b008,
0x18, 0x0c, 0x3e, 0xe4, 0x66, 0x56, 0xb0, 0x08, 0x7a, 0x5e, 0x1e, 0xcb, 0x67, 0x6d,
0x65, 0xf9, 0x09, 0x53, 0x3e, 0x4a, 0x9a, 0x51, 0x58, 0xbe, 0x4c, 0xc4, 0x80, 0x81,
0xc0, 0x9b, 0x89, 0x03, 0x14, 0x3c, 0x21, 0x5d, 0x81, 0x76, 0xb3, 0x19, 0xa7, 0x34,
0x8a, 0x8b, 0x51, 0x1a, 0xed, 0xcf,
]))
.unwrap(),
};
a.mul_assign(&Fq2 {
c0: Fq::from_repr(FqRepr([
0xe21f9169805f537e,
0xfc87e62e179c285d,
0x27ece175be07a531,
0xcd460f9f0c23e430,
0x6c9110292bfa409,
0x2c93a72eb8af83e,
0x02, 0xc9, 0x3a, 0x72, 0xeb, 0x8a, 0xf8, 0x3e, 0x06, 0xc9, 0x11, 0x02, 0x92, 0xbf,
0xa4, 0x09, 0xcd, 0x46, 0x0f, 0x9f, 0x0c, 0x23, 0xe4, 0x30, 0x27, 0xec, 0xe1, 0x75,
0xbe, 0x07, 0xa5, 0x31, 0xfc, 0x87, 0xe6, 0x2e, 0x17, 0x9c, 0x28, 0x5d, 0xe2, 0x1f,
0x91, 0x69, 0x80, 0x5f, 0x53, 0x7e,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x4b1c3f936d8992d4,
0x1d2a72916dba4c8a,
0x8871c508658d1e5f,
0x57a06d3135a752ae,
0x634cd3c6c565096d,
0x19e17334d4e93558,
0x19, 0xe1, 0x73, 0x34, 0xd4, 0xe9, 0x35, 0x58, 0x63, 0x4c, 0xd3, 0xc6, 0xc5, 0x65,
0x09, 0x6d, 0x57, 0xa0, 0x6d, 0x31, 0x35, 0xa7, 0x52, 0xae, 0x88, 0x71, 0xc5, 0x08,
0x65, 0x8d, 0x1e, 0x5f, 0x1d, 0x2a, 0x72, 0x91, 0x6d, 0xba, 0x4c, 0x8a, 0x4b, 0x1c,
0x3f, 0x93, 0x6d, 0x89, 0x92, 0xd4,
]))
.unwrap(),
});
@@ -473,21 +459,17 @@ fn test_fq2_mul() {
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x95b5127e6360c7e4,
0xde29c31a19a6937e,
0xf61a96dacf5a39bc,
0x5511fe4d84ee5f78,
0x5310a202d92f9963,
0x1751afbe166e5399
0x17, 0x51, 0xaf, 0xbe, 0x16, 0x6e, 0x53, 0x99, 0x53, 0x10, 0xa2, 0x02, 0xd9, 0x2f,
0x99, 0x63, 0x55, 0x11, 0xfe, 0x4d, 0x84, 0xee, 0x5f, 0x78, 0xf6, 0x1a, 0x96, 0xda,
0xcf, 0x5a, 0x39, 0xbc, 0xde, 0x29, 0xc3, 0x1a, 0x19, 0xa6, 0x93, 0x7e, 0x95, 0xb5,
0x12, 0x7e, 0x63, 0x60, 0xc7, 0xe4,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x84af0e1bd630117a,
0x6c63cd4da2c2aa7,
0x5ba6e5430e883d40,
0xc975106579c275ee,
0x33a9ac82ce4c5083,
0x1ef1a36c201589d
0x01, 0xef, 0x1a, 0x36, 0xc2, 0x01, 0x58, 0x9d, 0x33, 0xa9, 0xac, 0x82, 0xce, 0x4c,
0x50, 0x83, 0xc9, 0x75, 0x10, 0x65, 0x79, 0xc2, 0x75, 0xee, 0x5b, 0xa6, 0xe5, 0x43,
0x0e, 0x88, 0x3d, 0x40, 0x06, 0xc6, 0x3c, 0xd4, 0xda, 0x2c, 0x2a, 0xa7, 0x84, 0xaf,
0x0e, 0x1b, 0xd6, 0x30, 0x11, 0x7a,
]))
.unwrap(),
}
@@ -503,21 +485,17 @@ fn test_fq2_invert() {
let a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x85c9f989e1461f03,
0xa2e33c333449a1d6,
0x41e461154a7354a3,
0x9ee53e7e84d7532e,
0x1c202d8ed97afb45,
0x51d3f9253e2516f,
0x05, 0x1d, 0x3f, 0x92, 0x53, 0xe2, 0x51, 0x6f, 0x1c, 0x20, 0x2d, 0x8e, 0xd9, 0x7a,
0xfb, 0x45, 0x9e, 0xe5, 0x3e, 0x7e, 0x84, 0xd7, 0x53, 0x2e, 0x41, 0xe4, 0x61, 0x15,
0x4a, 0x73, 0x54, 0xa3, 0xa2, 0xe3, 0x3c, 0x33, 0x34, 0x49, 0xa1, 0xd6, 0x85, 0xc9,
0xf9, 0x89, 0xe1, 0x46, 0x1f, 0x03,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0xa7348a8b511aedcf,
0x143c215d8176b319,
0x4cc48081c09b8903,
0x9533e4a9a5158be,
0x7a5e1ecb676d65f9,
0x180c3ee46656b008,
0x18, 0x0c, 0x3e, 0xe4, 0x66, 0x56, 0xb0, 0x08, 0x7a, 0x5e, 0x1e, 0xcb, 0x67, 0x6d,
0x65, 0xf9, 0x09, 0x53, 0x3e, 0x4a, 0x9a, 0x51, 0x58, 0xbe, 0x4c, 0xc4, 0x80, 0x81,
0xc0, 0x9b, 0x89, 0x03, 0x14, 0x3c, 0x21, 0x5d, 0x81, 0x76, 0xb3, 0x19, 0xa7, 0x34,
0x8a, 0x8b, 0x51, 0x1a, 0xed, 0xcf,
]))
.unwrap(),
};
@@ -526,21 +504,17 @@ fn test_fq2_invert() {
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x70300f9bcb9e594,
0xe5ecda5fdafddbb2,
0x64bef617d2915a8f,
0xdfba703293941c30,
0xa6c3d8f9586f2636,
0x1351ef01941b70c4
0x13, 0x51, 0xef, 0x01, 0x94, 0x1b, 0x70, 0xc4, 0xa6, 0xc3, 0xd8, 0xf9, 0x58, 0x6f,
0x26, 0x36, 0xdf, 0xba, 0x70, 0x32, 0x93, 0x94, 0x1c, 0x30, 0x64, 0xbe, 0xf6, 0x17,
0xd2, 0x91, 0x5a, 0x8f, 0xe5, 0xec, 0xda, 0x5f, 0xda, 0xfd, 0xdb, 0xb2, 0x07, 0x03,
0x00, 0xf9, 0xbc, 0xb9, 0xe5, 0x94,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x8c39fd76a8312cb4,
0x15d7b6b95defbff0,
0x947143f89faedee9,
0xcbf651a0f367afb2,
0xdf4e54f0d3ef15a6,
0x103bdf241afb0019
0x10, 0x3b, 0xdf, 0x24, 0x1a, 0xfb, 0x00, 0x19, 0xdf, 0x4e, 0x54, 0xf0, 0xd3, 0xef,
0x15, 0xa6, 0xcb, 0xf6, 0x51, 0xa0, 0xf3, 0x67, 0xaf, 0xb2, 0x94, 0x71, 0x43, 0xf8,
0x9f, 0xae, 0xde, 0xe9, 0x15, 0xd7, 0xb6, 0xb9, 0x5d, 0xef, 0xbf, 0xf0, 0x8c, 0x39,
0xfd, 0x76, 0xa8, 0x31, 0x2c, 0xb4,
]))
.unwrap(),
}
@@ -554,41 +528,33 @@ fn test_fq2_addition() {
let mut a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc,
0x00, 0xf8, 0xd2, 0x95, 0xb2, 0xde, 0xd9, 0xdc, 0xcc, 0xc6, 0x49, 0xc4, 0xb9, 0x53,
0x2b, 0xf3, 0xb9, 0x66, 0xce, 0x3b, 0xc2, 0x10, 0x8b, 0x13, 0x8b, 0x1a, 0x52, 0xe0,
0xa9, 0x0f, 0x59, 0xed, 0x11, 0xe5, 0x9e, 0xa2, 0x21, 0xa3, 0xb6, 0xd2, 0x2d, 0x00,
0x78, 0x03, 0x69, 0x23, 0xff, 0xc7,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x977df6efcdaee0db,
0x946ae52d684fa7ed,
0xbe203411c66fb3a5,
0xb3f8afc0ee248cad,
0x4e464dea5bcfd41e,
0x12d1137b8a6a837,
0x01, 0x2d, 0x11, 0x37, 0xb8, 0xa6, 0xa8, 0x37, 0x4e, 0x46, 0x4d, 0xea, 0x5b, 0xcf,
0xd4, 0x1e, 0xb3, 0xf8, 0xaf, 0xc0, 0xee, 0x24, 0x8c, 0xad, 0xbe, 0x20, 0x34, 0x11,
0xc6, 0x6f, 0xb3, 0xa5, 0x94, 0x6a, 0xe5, 0x2d, 0x68, 0x4f, 0xa7, 0xed, 0x97, 0x7d,
0xf6, 0xef, 0xcd, 0xae, 0xe0, 0xdb,
]))
.unwrap(),
};
a.add_assign(&Fq2 {
c0: Fq::from_repr(FqRepr([
0x619a02d78dc70ef2,
0xb93adfc9119e33e8,
0x4bf0b99a9f0dca12,
0x3b88899a42a6318f,
0x986a4a62fa82a49d,
0x13ce433fa26027f5,
0x13, 0xce, 0x43, 0x3f, 0xa2, 0x60, 0x27, 0xf5, 0x98, 0x6a, 0x4a, 0x62, 0xfa, 0x82,
0xa4, 0x9d, 0x3b, 0x88, 0x89, 0x9a, 0x42, 0xa6, 0x31, 0x8f, 0x4b, 0xf0, 0xb9, 0x9a,
0x9f, 0x0d, 0xca, 0x12, 0xb9, 0x3a, 0xdf, 0xc9, 0x11, 0x9e, 0x33, 0xe8, 0x61, 0x9a,
0x02, 0xd7, 0x8d, 0xc7, 0x0e, 0xf2,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x66323bf80b58b9b9,
0xa1379b6facf6e596,
0x402aef1fb797e32f,
0x2236f55246d0d44d,
0x4c8c1800eb104566,
0x11d6e20e986c2085,
0x11, 0xd6, 0xe2, 0x0e, 0x98, 0x6c, 0x20, 0x85, 0x4c, 0x8c, 0x18, 0x00, 0xeb, 0x10,
0x45, 0x66, 0x22, 0x36, 0xf5, 0x52, 0x46, 0xd0, 0xd4, 0x4d, 0x40, 0x2a, 0xef, 0x1f,
0xb7, 0x97, 0xe3, 0x2f, 0xa1, 0x37, 0x9b, 0x6f, 0xac, 0xf6, 0xe5, 0x96, 0x66, 0x32,
0x3b, 0xf8, 0x0b, 0x58, 0xb9, 0xb9,
]))
.unwrap(),
});
@@ -596,21 +562,17 @@ fn test_fq2_addition() {
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x8e9a7adaf6eb0eb9,
0xcb207e6b3341eaba,
0xd70b0c7b481d23ff,
0xf4ef57d604b6bca2,
0x65309427b3d5d090,
0x14c715d5553f01d2
0x14, 0xc7, 0x15, 0xd5, 0x55, 0x3f, 0x01, 0xd2, 0x65, 0x30, 0x94, 0x27, 0xb3, 0xd5,
0xd0, 0x90, 0xf4, 0xef, 0x57, 0xd6, 0x04, 0xb6, 0xbc, 0xa2, 0xd7, 0x0b, 0x0c, 0x7b,
0x48, 0x1d, 0x23, 0xff, 0xcb, 0x20, 0x7e, 0x6b, 0x33, 0x41, 0xea, 0xba, 0x8e, 0x9a,
0x7a, 0xda, 0xf6, 0xeb, 0x0e, 0xb9,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0xfdb032e7d9079a94,
0x35a2809d15468d83,
0xfe4b23317e0796d5,
0xd62fa51334f560fa,
0x9ad265eb46e01984,
0x1303f3465112c8bc
0x13, 0x03, 0xf3, 0x46, 0x51, 0x12, 0xc8, 0xbc, 0x9a, 0xd2, 0x65, 0xeb, 0x46, 0xe0,
0x19, 0x84, 0xd6, 0x2f, 0xa5, 0x13, 0x34, 0xf5, 0x60, 0xfa, 0xfe, 0x4b, 0x23, 0x31,
0x7e, 0x07, 0x96, 0xd5, 0x35, 0xa2, 0x80, 0x9d, 0x15, 0x46, 0x8d, 0x83, 0xfd, 0xb0,
0x32, 0xe7, 0xd9, 0x07, 0x9a, 0x94,
]))
.unwrap(),
}
@@ -624,41 +586,33 @@ fn test_fq2_subtraction() {
let mut a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc,
0x00, 0xf8, 0xd2, 0x95, 0xb2, 0xde, 0xd9, 0xdc, 0xcc, 0xc6, 0x49, 0xc4, 0xb9, 0x53,
0x2b, 0xf3, 0xb9, 0x66, 0xce, 0x3b, 0xc2, 0x10, 0x8b, 0x13, 0x8b, 0x1a, 0x52, 0xe0,
0xa9, 0x0f, 0x59, 0xed, 0x11, 0xe5, 0x9e, 0xa2, 0x21, 0xa3, 0xb6, 0xd2, 0x2d, 0x00,
0x78, 0x03, 0x69, 0x23, 0xff, 0xc7,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x977df6efcdaee0db,
0x946ae52d684fa7ed,
0xbe203411c66fb3a5,
0xb3f8afc0ee248cad,
0x4e464dea5bcfd41e,
0x12d1137b8a6a837,
0x01, 0x2d, 0x11, 0x37, 0xb8, 0xa6, 0xa8, 0x37, 0x4e, 0x46, 0x4d, 0xea, 0x5b, 0xcf,
0xd4, 0x1e, 0xb3, 0xf8, 0xaf, 0xc0, 0xee, 0x24, 0x8c, 0xad, 0xbe, 0x20, 0x34, 0x11,
0xc6, 0x6f, 0xb3, 0xa5, 0x94, 0x6a, 0xe5, 0x2d, 0x68, 0x4f, 0xa7, 0xed, 0x97, 0x7d,
0xf6, 0xef, 0xcd, 0xae, 0xe0, 0xdb,
]))
.unwrap(),
};
a.sub_assign(&Fq2 {
c0: Fq::from_repr(FqRepr([
0x619a02d78dc70ef2,
0xb93adfc9119e33e8,
0x4bf0b99a9f0dca12,
0x3b88899a42a6318f,
0x986a4a62fa82a49d,
0x13ce433fa26027f5,
0x13, 0xce, 0x43, 0x3f, 0xa2, 0x60, 0x27, 0xf5, 0x98, 0x6a, 0x4a, 0x62, 0xfa, 0x82,
0xa4, 0x9d, 0x3b, 0x88, 0x89, 0x9a, 0x42, 0xa6, 0x31, 0x8f, 0x4b, 0xf0, 0xb9, 0x9a,
0x9f, 0x0d, 0xca, 0x12, 0xb9, 0x3a, 0xdf, 0xc9, 0x11, 0x9e, 0x33, 0xe8, 0x61, 0x9a,
0x02, 0xd7, 0x8d, 0xc7, 0x0e, 0xf2,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x66323bf80b58b9b9,
0xa1379b6facf6e596,
0x402aef1fb797e32f,
0x2236f55246d0d44d,
0x4c8c1800eb104566,
0x11d6e20e986c2085,
0x11, 0xd6, 0xe2, 0x0e, 0x98, 0x6c, 0x20, 0x85, 0x4c, 0x8c, 0x18, 0x00, 0xeb, 0x10,
0x45, 0x66, 0x22, 0x36, 0xf5, 0x52, 0x46, 0xd0, 0xd4, 0x4d, 0x40, 0x2a, 0xef, 0x1f,
0xb7, 0x97, 0xe3, 0x2f, 0xa1, 0x37, 0x9b, 0x6f, 0xac, 0xf6, 0xe5, 0x96, 0x66, 0x32,
0x3b, 0xf8, 0x0b, 0x58, 0xb9, 0xb9,
]))
.unwrap(),
});
@@ -666,21 +620,17 @@ fn test_fq2_subtraction() {
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x8565752bdb5c9b80,
0x7756bed7c15982e9,
0xa65a6be700b285fe,
0xe255902672ef6c43,
0x7f77a718021c342d,
0x72ba14049fe9881
0x07, 0x2b, 0xa1, 0x40, 0x49, 0xfe, 0x98, 0x81, 0x7f, 0x77, 0xa7, 0x18, 0x02, 0x1c,
0x34, 0x2d, 0xe2, 0x55, 0x90, 0x26, 0x72, 0xef, 0x6c, 0x43, 0xa6, 0x5a, 0x6b, 0xe7,
0x00, 0xb2, 0x85, 0xfe, 0x77, 0x56, 0xbe, 0xd7, 0xc1, 0x59, 0x82, 0xe9, 0x85, 0x65,
0x75, 0x2b, 0xdb, 0x5c, 0x9b, 0x80,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0xeb4abaf7c255d1cd,
0x11df49bc6cacc256,
0xe52617930588c69a,
0xf63905f39ad8cb1f,
0x4cd5dd9fb40b3b8f,
0x957411359ba6e4c
0x09, 0x57, 0x41, 0x13, 0x59, 0xba, 0x6e, 0x4c, 0x4c, 0xd5, 0xdd, 0x9f, 0xb4, 0x0b,
0x3b, 0x8f, 0xf6, 0x39, 0x05, 0xf3, 0x9a, 0xd8, 0xcb, 0x1f, 0xe5, 0x26, 0x17, 0x93,
0x05, 0x88, 0xc6, 0x9a, 0x11, 0xdf, 0x49, 0xbc, 0x6c, 0xac, 0xc2, 0x56, 0xeb, 0x4a,
0xba, 0xf7, 0xc2, 0x55, 0xd1, 0xcd,
]))
.unwrap(),
}
@@ -694,21 +644,17 @@ fn test_fq2_negation() {
let a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc,
0x00, 0xf8, 0xd2, 0x95, 0xb2, 0xde, 0xd9, 0xdc, 0xcc, 0xc6, 0x49, 0xc4, 0xb9, 0x53,
0x2b, 0xf3, 0xb9, 0x66, 0xce, 0x3b, 0xc2, 0x10, 0x8b, 0x13, 0x8b, 0x1a, 0x52, 0xe0,
0xa9, 0x0f, 0x59, 0xed, 0x11, 0xe5, 0x9e, 0xa2, 0x21, 0xa3, 0xb6, 0xd2, 0x2d, 0x00,
0x78, 0x03, 0x69, 0x23, 0xff, 0xc7,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x977df6efcdaee0db,
0x946ae52d684fa7ed,
0xbe203411c66fb3a5,
0xb3f8afc0ee248cad,
0x4e464dea5bcfd41e,
0x12d1137b8a6a837,
0x01, 0x2d, 0x11, 0x37, 0xb8, 0xa6, 0xa8, 0x37, 0x4e, 0x46, 0x4d, 0xea, 0x5b, 0xcf,
0xd4, 0x1e, 0xb3, 0xf8, 0xaf, 0xc0, 0xee, 0x24, 0x8c, 0xad, 0xbe, 0x20, 0x34, 0x11,
0xc6, 0x6f, 0xb3, 0xa5, 0x94, 0x6a, 0xe5, 0x2d, 0x68, 0x4f, 0xa7, 0xed, 0x97, 0x7d,
0xf6, 0xef, 0xcd, 0xae, 0xe0, 0xdb,
]))
.unwrap(),
}
@@ -717,21 +663,17 @@ fn test_fq2_negation() {
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x8cfe87fc96dbaae4,
0xcc6615c8fb0492d,
0xdc167fc04da19c37,
0xab107d49317487ab,
0x7e555df189f880e3,
0x19083f5486a10cbd
0x19, 0x08, 0x3f, 0x54, 0x86, 0xa1, 0x0c, 0xbd, 0x7e, 0x55, 0x5d, 0xf1, 0x89, 0xf8,
0x80, 0xe3, 0xab, 0x10, 0x7d, 0x49, 0x31, 0x74, 0x87, 0xab, 0xdc, 0x16, 0x7f, 0xc0,
0x4d, 0xa1, 0x9c, 0x37, 0x0c, 0xc6, 0x61, 0x5c, 0x8f, 0xb0, 0x49, 0x2d, 0x8c, 0xfe,
0x87, 0xfc, 0x96, 0xdb, 0xaa, 0xe4,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x228109103250c9d0,
0x8a411ad149045812,
0xa9109e8f3041427e,
0xb07e9bc405608611,
0xfcd559cbe77bd8b8,
0x18d400b280d93e62
0x18, 0xd4, 0x00, 0xb2, 0x80, 0xd9, 0x3e, 0x62, 0xfc, 0xd5, 0x59, 0xcb, 0xe7, 0x7b,
0xd8, 0xb8, 0xb0, 0x7e, 0x9b, 0xc4, 0x05, 0x60, 0x86, 0x11, 0xa9, 0x10, 0x9e, 0x8f,
0x30, 0x41, 0x42, 0x7e, 0x8a, 0x41, 0x1a, 0xd1, 0x49, 0x04, 0x58, 0x12, 0x22, 0x81,
0x09, 0x10, 0x32, 0x50, 0xc9, 0xd0,
]))
.unwrap(),
}
@@ -745,21 +687,17 @@ fn test_fq2_doubling() {
let a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc,
0x00, 0xf8, 0xd2, 0x95, 0xb2, 0xde, 0xd9, 0xdc, 0xcc, 0xc6, 0x49, 0xc4, 0xb9, 0x53,
0x2b, 0xf3, 0xb9, 0x66, 0xce, 0x3b, 0xc2, 0x10, 0x8b, 0x13, 0x8b, 0x1a, 0x52, 0xe0,
0xa9, 0x0f, 0x59, 0xed, 0x11, 0xe5, 0x9e, 0xa2, 0x21, 0xa3, 0xb6, 0xd2, 0x2d, 0x00,
0x78, 0x03, 0x69, 0x23, 0xff, 0xc7,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x977df6efcdaee0db,
0x946ae52d684fa7ed,
0xbe203411c66fb3a5,
0xb3f8afc0ee248cad,
0x4e464dea5bcfd41e,
0x12d1137b8a6a837,
0x01, 0x2d, 0x11, 0x37, 0xb8, 0xa6, 0xa8, 0x37, 0x4e, 0x46, 0x4d, 0xea, 0x5b, 0xcf,
0xd4, 0x1e, 0xb3, 0xf8, 0xaf, 0xc0, 0xee, 0x24, 0x8c, 0xad, 0xbe, 0x20, 0x34, 0x11,
0xc6, 0x6f, 0xb3, 0xa5, 0x94, 0x6a, 0xe5, 0x2d, 0x68, 0x4f, 0xa7, 0xed, 0x97, 0x7d,
0xf6, 0xef, 0xcd, 0xae, 0xe0, 0xdb,
]))
.unwrap(),
};
@@ -767,21 +705,17 @@ fn test_fq2_doubling() {
a.double(),
Fq2 {
c0: Fq::from_repr(FqRepr([
0x5a00f006d247ff8e,
0x23cb3d4443476da4,
0x1634a5c1521eb3da,
0x72cd9c7784211627,
0x998c938972a657e7,
0x1f1a52b65bdb3b9
0x01, 0xf1, 0xa5, 0x2b, 0x65, 0xbd, 0xb3, 0xb9, 0x99, 0x8c, 0x93, 0x89, 0x72, 0xa6,
0x57, 0xe7, 0x72, 0xcd, 0x9c, 0x77, 0x84, 0x21, 0x16, 0x27, 0x16, 0x34, 0xa5, 0xc1,
0x52, 0x1e, 0xb3, 0xda, 0x23, 0xcb, 0x3d, 0x44, 0x43, 0x47, 0x6d, 0xa4, 0x5a, 0x00,
0xf0, 0x06, 0xd2, 0x47, 0xff, 0x8e,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x2efbeddf9b5dc1b6,
0x28d5ca5ad09f4fdb,
0x7c4068238cdf674b,
0x67f15f81dc49195b,
0x9c8c9bd4b79fa83d,
0x25a226f714d506e
0x02, 0x5a, 0x22, 0x6f, 0x71, 0x4d, 0x50, 0x6e, 0x9c, 0x8c, 0x9b, 0xd4, 0xb7, 0x9f,
0xa8, 0x3d, 0x67, 0xf1, 0x5f, 0x81, 0xdc, 0x49, 0x19, 0x5b, 0x7c, 0x40, 0x68, 0x23,
0x8c, 0xdf, 0x67, 0x4b, 0x28, 0xd5, 0xca, 0x5a, 0xd0, 0x9f, 0x4f, 0xdb, 0x2e, 0xfb,
0xed, 0xdf, 0x9b, 0x5d, 0xc1, 0xb6,
]))
.unwrap(),
}
@@ -795,21 +729,17 @@ fn test_fq2_frobenius_map() {
let mut a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc,
0x00, 0xf8, 0xd2, 0x95, 0xb2, 0xde, 0xd9, 0xdc, 0xcc, 0xc6, 0x49, 0xc4, 0xb9, 0x53,
0x2b, 0xf3, 0xb9, 0x66, 0xce, 0x3b, 0xc2, 0x10, 0x8b, 0x13, 0x8b, 0x1a, 0x52, 0xe0,
0xa9, 0x0f, 0x59, 0xed, 0x11, 0xe5, 0x9e, 0xa2, 0x21, 0xa3, 0xb6, 0xd2, 0x2d, 0x00,
0x78, 0x03, 0x69, 0x23, 0xff, 0xc7,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x977df6efcdaee0db,
0x946ae52d684fa7ed,
0xbe203411c66fb3a5,
0xb3f8afc0ee248cad,
0x4e464dea5bcfd41e,
0x12d1137b8a6a837,
0x01, 0x2d, 0x11, 0x37, 0xb8, 0xa6, 0xa8, 0x37, 0x4e, 0x46, 0x4d, 0xea, 0x5b, 0xcf,
0xd4, 0x1e, 0xb3, 0xf8, 0xaf, 0xc0, 0xee, 0x24, 0x8c, 0xad, 0xbe, 0x20, 0x34, 0x11,
0xc6, 0x6f, 0xb3, 0xa5, 0x94, 0x6a, 0xe5, 0x2d, 0x68, 0x4f, 0xa7, 0xed, 0x97, 0x7d,
0xf6, 0xef, 0xcd, 0xae, 0xe0, 0xdb,
]))
.unwrap(),
};
@@ -818,21 +748,17 @@ fn test_fq2_frobenius_map() {
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc
0x00, 0xf8, 0xd2, 0x95, 0xb2, 0xde, 0xd9, 0xdc, 0xcc, 0xc6, 0x49, 0xc4, 0xb9, 0x53,
0x2b, 0xf3, 0xb9, 0x66, 0xce, 0x3b, 0xc2, 0x10, 0x8b, 0x13, 0x8b, 0x1a, 0x52, 0xe0,
0xa9, 0x0f, 0x59, 0xed, 0x11, 0xe5, 0x9e, 0xa2, 0x21, 0xa3, 0xb6, 0xd2, 0x2d, 0x00,
0x78, 0x03, 0x69, 0x23, 0xff, 0xc7,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x977df6efcdaee0db,
0x946ae52d684fa7ed,
0xbe203411c66fb3a5,
0xb3f8afc0ee248cad,
0x4e464dea5bcfd41e,
0x12d1137b8a6a837
0x01, 0x2d, 0x11, 0x37, 0xb8, 0xa6, 0xa8, 0x37, 0x4e, 0x46, 0x4d, 0xea, 0x5b, 0xcf,
0xd4, 0x1e, 0xb3, 0xf8, 0xaf, 0xc0, 0xee, 0x24, 0x8c, 0xad, 0xbe, 0x20, 0x34, 0x11,
0xc6, 0x6f, 0xb3, 0xa5, 0x94, 0x6a, 0xe5, 0x2d, 0x68, 0x4f, 0xa7, 0xed, 0x97, 0x7d,
0xf6, 0xef, 0xcd, 0xae, 0xe0, 0xdb,
]))
.unwrap(),
}
@@ -842,21 +768,17 @@ fn test_fq2_frobenius_map() {
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc
0x00, 0xf8, 0xd2, 0x95, 0xb2, 0xde, 0xd9, 0xdc, 0xcc, 0xc6, 0x49, 0xc4, 0xb9, 0x53,
0x2b, 0xf3, 0xb9, 0x66, 0xce, 0x3b, 0xc2, 0x10, 0x8b, 0x13, 0x8b, 0x1a, 0x52, 0xe0,
0xa9, 0x0f, 0x59, 0xed, 0x11, 0xe5, 0x9e, 0xa2, 0x21, 0xa3, 0xb6, 0xd2, 0x2d, 0x00,
0x78, 0x03, 0x69, 0x23, 0xff, 0xc7,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x228109103250c9d0,
0x8a411ad149045812,
0xa9109e8f3041427e,
0xb07e9bc405608611,
0xfcd559cbe77bd8b8,
0x18d400b280d93e62
0x18, 0xd4, 0x00, 0xb2, 0x80, 0xd9, 0x3e, 0x62, 0xfc, 0xd5, 0x59, 0xcb, 0xe7, 0x7b,
0xd8, 0xb8, 0xb0, 0x7e, 0x9b, 0xc4, 0x05, 0x60, 0x86, 0x11, 0xa9, 0x10, 0x9e, 0x8f,
0x30, 0x41, 0x42, 0x7e, 0x8a, 0x41, 0x1a, 0xd1, 0x49, 0x04, 0x58, 0x12, 0x22, 0x81,
0x09, 0x10, 0x32, 0x50, 0xc9, 0xd0,
]))
.unwrap(),
}
@@ -866,21 +788,17 @@ fn test_fq2_frobenius_map() {
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc
0x00, 0xf8, 0xd2, 0x95, 0xb2, 0xde, 0xd9, 0xdc, 0xcc, 0xc6, 0x49, 0xc4, 0xb9, 0x53,
0x2b, 0xf3, 0xb9, 0x66, 0xce, 0x3b, 0xc2, 0x10, 0x8b, 0x13, 0x8b, 0x1a, 0x52, 0xe0,
0xa9, 0x0f, 0x59, 0xed, 0x11, 0xe5, 0x9e, 0xa2, 0x21, 0xa3, 0xb6, 0xd2, 0x2d, 0x00,
0x78, 0x03, 0x69, 0x23, 0xff, 0xc7,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x977df6efcdaee0db,
0x946ae52d684fa7ed,
0xbe203411c66fb3a5,
0xb3f8afc0ee248cad,
0x4e464dea5bcfd41e,
0x12d1137b8a6a837
0x01, 0x2d, 0x11, 0x37, 0xb8, 0xa6, 0xa8, 0x37, 0x4e, 0x46, 0x4d, 0xea, 0x5b, 0xcf,
0xd4, 0x1e, 0xb3, 0xf8, 0xaf, 0xc0, 0xee, 0x24, 0x8c, 0xad, 0xbe, 0x20, 0x34, 0x11,
0xc6, 0x6f, 0xb3, 0xa5, 0x94, 0x6a, 0xe5, 0x2d, 0x68, 0x4f, 0xa7, 0xed, 0x97, 0x7d,
0xf6, 0xef, 0xcd, 0xae, 0xe0, 0xdb,
]))
.unwrap(),
}
@@ -890,21 +808,17 @@ fn test_fq2_frobenius_map() {
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc
0x00, 0xf8, 0xd2, 0x95, 0xb2, 0xde, 0xd9, 0xdc, 0xcc, 0xc6, 0x49, 0xc4, 0xb9, 0x53,
0x2b, 0xf3, 0xb9, 0x66, 0xce, 0x3b, 0xc2, 0x10, 0x8b, 0x13, 0x8b, 0x1a, 0x52, 0xe0,
0xa9, 0x0f, 0x59, 0xed, 0x11, 0xe5, 0x9e, 0xa2, 0x21, 0xa3, 0xb6, 0xd2, 0x2d, 0x00,
0x78, 0x03, 0x69, 0x23, 0xff, 0xc7,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x977df6efcdaee0db,
0x946ae52d684fa7ed,
0xbe203411c66fb3a5,
0xb3f8afc0ee248cad,
0x4e464dea5bcfd41e,
0x12d1137b8a6a837
0x01, 0x2d, 0x11, 0x37, 0xb8, 0xa6, 0xa8, 0x37, 0x4e, 0x46, 0x4d, 0xea, 0x5b, 0xcf,
0xd4, 0x1e, 0xb3, 0xf8, 0xaf, 0xc0, 0xee, 0x24, 0x8c, 0xad, 0xbe, 0x20, 0x34, 0x11,
0xc6, 0x6f, 0xb3, 0xa5, 0x94, 0x6a, 0xe5, 0x2d, 0x68, 0x4f, 0xa7, 0xed, 0x97, 0x7d,
0xf6, 0xef, 0xcd, 0xae, 0xe0, 0xdb,
]))
.unwrap(),
}
@@ -919,21 +833,17 @@ fn test_fq2_sqrt() {
assert_eq!(
Fq2 {
c0: Fq::from_repr(FqRepr([
0x476b4c309720e227,
0x34c2d04faffdab6,
0xa57e6fc1bab51fd9,
0xdb4a116b5bf74aa1,
0x1e58b2159dfe10e2,
0x7ca7da1f13606ac
0x07, 0xca, 0x7d, 0xa1, 0xf1, 0x36, 0x06, 0xac, 0x1e, 0x58, 0xb2, 0x15, 0x9d, 0xfe,
0x10, 0xe2, 0xdb, 0x4a, 0x11, 0x6b, 0x5b, 0xf7, 0x4a, 0xa1, 0xa5, 0x7e, 0x6f, 0xc1,
0xba, 0xb5, 0x1f, 0xd9, 0x03, 0x4c, 0x2d, 0x04, 0xfa, 0xff, 0xda, 0xb6, 0x47, 0x6b,
0x4c, 0x30, 0x97, 0x20, 0xe2, 0x27,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0xfa8de88b7516d2c3,
0x371a75ed14f41629,
0x4cec2dca577a3eb6,
0x212611bca4e99121,
0x8ee5394d77afb3d,
0xec92336650e49d5
0x0e, 0xc9, 0x23, 0x36, 0x65, 0x0e, 0x49, 0xd5, 0x08, 0xee, 0x53, 0x94, 0xd7, 0x7a,
0xfb, 0x3d, 0x21, 0x26, 0x11, 0xbc, 0xa4, 0xe9, 0x91, 0x21, 0x4c, 0xec, 0x2d, 0xca,
0x57, 0x7a, 0x3e, 0xb6, 0x37, 0x1a, 0x75, 0xed, 0x14, 0xf4, 0x16, 0x29, 0xfa, 0x8d,
0xe8, 0x8b, 0x75, 0x16, 0xd2, 0xc3,
]))
.unwrap(),
}
@@ -941,21 +851,17 @@ fn test_fq2_sqrt() {
.unwrap(),
Fq2 {
c0: Fq::from_repr(FqRepr([
0x40b299b2704258c5,
0x6ef7de92e8c68b63,
0x6d2ddbe552203e82,
0x8d7f1f723d02c1d3,
0x881b3e01b611c070,
0x10f6963bbad2ebc5
0x10, 0xf6, 0x96, 0x3b, 0xba, 0xd2, 0xeb, 0xc5, 0x88, 0x1b, 0x3e, 0x01, 0xb6, 0x11,
0xc0, 0x70, 0x8d, 0x7f, 0x1f, 0x72, 0x3d, 0x02, 0xc1, 0xd3, 0x6d, 0x2d, 0xdb, 0xe5,
0x52, 0x20, 0x3e, 0x82, 0x6e, 0xf7, 0xde, 0x92, 0xe8, 0xc6, 0x8b, 0x63, 0x40, 0xb2,
0x99, 0xb2, 0x70, 0x42, 0x58, 0xc5,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0xc099534fc209e752,
0x7670594665676447,
0x28a20faed211efe7,
0x6b852aeaf2afcb1b,
0xa4c93b08105d71a9,
0x8d7cfff94216330
0x08, 0xd7, 0xcf, 0xff, 0x94, 0x21, 0x63, 0x30, 0xa4, 0xc9, 0x3b, 0x08, 0x10, 0x5d,
0x71, 0xa9, 0x6b, 0x85, 0x2a, 0xea, 0xf2, 0xaf, 0xcb, 0x1b, 0x28, 0xa2, 0x0f, 0xae,
0xd2, 0x11, 0xef, 0xe7, 0x76, 0x70, 0x59, 0x46, 0x65, 0x67, 0x64, 0x47, 0xc0, 0x99,
0x53, 0x4f, 0xc2, 0x09, 0xe7, 0x52,
]))
.unwrap(),
}
@@ -964,12 +870,10 @@ fn test_fq2_sqrt() {
assert_eq!(
Fq2 {
c0: Fq::from_repr(FqRepr([
0xb9f78429d1517a6b,
0x1eabfffeb153ffff,
0x6730d2a0f6b0f624,
0x64774b84f38512bf,
0x4b1ba7b6434bacd7,
0x1a0111ea397fe69a
0x1a, 0x01, 0x11, 0xea, 0x39, 0x7f, 0xe6, 0x9a, 0x4b, 0x1b, 0xa7, 0xb6, 0x43, 0x4b,
0xac, 0xd7, 0x64, 0x77, 0x4b, 0x84, 0xf3, 0x85, 0x12, 0xbf, 0x67, 0x30, 0xd2, 0xa0,
0xf6, 0xb0, 0xf6, 0x24, 0x1e, 0xab, 0xff, 0xfe, 0xb1, 0x53, 0xff, 0xff, 0xb9, 0xf7,
0x84, 0x29, 0xd1, 0x51, 0x7a, 0x6b,
]))
.unwrap(),
c1: Fq::zero(),
@@ -979,12 +883,10 @@ fn test_fq2_sqrt() {
Fq2 {
c0: Fq::zero(),
c1: Fq::from_repr(FqRepr([
0xb9fefffffd4357a3,
0x1eabfffeb153ffff,
0x6730d2a0f6b0f624,
0x64774b84f38512bf,
0x4b1ba7b6434bacd7,
0x1a0111ea397fe69a
0x1a, 0x01, 0x11, 0xea, 0x39, 0x7f, 0xe6, 0x9a, 0x4b, 0x1b, 0xa7, 0xb6, 0x43, 0x4b,
0xac, 0xd7, 0x64, 0x77, 0x4b, 0x84, 0xf3, 0x85, 0x12, 0xbf, 0x67, 0x30, 0xd2, 0xa0,
0xf6, 0xb0, 0xf6, 0x24, 0x1e, 0xab, 0xff, 0xfe, 0xb1, 0x53, 0xff, 0xff, 0xb9, 0xfe,
0xff, 0xff, 0xfd, 0x43, 0x57, 0xa3,
]))
.unwrap(),
}

View File

@@ -1,10 +1,11 @@
use ff::{Field, PrimeField, PrimeFieldDecodingError, PrimeFieldRepr};
use ff::{Field, PrimeField};
use std::ops::{AddAssign, MulAssign, SubAssign};
#[derive(PrimeField)]
#[PrimeFieldModulus = "52435875175126190479447740508185965837690552500527637822603658699938581184513"]
#[PrimeFieldGenerator = "7"]
pub struct Fr(FrRepr);
#[PrimeFieldReprEndianness = "little"]
pub struct Fr([u64; 4]);
#[cfg(test)]
use ff::PowVartime;
@@ -15,373 +16,26 @@ use rand_xorshift::XorShiftRng;
#[cfg(test)]
use std::ops::Neg;
#[test]
fn test_fr_repr_ordering() {
fn assert_equality(a: FrRepr, b: FrRepr) {
assert_eq!(a, b);
assert!(a.cmp(&b) == ::std::cmp::Ordering::Equal);
}
fn assert_lt(a: FrRepr, b: FrRepr) {
assert!(a < b);
assert!(b > a);
}
assert_equality(
FrRepr([9999, 9999, 9999, 9999]),
FrRepr([9999, 9999, 9999, 9999]),
);
assert_equality(
FrRepr([9999, 9998, 9999, 9999]),
FrRepr([9999, 9998, 9999, 9999]),
);
assert_equality(
FrRepr([9999, 9999, 9999, 9997]),
FrRepr([9999, 9999, 9999, 9997]),
);
assert_lt(
FrRepr([9999, 9997, 9999, 9998]),
FrRepr([9999, 9997, 9999, 9999]),
);
assert_lt(
FrRepr([9999, 9997, 9998, 9999]),
FrRepr([9999, 9997, 9999, 9999]),
);
assert_lt(
FrRepr([9, 9999, 9999, 9997]),
FrRepr([9999, 9999, 9999, 9997]),
);
}
#[test]
fn test_fr_repr_from() {
assert_eq!(FrRepr::from(100), FrRepr([100, 0, 0, 0]));
}
#[test]
fn test_fr_repr_is_odd() {
assert!(!FrRepr::from(0).is_odd());
assert!(FrRepr::from(0).is_even());
assert!(FrRepr::from(1).is_odd());
assert!(!FrRepr::from(1).is_even());
assert!(!FrRepr::from(324834872).is_odd());
assert!(FrRepr::from(324834872).is_even());
assert!(FrRepr::from(324834873).is_odd());
assert!(!FrRepr::from(324834873).is_even());
}
#[test]
fn test_fr_repr_is_zero() {
assert!(FrRepr::from(0).is_zero());
assert!(!FrRepr::from(1).is_zero());
assert!(!FrRepr([0, 0, 1, 0]).is_zero());
}
#[test]
fn test_fr_repr_div2() {
let mut a = FrRepr([
0xbd2920b19c972321,
0x174ed0466a3be37e,
0xd468d5e3b551f0b5,
0xcb67c072733beefc,
]);
a.div2();
assert_eq!(
a,
FrRepr([
0x5e949058ce4b9190,
0x8ba76823351df1bf,
0x6a346af1daa8f85a,
0x65b3e039399df77e
])
);
for _ in 0..10 {
a.div2();
}
assert_eq!(
a,
FrRepr([
0x6fd7a524163392e4,
0x16a2e9da08cd477c,
0xdf9a8d1abc76aa3e,
0x196cf80e4e677d
])
);
for _ in 0..200 {
a.div2();
}
assert_eq!(a, FrRepr([0x196cf80e4e67, 0x0, 0x0, 0x0]));
for _ in 0..40 {
a.div2();
}
assert_eq!(a, FrRepr([0x19, 0x0, 0x0, 0x0]));
for _ in 0..4 {
a.div2();
}
assert_eq!(a, FrRepr([0x1, 0x0, 0x0, 0x0]));
a.div2();
assert!(a.is_zero());
}
#[test]
fn test_fr_repr_shr() {
let mut a = FrRepr([
0xb33fbaec482a283f,
0x997de0d3a88cb3df,
0x9af62d2a9a0e5525,
0x36003ab08de70da1,
]);
a.shr(0);
assert_eq!(
a,
FrRepr([
0xb33fbaec482a283f,
0x997de0d3a88cb3df,
0x9af62d2a9a0e5525,
0x36003ab08de70da1
])
);
a.shr(1);
assert_eq!(
a,
FrRepr([
0xd99fdd762415141f,
0xccbef069d44659ef,
0xcd7b16954d072a92,
0x1b001d5846f386d0
])
);
a.shr(50);
assert_eq!(
a,
FrRepr([
0xbc1a7511967bf667,
0xc5a55341caa4b32f,
0x75611bce1b4335e,
0x6c0
])
);
a.shr(130);
assert_eq!(a, FrRepr([0x1d5846f386d0cd7, 0x1b0, 0x0, 0x0]));
a.shr(64);
assert_eq!(a, FrRepr([0x1b0, 0x0, 0x0, 0x0]));
}
#[test]
fn test_fr_repr_mul2() {
let mut a = FrRepr::from(23712937547);
a.mul2();
assert_eq!(a, FrRepr([0xb0acd6c96, 0x0, 0x0, 0x0]));
for _ in 0..60 {
a.mul2();
}
assert_eq!(a, FrRepr([0x6000000000000000, 0xb0acd6c9, 0x0, 0x0]));
for _ in 0..128 {
a.mul2();
}
assert_eq!(a, FrRepr([0x0, 0x0, 0x6000000000000000, 0xb0acd6c9]));
for _ in 0..60 {
a.mul2();
}
assert_eq!(a, FrRepr([0x0, 0x0, 0x0, 0x9600000000000000]));
for _ in 0..7 {
a.mul2();
}
assert!(a.is_zero());
}
#[test]
fn test_fr_repr_num_bits() {
let mut a = FrRepr::from(0);
assert_eq!(0, a.num_bits());
a = FrRepr::from(1);
for i in 1..257 {
assert_eq!(i, a.num_bits());
a.mul2();
}
assert_eq!(0, a.num_bits());
}
#[test]
fn test_fr_repr_sub_noborrow() {
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
let mut t = FrRepr([
0x8e62a7e85264e2c3,
0xb23d34c1941d3ca,
0x5976930b7502dd15,
0x600f3fb517bf5495,
]);
t.sub_noborrow(&FrRepr([
0xd64f669809cbc6a4,
0xfa76cb9d90cf7637,
0xfefb0df9038d43b3,
0x298a30c744b31acf,
]));
assert!(
t == FrRepr([
0xb813415048991c1f,
0x10ad07ae88725d92,
0x5a7b851271759961,
0x36850eedd30c39c5
])
);
for _ in 0..1000 {
let mut a = Fr::random(&mut rng).into_repr();
a.0[3] >>= 30;
let mut b = a;
for _ in 0..10 {
b.mul2();
}
let mut c = b;
for _ in 0..10 {
c.mul2();
}
assert!(a < b);
assert!(b < c);
let mut csub_ba = c;
csub_ba.sub_noborrow(&b);
csub_ba.sub_noborrow(&a);
let mut csub_ab = c;
csub_ab.sub_noborrow(&a);
csub_ab.sub_noborrow(&b);
assert_eq!(csub_ab, csub_ba);
}
// Subtracting r+1 from r should produce -1 (mod 2**256)
let mut qplusone = FrRepr([
0xffffffff00000001,
0x53bda402fffe5bfe,
0x3339d80809a1d805,
0x73eda753299d7d48,
]);
qplusone.sub_noborrow(&FrRepr([
0xffffffff00000002,
0x53bda402fffe5bfe,
0x3339d80809a1d805,
0x73eda753299d7d48,
]));
assert_eq!(
qplusone,
FrRepr([
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff
])
);
}
#[test]
fn test_fr_repr_add_nocarry() {
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
let mut t = FrRepr([
0xd64f669809cbc6a4,
0xfa76cb9d90cf7637,
0xfefb0df9038d43b3,
0x298a30c744b31acf,
]);
t.add_nocarry(&FrRepr([
0x8e62a7e85264e2c3,
0xb23d34c1941d3ca,
0x5976930b7502dd15,
0x600f3fb517bf5495,
]));
assert_eq!(
t,
FrRepr([
0x64b20e805c30a967,
0x59a9ee9aa114a02,
0x5871a104789020c9,
0x8999707c5c726f65
])
);
// Test for the associativity of addition.
for _ in 0..1000 {
let mut a = Fr::random(&mut rng).into_repr();
let mut b = Fr::random(&mut rng).into_repr();
let mut c = Fr::random(&mut rng).into_repr();
// Unset the first few bits, so that overflow won't occur.
a.0[3] >>= 3;
b.0[3] >>= 3;
c.0[3] >>= 3;
let mut abc = a;
abc.add_nocarry(&b);
abc.add_nocarry(&c);
let mut acb = a;
acb.add_nocarry(&c);
acb.add_nocarry(&b);
let mut bac = b;
bac.add_nocarry(&a);
bac.add_nocarry(&c);
let mut bca = b;
bca.add_nocarry(&c);
bca.add_nocarry(&a);
let mut cab = c;
cab.add_nocarry(&a);
cab.add_nocarry(&b);
let mut cba = c;
cba.add_nocarry(&b);
cba.add_nocarry(&a);
assert_eq!(abc, acb);
assert_eq!(abc, bac);
assert_eq!(abc, bca);
assert_eq!(abc, cab);
assert_eq!(abc, cba);
}
// Adding 1 to (2^256 - 1) should produce zero
let mut x = FrRepr([
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff,
]);
x.add_nocarry(&FrRepr::from(1));
assert!(x.is_zero());
}
#[test]
fn test_fr_is_valid() {
let mut a = Fr(MODULUS);
let mut a = MODULUS_LIMBS;
assert!(!a.is_valid());
a.0.sub_noborrow(&FrRepr::from(1));
a.sub_noborrow(&Fr([1, 0, 0, 0]));
assert!(a.is_valid());
assert!(Fr::from(0).is_valid());
assert!(Fr(FrRepr([
assert!(Fr([
0xffffffff00000000,
0x53bda402fffe5bfe,
0x3339d80809a1d805,
0x73eda753299d7d48
]))
])
.is_valid());
assert!(!Fr(FrRepr([
assert!(!Fr([
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff
]))
])
.is_valid());
let mut rng = XorShiftRng::from_seed([
@@ -399,85 +53,85 @@ fn test_fr_is_valid() {
fn test_fr_add_assign() {
{
// Random number
let mut tmp = Fr(FrRepr([
let mut tmp = Fr([
0x437ce7616d580765,
0xd42d1ccb29d1235b,
0xed8f753821bd1423,
0x4eede1c9c89528ca,
]));
]);
assert!(tmp.is_valid());
// Test that adding zero has no effect.
tmp.add_assign(&Fr(FrRepr::from(0)));
tmp.add_assign(&Fr([0, 0, 0, 0]));
assert_eq!(
tmp,
Fr(FrRepr([
Fr([
0x437ce7616d580765,
0xd42d1ccb29d1235b,
0xed8f753821bd1423,
0x4eede1c9c89528ca
]))
])
);
// Add one and test for the result.
tmp.add_assign(&Fr(FrRepr::from(1)));
tmp.add_assign(&Fr([1, 0, 0, 0]));
assert_eq!(
tmp,
Fr(FrRepr([
Fr([
0x437ce7616d580766,
0xd42d1ccb29d1235b,
0xed8f753821bd1423,
0x4eede1c9c89528ca
]))
])
);
// Add another random number that exercises the reduction.
tmp.add_assign(&Fr(FrRepr([
tmp.add_assign(&Fr([
0x946f435944f7dc79,
0xb55e7ee6533a9b9b,
0x1e43b84c2f6194ca,
0x58717ab525463496,
])));
]));
assert_eq!(
tmp,
Fr(FrRepr([
Fr([
0xd7ec2abbb24fe3de,
0x35cdf7ae7d0d62f7,
0xd899557c477cd0e9,
0x3371b52bc43de018
]))
])
);
// Add one to (r - 1) and test for the result.
tmp = Fr(FrRepr([
tmp = Fr([
0xffffffff00000000,
0x53bda402fffe5bfe,
0x3339d80809a1d805,
0x73eda753299d7d48,
]));
tmp.add_assign(&Fr(FrRepr::from(1)));
assert!(tmp.0.is_zero());
]);
tmp.add_assign(&Fr([1, 0, 0, 0]));
assert!(tmp.is_zero());
// Add a random number to another one such that the result is r - 1
tmp = Fr(FrRepr([
tmp = Fr([
0xade5adacdccb6190,
0xaa21ee0f27db3ccd,
0x2550f4704ae39086,
0x591d1902e7c5ba27,
]));
tmp.add_assign(&Fr(FrRepr([
]);
tmp.add_assign(&Fr([
0x521a525223349e70,
0xa99bb5f3d8231f31,
0xde8e397bebe477e,
0x1ad08e5041d7c321,
])));
]));
assert_eq!(
tmp,
Fr(FrRepr([
Fr([
0xffffffff00000000,
0x53bda402fffe5bfe,
0x3339d80809a1d805,
0x73eda753299d7d48
]))
])
);
// Add one to the result and test for it.
tmp.add_assign(&Fr(FrRepr::from(1)));
assert!(tmp.0.is_zero());
tmp.add_assign(&Fr([1, 0, 0, 0]));
assert!(tmp.is_zero());
}
// Test associativity
@@ -511,71 +165,71 @@ fn test_fr_add_assign() {
fn test_fr_sub_assign() {
{
// Test arbitrary subtraction that tests reduction.
let mut tmp = Fr(FrRepr([
let mut tmp = Fr([
0x6a68c64b6f735a2b,
0xd5f4d143fe0a1972,
0x37c17f3829267c62,
0xa2f37391f30915c,
]));
tmp.sub_assign(&Fr(FrRepr([
]);
tmp.sub_assign(&Fr([
0xade5adacdccb6190,
0xaa21ee0f27db3ccd,
0x2550f4704ae39086,
0x591d1902e7c5ba27,
])));
]));
assert_eq!(
tmp,
Fr(FrRepr([
Fr([
0xbc83189d92a7f89c,
0x7f908737d62d38a3,
0x45aa62cfe7e4c3e1,
0x24ffc5896108547d
]))
])
);
// Test the opposite subtraction which doesn't test reduction.
tmp = Fr(FrRepr([
tmp = Fr([
0xade5adacdccb6190,
0xaa21ee0f27db3ccd,
0x2550f4704ae39086,
0x591d1902e7c5ba27,
]));
tmp.sub_assign(&Fr(FrRepr([
]);
tmp.sub_assign(&Fr([
0x6a68c64b6f735a2b,
0xd5f4d143fe0a1972,
0x37c17f3829267c62,
0xa2f37391f30915c,
])));
]));
assert_eq!(
tmp,
Fr(FrRepr([
Fr([
0x437ce7616d580765,
0xd42d1ccb29d1235b,
0xed8f753821bd1423,
0x4eede1c9c89528ca
]))
])
);
// Test for sensible results with zero
tmp = Fr(FrRepr::from(0));
tmp.sub_assign(&Fr(FrRepr::from(0)));
tmp = Fr::from(0);
tmp.sub_assign(&Fr::from(0));
assert!(tmp.is_zero());
tmp = Fr(FrRepr([
tmp = Fr([
0x437ce7616d580765,
0xd42d1ccb29d1235b,
0xed8f753821bd1423,
0x4eede1c9c89528ca,
]));
tmp.sub_assign(&Fr(FrRepr::from(0)));
]);
tmp.sub_assign(&Fr::from(0));
assert_eq!(
tmp,
Fr(FrRepr([
Fr([
0x437ce7616d580765,
0xd42d1ccb29d1235b,
0xed8f753821bd1423,
0x4eede1c9c89528ca
]))
])
);
}
@@ -602,25 +256,25 @@ fn test_fr_sub_assign() {
#[test]
fn test_fr_mul_assign() {
let mut tmp = Fr(FrRepr([
let mut tmp = Fr([
0x6b7e9b8faeefc81a,
0xe30a8463f348ba42,
0xeff3cb67a8279c9c,
0x3d303651bd7c774d,
]));
tmp.mul_assign(&Fr(FrRepr([
]);
tmp.mul_assign(&Fr([
0x13ae28e3bc35ebeb,
0xa10f4488075cae2c,
0x8160e95a853c3b5d,
0x5ae3f03b561a841d,
])));
]));
assert!(
tmp == Fr(FrRepr([
tmp == Fr([
0x23717213ce710f71,
0xdbee1fe53a16e1af,
0xf565d3e1c2a48000,
0x4426507ee75df9d7
]))
])
);
let mut rng = XorShiftRng::from_seed([
@@ -672,80 +326,73 @@ fn test_fr_mul_assign() {
#[test]
fn test_fr_shr() {
let mut a = Fr::from_repr(FrRepr([
0xb33fbaec482a283f,
0x997de0d3a88cb3df,
0x9af62d2a9a0e5525,
0x36003ab08de70da1,
0x3f, 0x28, 0x2a, 0x48, 0xec, 0xba, 0x3f, 0xb3, 0xdf, 0xb3, 0x8c, 0xa8, 0xd3, 0xe0, 0x7d,
0x99, 0x25, 0x55, 0x0e, 0x9a, 0x2a, 0x2d, 0xf6, 0x9a, 0xa1, 0x0d, 0xe7, 0x8d, 0xb0, 0x3a,
0x00, 0x36,
]))
.unwrap();
a = a >> 0;
assert_eq!(
a.into_repr(),
FrRepr([
0xb33fbaec482a283f,
0x997de0d3a88cb3df,
0x9af62d2a9a0e5525,
0x36003ab08de70da1,
0x3f, 0x28, 0x2a, 0x48, 0xec, 0xba, 0x3f, 0xb3, 0xdf, 0xb3, 0x8c, 0xa8, 0xd3, 0xe0,
0x7d, 0x99, 0x25, 0x55, 0x0e, 0x9a, 0x2a, 0x2d, 0xf6, 0x9a, 0xa1, 0x0d, 0xe7, 0x8d,
0xb0, 0x3a, 0x00, 0x36,
])
);
a = a >> 1;
assert_eq!(
a.into_repr(),
FrRepr([
0xd99fdd762415141f,
0xccbef069d44659ef,
0xcd7b16954d072a92,
0x1b001d5846f386d0,
0x1f, 0x14, 0x15, 0x24, 0x76, 0xdd, 0x9f, 0xd9, 0xef, 0x59, 0x46, 0xd4, 0x69, 0xf0,
0xbe, 0xcc, 0x92, 0x2a, 0x07, 0x4d, 0x95, 0x16, 0x7b, 0xcd, 0xd0, 0x86, 0xf3, 0x46,
0x58, 0x1d, 0x00, 0x1b,
])
);
a = a >> 50;
assert_eq!(
a.into_repr(),
FrRepr([
0xbc1a7511967bf667,
0xc5a55341caa4b32f,
0x075611bce1b4335e,
0x00000000000006c0,
0x67, 0xf6, 0x7b, 0x96, 0x11, 0x75, 0x1a, 0xbc, 0x2f, 0xb3, 0xa4, 0xca, 0x41, 0x53,
0xa5, 0xc5, 0x5e, 0x33, 0xb4, 0xe1, 0xbc, 0x11, 0x56, 0x07, 0xc0, 0x06, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
);
a = a >> 130;
assert_eq!(
a.into_repr(),
FrRepr([
0x01d5846f386d0cd7,
0x00000000000001b0,
0x0000000000000000,
0x0000000000000000,
0xd7, 0x0c, 0x6d, 0x38, 0x6f, 0x84, 0xd5, 0x01, 0xb0, 0x01, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
);
a = a >> 64;
assert_eq!(
a.into_repr(),
FrRepr([
0x00000000000001b0,
0x0000000000000000,
0x0000000000000000,
0x0000000000000000,
0xb0, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
);
}
#[test]
fn test_fr_squaring() {
let a = Fr(FrRepr([
let a = Fr([
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff,
0x73eda753299d7d47,
]));
]);
assert!(a.is_valid());
assert_eq!(
a.square(),
Fr::from_repr(FrRepr([
0xc0d698e7bde077b8,
0xb79a310579e76ec2,
0xac1da8d0a9af4e5f,
0x13f629c49bf23e97
0xb8, 0x77, 0xe0, 0xbd, 0xe7, 0x98, 0xd6, 0xc0, 0xc2, 0x6e, 0xe7, 0x79, 0x05, 0x31,
0x9a, 0xb7, 0x5f, 0x4e, 0xaf, 0xa9, 0xd0, 0xa8, 0x1d, 0xac, 0x97, 0x3e, 0xf2, 0x9b,
0xc4, 0x29, 0xf6, 0x13,
]))
.unwrap()
);
@@ -883,42 +530,38 @@ fn test_fr_sqrt() {
fn test_fr_from_into_repr() {
// r + 1 should not be in the field
assert!(Fr::from_repr(FrRepr([
0xffffffff00000002,
0x53bda402fffe5bfe,
0x3339d80809a1d805,
0x73eda753299d7d48
0x02, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x5b, 0xfe, 0xff, 0x02, 0xa4, 0xbd,
0x53, 0x05, 0xd8, 0xa1, 0x09, 0x08, 0xd8, 0x39, 0x33, 0x48, 0x7d, 0x9d, 0x29, 0x53, 0xa7,
0xed, 0x73,
]))
.is_err());
.is_none());
// r should not be in the field
assert!(Fr::from_repr(Fr::char()).is_err());
assert!(Fr::from_repr(Fr::char()).is_none());
// Multiply some arbitrary representations to see if the result is as expected.
let a = FrRepr([
0x25ebe3a3ad3c0c6a,
0x6990e39d092e817c,
0x941f900d42f5658e,
0x44f8a103b38a71e0,
0x6a, 0x0c, 0x3c, 0xad, 0xa3, 0xe3, 0xeb, 0x25, 0x7c, 0x81, 0x2e, 0x09, 0x9d, 0xe3, 0x90,
0x69, 0x8e, 0x65, 0xf5, 0x42, 0x0d, 0x90, 0x1f, 0x94, 0xe0, 0x71, 0x8a, 0xb3, 0x03, 0xa1,
0xf8, 0x44,
]);
let mut a_fr = Fr::from_repr(a).unwrap();
let b = FrRepr([
0x264e9454885e2475,
0x46f7746bb0308370,
0x4683ef5347411f9,
0x58838d7f208d4492,
0x75, 0x24, 0x5e, 0x88, 0x54, 0x94, 0x4e, 0x26, 0x70, 0x83, 0x30, 0xb0, 0x6b, 0x74, 0xf7,
0x46, 0xf9, 0x11, 0x74, 0x34, 0xf5, 0x3e, 0x68, 0x04, 0x92, 0x44, 0x8d, 0x20, 0x7f, 0x8d,
0x83, 0x58,
]);
let b_fr = Fr::from_repr(b).unwrap();
let c = FrRepr([
0x48a09ab93cfc740d,
0x3a6600fbfc7a671,
0x838567017501d767,
0x7161d6da77745512,
0x0d, 0x74, 0xfc, 0x3c, 0xb9, 0x9a, 0xa0, 0x48, 0x71, 0xa6, 0xc7, 0xbf, 0x0f, 0x60, 0xa6,
0x03, 0x67, 0xd7, 0x01, 0x75, 0x01, 0x67, 0x85, 0x83, 0x12, 0x55, 0x74, 0x77, 0xda, 0xd6,
0x61, 0x71,
]);
a_fr.mul_assign(&b_fr);
assert_eq!(a_fr.into_repr(), c);
// Zero should be in the field.
assert!(Fr::from_repr(FrRepr::from(0)).unwrap().is_zero());
assert!(Fr::from_repr(FrRepr([0; 32])).unwrap().is_zero());
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
@@ -937,60 +580,15 @@ fn test_fr_from_into_repr() {
}
}
#[test]
fn test_fr_repr_display() {
assert_eq!(
format!(
"{}",
FrRepr([
0x2829c242fa826143,
0x1f32cf4dd4330917,
0x932e4e479d168cd9,
0x513c77587f563f64
])
),
"0x513c77587f563f64932e4e479d168cd91f32cf4dd43309172829c242fa826143".to_string()
);
assert_eq!(
format!(
"{}",
FrRepr([
0x25ebe3a3ad3c0c6a,
0x6990e39d092e817c,
0x941f900d42f5658e,
0x44f8a103b38a71e0
])
),
"0x44f8a103b38a71e0941f900d42f5658e6990e39d092e817c25ebe3a3ad3c0c6a".to_string()
);
assert_eq!(
format!(
"{}",
FrRepr([
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff
])
),
"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff".to_string()
);
assert_eq!(
format!("{}", FrRepr([0, 0, 0, 0])),
"0x0000000000000000000000000000000000000000000000000000000000000000".to_string()
);
}
#[test]
fn test_fr_display() {
assert_eq!(
format!(
"{}",
Fr::from_repr(FrRepr([
0xc3cae746a3b5ecc7,
0x185ec8eb3f5b5aee,
0x684499ffe4b9dd99,
0x7c9bba7afb68faa
0xc7, 0xec, 0xb5, 0xa3, 0x46, 0xe7, 0xca, 0xc3, 0xee, 0x5a, 0x5b, 0x3f, 0xeb, 0xc8,
0x5e, 0x18, 0x99, 0xdd, 0xb9, 0xe4, 0xff, 0x99, 0x44, 0x68, 0xaa, 0x8f, 0xb6, 0xaf,
0xa7, 0xbb, 0xc9, 0x07,
]))
.unwrap()
),
@@ -1000,10 +598,9 @@ fn test_fr_display() {
format!(
"{}",
Fr::from_repr(FrRepr([
0x44c71298ff198106,
0xb0ad10817df79b6a,
0xd034a80a2b74132b,
0x41cf9a1336f50719
0x06, 0x81, 0x19, 0xff, 0x98, 0x12, 0xc7, 0x44, 0x6a, 0x9b, 0xf7, 0x7d, 0x81, 0x10,
0xad, 0xb0, 0x2b, 0x13, 0x74, 0x2b, 0x0a, 0xa8, 0x34, 0xd0, 0x19, 0x07, 0xf5, 0x36,
0x13, 0x9a, 0xcf, 0x41,
]))
.unwrap()
),

View File

@@ -1,4 +1,4 @@
use ff::PrimeFieldRepr;
use ff::PrimeField;
use group::{CurveAffine, CurveProjective, EncodedPoint, GroupDecodingError};
use super::*;
@@ -147,13 +147,15 @@ fn test_g1_uncompressed_invalid_vectors() {
}
}
let m = Fq::char();
// PrimeField::char() returns the modulus in its little-endian byte representation,
// but Fq field elements use big-endian encoding, so flip the endianness.
let m: Vec<_> = Fq::char().as_ref().iter().cloned().rev().collect();
{
let mut o = o;
m.write_be(&mut o.as_mut()[0..]).unwrap();
o.as_mut()[..48].copy_from_slice(&m[..]);
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate)) = o.into_affine() {
assert_eq!(coordinate, "x coordinate");
} else {
panic!("should have rejected the point")
@@ -162,9 +164,9 @@ fn test_g1_uncompressed_invalid_vectors() {
{
let mut o = o;
m.write_be(&mut o.as_mut()[48..]).unwrap();
o.as_mut()[48..].copy_from_slice(&m[..]);
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate)) = o.into_affine() {
assert_eq!(coordinate, "y coordinate");
} else {
panic!("should have rejected the point")
@@ -175,7 +177,7 @@ fn test_g1_uncompressed_invalid_vectors() {
let m = Fq::zero().into_repr();
let mut o = o;
m.write_be(&mut o.as_mut()[0..]).unwrap();
o.as_mut()[..48].copy_from_slice(m.as_ref());
if let Err(GroupDecodingError::NotOnCurve) = o.into_affine() {
// :)
@@ -198,8 +200,8 @@ fn test_g1_uncompressed_invalid_vectors() {
let y = y.unwrap();
// We know this is on the curve, but it's likely not going to be in the correct subgroup.
x.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
y.into_repr().write_be(&mut o.as_mut()[48..]).unwrap();
o.as_mut()[..48].copy_from_slice(x.into_repr().as_ref());
o.as_mut()[48..].copy_from_slice(y.into_repr().as_ref());
if let Err(GroupDecodingError::NotInSubgroup) = o.into_affine() {
break;
@@ -263,13 +265,15 @@ fn test_g2_uncompressed_invalid_vectors() {
}
}
let m = Fq::char();
// PrimeField::char() returns the modulus in its little-endian byte representation,
// but Fq field elements use big-endian encoding, so flip the endianness.
let m: Vec<_> = Fq::char().as_ref().iter().cloned().rev().collect();
{
let mut o = o;
m.write_be(&mut o.as_mut()[0..]).unwrap();
o.as_mut()[..48].copy_from_slice(&m[..]);
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate)) = o.into_affine() {
assert_eq!(coordinate, "x coordinate (c1)");
} else {
panic!("should have rejected the point")
@@ -278,9 +282,9 @@ fn test_g2_uncompressed_invalid_vectors() {
{
let mut o = o;
m.write_be(&mut o.as_mut()[48..]).unwrap();
o.as_mut()[48..96].copy_from_slice(&m[..]);
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate)) = o.into_affine() {
assert_eq!(coordinate, "x coordinate (c0)");
} else {
panic!("should have rejected the point")
@@ -289,9 +293,9 @@ fn test_g2_uncompressed_invalid_vectors() {
{
let mut o = o;
m.write_be(&mut o.as_mut()[96..]).unwrap();
o.as_mut()[96..144].copy_from_slice(&m[..]);
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate)) = o.into_affine() {
assert_eq!(coordinate, "y coordinate (c1)");
} else {
panic!("should have rejected the point")
@@ -300,9 +304,9 @@ fn test_g2_uncompressed_invalid_vectors() {
{
let mut o = o;
m.write_be(&mut o.as_mut()[144..]).unwrap();
o.as_mut()[144..].copy_from_slice(&m[..]);
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate)) = o.into_affine() {
assert_eq!(coordinate, "y coordinate (c0)");
} else {
panic!("should have rejected the point")
@@ -313,8 +317,8 @@ fn test_g2_uncompressed_invalid_vectors() {
let m = Fq::zero().into_repr();
let mut o = o;
m.write_be(&mut o.as_mut()[0..]).unwrap();
m.write_be(&mut o.as_mut()[48..]).unwrap();
o.as_mut()[..48].copy_from_slice(m.as_ref());
o.as_mut()[48..96].copy_from_slice(m.as_ref());
if let Err(GroupDecodingError::NotOnCurve) = o.into_affine() {
// :)
@@ -340,10 +344,10 @@ fn test_g2_uncompressed_invalid_vectors() {
let y = y.unwrap();
// We know this is on the curve, but it's likely not going to be in the correct subgroup.
x.c1.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
x.c0.into_repr().write_be(&mut o.as_mut()[48..]).unwrap();
y.c1.into_repr().write_be(&mut o.as_mut()[96..]).unwrap();
y.c0.into_repr().write_be(&mut o.as_mut()[144..]).unwrap();
o.as_mut()[..48].copy_from_slice(x.c1.into_repr().as_ref());
o.as_mut()[48..96].copy_from_slice(x.c0.into_repr().as_ref());
o.as_mut()[96..144].copy_from_slice(y.c1.into_repr().as_ref());
o.as_mut()[144..].copy_from_slice(y.c0.into_repr().as_ref());
if let Err(GroupDecodingError::NotInSubgroup) = o.into_affine() {
break;
@@ -407,14 +411,16 @@ fn test_g1_compressed_invalid_vectors() {
}
}
let m = Fq::char();
// PrimeField::char() returns the modulus in its little-endian byte representation,
// but Fq field elements use big-endian encoding, so flip the endianness.
let m: Vec<_> = Fq::char().as_ref().iter().cloned().rev().collect();
{
let mut o = o;
m.write_be(&mut o.as_mut()[0..]).unwrap();
o.as_mut()[..48].copy_from_slice(&m[..]);
o.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate)) = o.into_affine() {
assert_eq!(coordinate, "x coordinate");
} else {
panic!("should have rejected the point")
@@ -433,7 +439,7 @@ fn test_g1_compressed_invalid_vectors() {
if x3b.sqrt().is_some().into() {
x.add_assign(&Fq::one());
} else {
x.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
o.as_mut().copy_from_slice(x.into_repr().as_ref());
o.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::NotOnCurve) = o.into_affine() {
@@ -456,7 +462,7 @@ fn test_g1_compressed_invalid_vectors() {
if x3b.sqrt().is_some().into() {
// We know this is on the curve, but it's likely not going to be in the correct subgroup.
x.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
o.as_mut().copy_from_slice(x.into_repr().as_ref());
o.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::NotInSubgroup) = o.into_affine() {
@@ -521,14 +527,16 @@ fn test_g2_compressed_invalid_vectors() {
}
}
let m = Fq::char();
// PrimeField::char() returns the modulus in its little-endian byte representation,
// but Fq field elements use big-endian encoding, so flip the endianness.
let m: Vec<_> = Fq::char().as_ref().iter().cloned().rev().collect();
{
let mut o = o;
m.write_be(&mut o.as_mut()[0..]).unwrap();
o.as_mut()[..48].copy_from_slice(&m[..]);
o.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate)) = o.into_affine() {
assert_eq!(coordinate, "x coordinate (c1)");
} else {
panic!("should have rejected the point")
@@ -537,10 +545,10 @@ fn test_g2_compressed_invalid_vectors() {
{
let mut o = o;
m.write_be(&mut o.as_mut()[48..]).unwrap();
o.as_mut()[48..96].copy_from_slice(&m[..]);
o.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate)) = o.into_affine() {
assert_eq!(coordinate, "x coordinate (c0)");
} else {
panic!("should have rejected the point")
@@ -565,8 +573,8 @@ fn test_g2_compressed_invalid_vectors() {
if x3b.sqrt().is_some().into() {
x.add_assign(&Fq2::one());
} else {
x.c1.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
x.c0.into_repr().write_be(&mut o.as_mut()[48..]).unwrap();
o.as_mut()[..48].copy_from_slice(x.c1.into_repr().as_ref());
o.as_mut()[48..].copy_from_slice(x.c0.into_repr().as_ref());
o.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::NotOnCurve) = o.into_affine() {
@@ -595,8 +603,8 @@ fn test_g2_compressed_invalid_vectors() {
if x3b.sqrt().is_some().into() {
// We know this is on the curve, but it's likely not going to be in the correct subgroup.
x.c1.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
x.c0.into_repr().write_be(&mut o.as_mut()[48..]).unwrap();
o.as_mut()[..48].copy_from_slice(x.c1.into_repr().as_ref());
o.as_mut()[48..].copy_from_slice(x.c0.into_repr().as_ref());
o.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::NotInSubgroup) = o.into_affine() {

View File

@@ -2,7 +2,7 @@ use ff::{Field, PowVartime, PrimeField, SqrtField};
use rand_core::{RngCore, SeedableRng};
use rand_xorshift::XorShiftRng;
pub fn random_frobenius_tests<F: Field, C: AsRef<[u64]>>(characteristic: C, maxpower: usize) {
pub fn random_frobenius_tests<F: Field, C: AsRef<[u8]>>(characteristic: C, maxpower: usize) {
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,

View File

@@ -1,10 +1,9 @@
use ff::{PrimeField, PrimeFieldRepr};
use ff::PrimeField;
use rand_core::SeedableRng;
use rand_xorshift::XorShiftRng;
pub fn random_repr_tests<P: PrimeField>() {
random_encoding_tests::<P>();
random_shl_tests::<P>();
random_shr_tests::<P>();
}
@@ -15,71 +14,12 @@ fn random_encoding_tests<P: PrimeField>() {
]);
for _ in 0..1000 {
let r = P::random(&mut rng).into_repr();
let r = P::random(&mut rng);
// Big endian
{
let mut rdecoded = <P as PrimeField>::Repr::default();
let v = r.into_repr();
let rdecoded = P::from_repr(v).unwrap();
let mut v: Vec<u8> = vec![];
r.write_be(&mut v).unwrap();
rdecoded.read_be(&v[0..]).unwrap();
assert_eq!(r, rdecoded);
}
// Little endian
{
let mut rdecoded = <P as PrimeField>::Repr::default();
let mut v: Vec<u8> = vec![];
r.write_le(&mut v).unwrap();
rdecoded.read_le(&v[0..]).unwrap();
assert_eq!(r, rdecoded);
}
{
let mut rdecoded_le = <P as PrimeField>::Repr::default();
let mut rdecoded_be_flip = <P as PrimeField>::Repr::default();
let mut v: Vec<u8> = vec![];
r.write_le(&mut v).unwrap();
// This reads in little-endian, so we are done.
rdecoded_le.read_le(&v[..]).unwrap();
// This reads in big-endian, so we perform a swap of the
// bytes beforehand.
let v: Vec<u8> = v.into_iter().rev().collect();
rdecoded_be_flip.read_be(&v[..]).unwrap();
assert_eq!(rdecoded_le, rdecoded_be_flip);
}
}
}
fn random_shl_tests<P: PrimeField>() {
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
for _ in 0..100 {
let r = P::random(&mut rng).into_repr();
for shift in 0..=r.num_bits() {
let mut r1 = r;
let mut r2 = r;
for _ in 0..shift {
r1.mul2();
}
r2.shl(shift);
assert_eq!(r1, r2);
}
assert_eq!(r, rdecoded);
}
}
@@ -90,19 +30,22 @@ fn random_shr_tests<P: PrimeField>() {
]);
for _ in 0..100 {
let r = P::random(&mut rng).into_repr();
let r = P::random(&mut rng);
for shift in 0..=r.num_bits() {
let mut r1 = r;
let mut r2 = r;
for shift in 0..P::NUM_BITS {
let r1 = r >> shift;
// Doubling the shifted element inserts zeros on the right; re-shifting should
// undo the doubling.
let mut r2 = r1;
for _ in 0..shift {
r1.div2();
r2 = r2.double();
}
r2.shr(shift);
r2 = r2 >> shift;
assert_eq!(r1, r2);
}
assert_eq!(r >> P::NUM_BITS, P::zero());
}
}