Add 'zcash_history/' from commit 'e2c131fdc308265adcab774e54d4d5804c23b368'

git-subtree-dir: zcash_history
git-subtree-mainline: be0ee9eb82
git-subtree-split: e2c131fdc3
This commit is contained in:
Sean Bowe
2020-03-03 17:51:19 -07:00
14 changed files with 1699 additions and 0 deletions

121
zcash_history/src/entry.rs Normal file
View File

@@ -0,0 +1,121 @@
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use crate::{EntryKind, NodeData, Error, EntryLink, MAX_NODE_DATA_SIZE};
/// Max serialized length of entry data.
pub const MAX_ENTRY_SIZE: usize = MAX_NODE_DATA_SIZE + 9;
/// MMR Entry.
#[derive(Debug)]
pub struct Entry {
pub(crate) kind: EntryKind,
pub(crate) data: NodeData,
}
impl Entry {
/// New entry of type node.
pub fn new(data: NodeData, left: EntryLink, right: EntryLink) -> Self {
Entry {
kind: EntryKind::Node(left, right),
data,
}
}
/// Returns if is this node complete (has total of 2^N leaves)
pub fn complete(&self) -> bool {
let leaves = self.leaf_count();
leaves & (leaves - 1) == 0
}
/// Number of leaves under this node.
pub fn leaf_count(&self) -> u64 {
self.data.end_height - (self.data.start_height - 1)
}
/// Is this node a leaf.
pub fn leaf(&self) -> bool {
if let EntryKind::Leaf = self.kind { true } else { false }
}
/// Left child
pub fn left(&self) -> Result<EntryLink, Error> {
match self.kind {
EntryKind::Leaf => { Err(Error::node_expected()) }
EntryKind::Node(left, _) => Ok(left)
}
}
/// Right child.
pub fn right(&self) -> Result<EntryLink, Error> {
match self.kind {
EntryKind::Leaf => { Err(Error::node_expected()) }
EntryKind::Node(_, right) => Ok(right)
}
}
/// Read from byte representation.
pub fn read<R: std::io::Read>(consensus_branch_id: u32, r: &mut R) -> std::io::Result<Self> {
let kind = {
match r.read_u8()? {
0 => {
let left = r.read_u32::<LittleEndian>()?;
let right = r.read_u32::<LittleEndian>()?;
EntryKind::Node(EntryLink::Stored(left), EntryLink::Stored(right))
},
1 => {
EntryKind::Leaf
},
_ => {
return Err(std::io::Error::from(std::io::ErrorKind::InvalidData))
},
}
};
let data = NodeData::read(consensus_branch_id, r)?;
Ok(Entry {
kind,
data,
})
}
/// Write to byte representation.
pub fn write<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
match self.kind {
EntryKind::Node(EntryLink::Stored(left), EntryLink::Stored(right)) => {
w.write_u8(0)?;
w.write_u32::<LittleEndian>(left)?;
w.write_u32::<LittleEndian>(right)?;
},
EntryKind::Leaf => {
w.write_u8(1)?;
},
_ => { return Err(std::io::Error::from(std::io::ErrorKind::InvalidData)); }
}
self.data.write(w)?;
Ok(())
}
/// Convert from byte representation.
pub fn from_bytes<T: AsRef<[u8]>>(consensus_branch_id: u32, buf: T) -> std::io::Result<Self> {
let mut cursor = std::io::Cursor::new(buf);
Self::read(consensus_branch_id, &mut cursor)
}
}
impl From<NodeData> for Entry {
fn from(s: NodeData) -> Self {
Entry { kind: EntryKind::Leaf, data: s }
}
}
impl std::fmt::Display for Entry {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self.kind {
EntryKind::Node(l, r) => write!(f, "node({}, {}, ..)", l, r),
EntryKind::Leaf => write!(f, "leaf(..)"),
}
}
}

77
zcash_history/src/lib.rs Normal file
View File

@@ -0,0 +1,77 @@
//! MMR library for Zcash
//!
//! To be used in zebra and via FFI bindings in zcashd
#![warn(missing_docs)]
mod tree;
mod node_data;
mod entry;
pub use tree::Tree;
pub use node_data::{NodeData, MAX_NODE_DATA_SIZE};
pub use entry::{Entry, MAX_ENTRY_SIZE};
/// Crate-level error type
#[derive(Debug)]
pub enum Error {
/// Entry expected to be presented in the tree view while it was not.
ExpectedInMemory(EntryLink),
/// Entry expected to be a node (specifying for which link this is not true).
ExpectedNode(Option<EntryLink>),
}
impl std::fmt::Display for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match *self {
Self::ExpectedInMemory(l) => write!(f, "Node/leaf expected to be in memory: {}", l),
Self::ExpectedNode(None) => write!(f, "Node expected"),
Self::ExpectedNode(Some(l)) => write!(f, "Node expected, not leaf: {}", l),
}
}
}
/// Reference to to the tree node.
#[repr(C)]
#[derive(Clone, Copy, Debug)]
pub enum EntryLink {
/// Reference to the stored (in the array representation) leaf/node.
Stored(u32),
/// Reference to the generated leaf/node.
Generated(u32),
}
impl std::fmt::Display for EntryLink {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match *self {
Self::Stored(v) => write!(f, "stored({})", v),
Self::Generated(v) => write!(f, "generated({})", v),
}
}
}
/// MMR Node. It is leaf when `left`, `right` are `None` and node when they are not.
#[repr(C)]
#[derive(Debug)]
pub enum EntryKind {
/// Leaf entry.
Leaf,
/// Node entry with children links.
Node(EntryLink, EntryLink),
}
impl Error {
/// Entry expected to be a node (specifying for which link this is not true).
pub fn link_node_expected(link: EntryLink) -> Self { Self::ExpectedNode(Some(link)) }
/// Some entry is expected to be node
pub fn node_expected() -> Self { Self::ExpectedNode(None) }
pub (crate) fn augment(self, link: EntryLink) -> Self {
match self {
Error::ExpectedNode(_) => Error::ExpectedNode(Some(link)),
val => val
}
}
}

View File

@@ -0,0 +1,239 @@
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt, ByteOrder};
use bigint::U256;
use blake2::Params as Blake2Params;
/// Maximum serialized size of the node metadata.
pub const MAX_NODE_DATA_SIZE: usize =
32 + // subtree commitment
4 + // start time
4 + // end time
4 + // start target
4 + // end target
32 + // start sapling tree root
32 + // end sapling tree root
32 + // subtree total work
9 + // start height (compact uint)
9 + // end height (compact uint)
9; // shielded tx count (compact uint)
// = total of 171
/// Node metadata.
#[repr(C)]
#[derive(Debug, Clone, Default)]
#[cfg_attr(test, derive(PartialEq))]
pub struct NodeData {
/// Consensus branch id, should be provided by deserializing node.
pub consensus_branch_id: u32,
/// Subtree commitment - either block hash for leaves or hashsum of children for nodes.
pub subtree_commitment: [u8; 32],
/// Start time.
pub start_time: u32,
/// End time.
pub end_time: u32,
/// Start target.
pub start_target: u32,
/// End target.
pub end_target: u32,
/// Start sapling tree root.
pub start_sapling_root: [u8; 32],
/// End sapling tree root.
pub end_sapling_root: [u8; 32],
/// Part of tree total work.
pub subtree_total_work: U256,
/// Start height.
pub start_height: u64,
/// End height
pub end_height: u64,
/// Number of shielded transactions.
pub shielded_tx: u64,
}
fn blake2b_personal(personalization: &[u8], input: &[u8]) -> [u8; 32] {
let hash_result = Blake2Params::new()
.hash_length(32)
.personal(personalization)
.to_state()
.update(input)
.finalize();
let mut result = [0u8; 32];
result.copy_from_slice(hash_result.as_bytes());
result
}
fn personalization(branch_id: u32) -> [u8; 16] {
let mut result = [0u8; 16];
result[..12].copy_from_slice(b"ZcashHistory");
LittleEndian::write_u32(&mut result[12..], branch_id);
result
}
impl NodeData {
/// Combine two nodes metadata.
pub fn combine(left: &NodeData, right: &NodeData) -> NodeData {
assert_eq!(left.consensus_branch_id, right.consensus_branch_id);
let mut hash_buf = [0u8; MAX_NODE_DATA_SIZE * 2];
let size = {
let mut cursor = ::std::io::Cursor::new(&mut hash_buf[..]);
left.write(&mut cursor).expect("Writing to memory buf with enough length cannot fail; qed");
right.write(&mut cursor).expect("Writing to memory buf with enough length cannot fail; qed");
cursor.position() as usize
};
let hash = blake2b_personal(
&personalization(left.consensus_branch_id),
&hash_buf[..size]
);
NodeData {
consensus_branch_id: left.consensus_branch_id,
subtree_commitment: hash,
start_time: left.start_time,
end_time: right.end_time,
start_target: left.start_target,
end_target: right.end_target,
start_sapling_root: left.start_sapling_root,
end_sapling_root: right.end_sapling_root,
subtree_total_work: left.subtree_total_work + right.subtree_total_work,
start_height: left.start_height,
end_height: right.end_height,
shielded_tx: left.shielded_tx + right.shielded_tx,
}
}
fn write_compact<W: std::io::Write>(w: &mut W, compact: u64) -> std::io::Result<()> {
match compact {
0..=0xfc => {
w.write_all(&[compact as u8])?
},
0xfd..=0xffff => {
w.write_all(&[0xfd])?;
w.write_u16::<LittleEndian>(compact as u16)?;
},
0x10000..=0xffff_ffff => {
w.write_all(&[0xfe])?;
w.write_u32::<LittleEndian>(compact as u32)?;
},
_ => {
w.write_all(&[0xff])?;
w.write_u64::<LittleEndian>(compact)?;
}
}
Ok(())
}
fn read_compact<R: std::io::Read>(reader: &mut R) -> std::io::Result<u64> {
let result = match reader.read_u8()? {
i @ 0..=0xfc => i.into(),
0xfd => reader.read_u16::<LittleEndian>()?.into(),
0xfe => reader.read_u32::<LittleEndian>()?.into(),
_ => reader.read_u64::<LittleEndian>()?,
};
Ok(result)
}
/// Write to the byte representation.
pub fn write<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
w.write_all(&self.subtree_commitment)?;
w.write_u32::<LittleEndian>(self.start_time)?;
w.write_u32::<LittleEndian>(self.end_time)?;
w.write_u32::<LittleEndian>(self.start_target)?;
w.write_u32::<LittleEndian>(self.end_target)?;
w.write_all(&self.start_sapling_root)?;
w.write_all(&self.end_sapling_root)?;
let mut work_buf = [0u8; 32];
self.subtree_total_work.to_little_endian(&mut work_buf[..]);
w.write_all(&work_buf)?;
Self::write_compact(w, self.start_height)?;
Self::write_compact(w, self.end_height)?;
Self::write_compact(w, self.shielded_tx)?;
Ok(())
}
/// Read from the byte representation.
pub fn read<R: std::io::Read>(consensus_branch_id: u32, r: &mut R) -> std::io::Result<Self> {
let mut data = Self::default();
data.consensus_branch_id = consensus_branch_id;
r.read_exact(&mut data.subtree_commitment)?;
data.start_time = r.read_u32::<LittleEndian>()?;
data.end_time = r.read_u32::<LittleEndian>()?;
data.start_target= r.read_u32::<LittleEndian>()?;
data.end_target= r.read_u32::<LittleEndian>()?;
r.read_exact(&mut data.start_sapling_root)?;
r.read_exact(&mut data.end_sapling_root)?;
let mut work_buf = [0u8; 32];
r.read_exact(&mut work_buf)?;
data.subtree_total_work = U256::from_little_endian(&work_buf);
data.start_height = Self::read_compact(r)?;
data.end_height = Self::read_compact(r)?;
data.shielded_tx = Self::read_compact(r)?;
Ok(data)
}
/// Convert to byte representation.
pub fn to_bytes(&self) -> Vec<u8> {
let mut buf = [0u8; MAX_NODE_DATA_SIZE];
let pos = {
let mut cursor = std::io::Cursor::new(&mut buf[..]);
self.write(&mut cursor).expect("Cursor cannot fail");
cursor.position() as usize
};
buf[0..pos].to_vec()
}
/// Convert from byte representation.
pub fn from_bytes<T: AsRef<[u8]>>(consensus_branch_id: u32, buf: T) -> std::io::Result<Self> {
let mut cursor = std::io::Cursor::new(buf);
Self::read(consensus_branch_id, &mut cursor)
}
/// Hash node metadata
pub fn hash(&self) -> [u8; 32] {
let bytes = self.to_bytes();
blake2b_personal(&personalization(self.consensus_branch_id), &bytes)
}
}
#[cfg(test)]
impl quickcheck::Arbitrary for NodeData {
fn arbitrary<G: quickcheck::Gen>(gen: &mut G) -> Self {
let mut node_data = NodeData::default();
node_data.consensus_branch_id = 0;
gen.fill_bytes(&mut node_data.subtree_commitment[..]);
node_data.start_time = gen.next_u32();
node_data.end_time = gen.next_u32();
node_data.start_target = gen.next_u32();
node_data.end_target = gen.next_u32();
gen.fill_bytes(&mut node_data.start_sapling_root[..]);
gen.fill_bytes(&mut node_data.end_sapling_root[..]);
let mut number = [0u8; 32];
gen.fill_bytes(&mut number[..]);
node_data.subtree_total_work = U256::from_little_endian(&number[..]);
node_data.start_height = gen.next_u64();
node_data.end_height = gen.next_u64();
node_data.shielded_tx = gen.next_u64();
node_data
}
}
#[cfg(test)]
mod tests {
use super::NodeData;
use quickcheck::{quickcheck, TestResult};
quickcheck! {
fn serialization_round_trip(node_data: NodeData) -> TestResult {
TestResult::from_bool(NodeData::from_bytes(0, &node_data.to_bytes()).unwrap() == node_data)
}
}
}

756
zcash_history/src/tree.rs Normal file
View File

@@ -0,0 +1,756 @@
use std::collections::HashMap;
use crate::{Entry, EntryLink, NodeData, Error, EntryKind};
/// Represents partially loaded tree.
///
/// Some kind of "view" into the array representation of the MMR tree.
/// With only some of the leaves/nodes pre-loaded / pre-generated.
/// Exact amount of the loaded data can be calculated by the constructing party,
/// depending on the length of the tree and maximum amount of operations that are going
/// to happen after construction. `Tree` should not be used as self-contained data structure,
/// since it's internal state can grow indefinitely after serial operations.
/// Intended use of this `Tree` is to instantiate it based on partially loaded data (see example
/// how to pick right nodes from the array representation of MMR Tree), perform several operations
/// (append-s/delete-s) and then drop it.
pub struct Tree {
stored: HashMap<u32, Entry>,
// This can grow indefinitely if `Tree` is misused as a self-contained data structure
generated: Vec<Entry>,
// number of persistent(!) tree entries
stored_count: u32,
root: EntryLink,
}
impl Tree {
/// Resolve link originated from this tree
pub fn resolve_link(&self, link: EntryLink) -> Result<IndexedNode, Error> {
match link {
EntryLink::Generated(index) => self.generated.get(index as usize),
EntryLink::Stored(index) => self.stored.get(&index),
}
.map(|node| IndexedNode {
node,
link,
})
.ok_or(Error::ExpectedInMemory(link))
}
fn push(&mut self, data: Entry) -> EntryLink {
let idx = self.stored_count;
self.stored_count += 1;
self.stored.insert(idx, data);
EntryLink::Stored(idx)
}
fn push_generated(&mut self, data: Entry) -> EntryLink {
self.generated.push(data);
EntryLink::Generated(self.generated.len() as u32 - 1)
}
/// Populate tree with plain list of the leaves/nodes. For now, only for tests,
/// since this `Tree` structure is for partially loaded tree (but it might change)
#[cfg(test)]
pub fn populate(loaded: Vec<Entry>, root: EntryLink) -> Self {
let mut result = Tree::invalid();
result.stored_count = loaded.len() as u32;
for (idx, item) in loaded.into_iter().enumerate() {
result.stored.insert(idx as u32, item);
}
result.root = root;
result
}
// Empty tree with invalid root
fn invalid() -> Self {
Tree {
root: EntryLink::Generated(0),
generated: Default::default(),
stored: Default::default(),
stored_count: 0,
}
}
/// New view into the the tree array representation
///
/// `length` is total length of the array representation (is generally not a sum of
/// peaks.len + extra.len)
/// `peaks` is peaks of the mmr tree
/// `extra` is some extra nodes that calculated to be required during next one or more
/// operations on the tree.
///
/// # Panics
///
/// Will panic if `peaks` is empty.
pub fn new(
length: u32,
peaks: Vec<(u32, Entry)>,
extra: Vec<(u32, Entry)>,
) -> Self {
assert!(peaks.len() > 0);
let mut result = Tree::invalid();
result.stored_count = length;
let mut gen = 0;
let mut root = EntryLink::Stored(peaks[0].0);
for (idx, node) in peaks.into_iter() {
result.stored.insert(idx, node);
if gen != 0 {
let next_generated =
combine_nodes(result.
resolve_link(root).expect("Inserted before, cannot fail; qed"),
result.resolve_link(EntryLink::Stored(idx)).expect("Inserted before, cannot fail; qed")
);
root = result.push_generated(next_generated);
}
gen += 1;
}
for (idx, node) in extra {
result.stored.insert(idx, node);
}
result.root = root;
result
}
fn get_peaks(&self, root: EntryLink, target: &mut Vec<EntryLink>) -> Result<(), Error> {
let (left_child_link, right_child_link) = {
let root = self.resolve_link(root)?;
if root.node.complete() {
target.push(root.link);
return Ok(());
}
(
root.left()?,
root.right()?,
)
};
self.get_peaks(left_child_link, target)?;
self.get_peaks(right_child_link, target)?;
Ok(())
}
/// Append one leaf to the tree.
///
/// Returns links to actual nodes that has to be persisted as the result of the append.
/// If completed without error, at least one link to the appended
/// node (with metadata provided in `new_leaf`) will be returned.
pub fn append_leaf(&mut self, new_leaf: NodeData) -> Result<Vec<EntryLink>, Error> {
let root = self.root;
let new_leaf_link = self.push(new_leaf.into());
let mut appended = Vec::new();
appended.push(new_leaf_link);
let mut peaks = Vec::new();
self.get_peaks(root, &mut peaks)?;
let mut merge_stack = Vec::new();
merge_stack.push(new_leaf_link);
// Scan the peaks right-to-left, merging together equal-sized adjacent
// complete subtrees. After this, merge_stack only contains peaks of
// unequal-sized subtrees.
while let Some(next_peak) = peaks.pop() {
let next_merge = merge_stack.pop().expect("there should be at least one, initial or re-pushed");
if let Some(stored) = {
let peak = self.resolve_link(next_peak)?;
let m = self.resolve_link(next_merge)?;
if peak.node.leaf_count() == m.node.leaf_count() {
Some(combine_nodes(peak, m))
} else { None }
} {
let link = self.push(stored);
merge_stack.push(link);
appended.push(link);
continue;
} else {
merge_stack.push(next_merge);
merge_stack.push(next_peak);
}
}
let mut new_root = merge_stack.pop().expect("Loop above cannot reduce the merge_stack");
// Scan the peaks left-to-right, producing new generated nodes that
// connect the subtrees
while let Some(next_child) = merge_stack.pop() {
new_root = self.push_generated(
combine_nodes(
self.resolve_link(new_root)?,
self.resolve_link(next_child)?,
)
)
}
self.root = new_root;
Ok(appended)
}
#[cfg(test)]
fn for_children<F: Fn(EntryLink, EntryLink)>(&self, node: EntryLink, f: F) {
let (left, right) = {
let link = self.resolve_link(node).expect("Failed to resolve link in test");
(
link.left().expect("Failed to find node in test"),
link.right().expect("Failed to find node in test"),
)
};
f(left, right);
}
fn pop(&mut self) {
self.stored.remove(&(self.stored_count-1));
self.stored_count = self.stored_count - 1;
}
/// Truncate one leaf from the end of the tree.
///
/// Returns actual number of nodes that should be removed by the caller
/// from the end of the array representation.
pub fn truncate_leaf(&mut self) -> Result<u32, Error> {
let root = {
let (leaves, root_left_child) = {
let n = self.resolve_link(self.root)?;
(
n.node.leaf_count(),
n.node.left()?,
)
};
if leaves & 1 != 0 {
self.pop();
self.root = root_left_child;
return Ok(1);
} else {
self.resolve_link(self.root)?
}
};
let mut peaks = vec![root.left()?];
let mut subtree_root_link = root.right()?;
let mut truncated = 1;
loop {
let left_link = self.resolve_link(subtree_root_link)?.node;
if let EntryKind::Node(left, right) = left_link.kind {
peaks.push(left);
subtree_root_link = right;
truncated += 1;
} else {
if root.node.complete() { truncated += 1; }
break;
}
}
let mut new_root = *peaks.get(0).expect("At lest 1 elements in peaks");
for next_peak in peaks.into_iter().skip(1) {
new_root = self.push_generated(
combine_nodes(
self.resolve_link(new_root)?,
self.resolve_link(next_peak)?,
)
);
}
for _ in 0..truncated { self.pop(); }
self.root = new_root;
Ok(truncated)
}
/// Length of array representation of the tree.
pub fn len(&self) -> u32 {
self.stored_count
}
/// Link to the root node
pub fn root(&self) -> EntryLink { self.root }
/// Reference to the root node.
pub fn root_node(&self) -> Result<IndexedNode, Error> {
self.resolve_link(self.root)
}
/// If this tree is empty.
pub fn is_empty(&self) -> bool {
self.stored_count == 0
}
}
/// Reference to the node with link attached.
#[derive(Debug)]
pub struct IndexedNode<'a> {
node: &'a Entry,
link: EntryLink,
}
impl<'a> IndexedNode<'a> {
fn left(&self) -> Result<EntryLink, Error> {
self.node.left().map_err(|e| e.augment(self.link))
}
fn right(&self) -> Result<EntryLink, Error> {
self.node.right().map_err(|e| e.augment(self.link))
}
/// Reference to the entry struct.
pub fn node(&self) -> &Entry {
self.node
}
/// Reference to the entry metadata.
pub fn data(&self) -> &NodeData {
&self.node.data
}
/// Actual link by what this node was resolved.
pub fn link(&self) -> EntryLink {
self.link
}
}
fn combine_nodes<'a>(left: IndexedNode<'a>, right: IndexedNode<'a>) -> Entry {
Entry {
kind: EntryKind::Node(left.link, right.link),
data: NodeData::combine(&left.node.data, &right.node.data),
}
}
#[cfg(test)]
mod tests {
use super::{Entry, NodeData, Tree, EntryLink, EntryKind};
use quickcheck::{quickcheck, TestResult};
use assert_matches::assert_matches;
fn leaf(height: u32) -> NodeData {
NodeData {
consensus_branch_id: 1,
subtree_commitment: [0u8; 32],
start_time: 0,
end_time: 0,
start_target: 0,
end_target: 0,
start_sapling_root: [0u8; 32],
end_sapling_root: [0u8; 32],
subtree_total_work: 0.into(),
start_height: height as u64,
end_height: height as u64,
shielded_tx: 7,
}
}
fn initial() -> Tree {
let node1: Entry = leaf(1).into();
let node2: Entry = leaf(2).into();
let node3 = Entry {
data: NodeData::combine(&node1.data, &node2.data),
kind: EntryKind::Leaf,
};
Tree::populate(vec![node1, node2, node3], EntryLink::Stored(2))
}
// returns tree with specified number of leafs and it's root
fn generated(length: u32) -> Tree {
assert!(length >= 3);
let mut tree = initial();
for i in 2..length {
tree.append_leaf(leaf(i+1).into()).expect("Failed to append");
}
tree
}
#[test]
fn discrete_append() {
let mut tree = initial();
// ** APPEND 3 **
let appended = tree
.append_leaf(leaf(3))
.expect("Failed to append");
let new_root = tree.root_node().expect("Failed to resolve root").node;
// initial tree: (2)
// / \
// (0) (1)
//
// new tree:
// (4g)
// / \
// (2) \
// / \ \
// (0) (1) (3)
//
// so only (3) is added as real leaf
// while new root, (4g) is generated one
assert_eq!(new_root.data.end_height, 3);
assert_eq!(appended.len(), 1);
// ** APPEND 4 **
let appended = tree
.append_leaf(leaf(4))
.expect("Failed to append");
let new_root = tree.root_node().expect("Failed to resolve root").node;
// intermediate tree:
// (4g)
// / \
// (2) \
// / \ \
// (0) (1) (3)
//
// new tree:
// ( 6 )
// / \
// (2) (5)
// / \ / \
// (0) (1) (3) (4)
//
// so (4), (5), (6) are added as real leaves
// and new root, (6) is stored one
assert_eq!(new_root.data.end_height, 4);
assert_eq!(appended.len(), 3);
assert_matches!(tree.root(), EntryLink::Stored(6));
// ** APPEND 5 **
let appended = tree
.append_leaf(leaf(5))
.expect("Failed to append");
let new_root = tree.root_node().expect("Failed to resolve root").node;
// intermediate tree:
// ( 6 )
// / \
// (2) (5)
// / \ / \
// (0) (1) (3) (4)
//
// new tree:
// ( 8g )
// / \
// ( 6 ) \
// / \ \
// (2) (5) \
// / \ / \ \
// (0) (1) (3) (4) (7)
//
// so (7) is added as real leaf
// and new root, (8g) is generated one
assert_eq!(new_root.data.end_height, 5);
assert_eq!(appended.len(), 1);
assert_matches!(tree.root(), EntryLink::Generated(_));
tree.for_children(tree.root(), |l, r| {
assert_matches!(l, EntryLink::Stored(6));
assert_matches!(r, EntryLink::Stored(7));
});
// *** APPEND #6 ***
let appended = tree
.append_leaf(leaf(6))
.expect("Failed to append");
let new_root = tree.root_node().expect("Failed to resolve root").node;
// intermediate tree:
// ( 8g )
// / \
// ( 6 ) \
// / \ \
// (2) (5) \
// / \ / \ \
// (0) (1) (3) (4) (7)
//
// new tree:
// (---10g--)
// / \
// ( 6 ) \
// / \ \
// (2) (5) (9)
// / \ / \ / \
// (0) (1) (3) (4) (7) (8)
//
// so (7) is added as real leaf
// and new root, (10g) is generated one
assert_eq!(new_root.data.end_height, 6);
assert_eq!(appended.len(), 2);
assert_matches!(tree.root(), EntryLink::Generated(_));
tree.for_children(tree.root(), |l, r| {
assert_matches!(l, EntryLink::Stored(6));
assert_matches!(r, EntryLink::Stored(9));
});
// *** APPEND #7 ***
let appended = tree
.append_leaf(leaf(7))
.expect("Failed to append");
let new_root = tree
.root_node()
.expect("Failed to resolve root")
.node;
// intermediate tree:
// (---8g---)
// / \
// ( 6 ) \
// / \ \
// (2) (5) (9)
// / \ / \ / \
// (0) (1) (3) (4) (7) (8)
//
// new tree:
// (---12g--)
// / \
// (---11g---) \
// / \ \
// ( 6 ) \ \
// / \ \ \
// (2) (5) (9) \
// / \ / \ / \ \
// (0) (1) (3) (4) (7) (8) (10)
//
// so (10) is added as real leaf
// and new root, (12g) is generated one
assert_eq!(new_root.data.end_height, 7);
assert_eq!(appended.len(), 1);
assert_matches!(tree.root(), EntryLink::Generated(_));
tree.for_children(tree.root(), |l, r| {
assert_matches!(l, EntryLink::Generated(_));
tree.for_children(l, |l, r|
assert_matches!((l, r), (EntryLink::Stored(6), EntryLink::Stored(9)))
);
assert_matches!(r, EntryLink::Stored(10));
});
}
#[test]
fn truncate_simple() {
let mut tree = generated(9);
let total_truncated = tree.truncate_leaf().expect("Failed to truncate");
// initial tree:
//
// (-------16g------)
// / \
// (--------14-------) \
// / \ \
// ( 6 ) ( 13 ) \
// / \ / \ \
// (2) (5) (9) (12) \
// / \ / \ / \ / \ \
// (0) (1) (3) (4) (7) (8) (10) (11) (15)
//
// new tree:
// (--------14-------)
// / \
// ( 6 ) ( 13 )
// / \ / \
// (2) (5) (9) (12)
// / \ / \ / \ / \
// (0) (1) (3) (4) (7) (8) (10) (11)
//
// so (15) is truncated
// and new root, (14) is a stored one now
assert_matches!(tree.root(), EntryLink::Stored(14));
assert_eq!(total_truncated, 1);
assert_eq!(tree.len(), 15);
}
#[test]
fn truncate_generated() {
let mut tree = generated(10);
let deleted = tree.truncate_leaf().expect("Failed to truncate");
// initial tree:
//
// (--------18g--------)
// / \
// (--------14-------) \
// / \ \
// ( 6 ) ( 13 ) \
// / \ / \ \
// (2) (5) (9) (12) (17)
// / \ / \ / \ / \ / \
// (0) (1) (3) (4) (7) (8) (10) (11) (15) (16)
//
// new tree:
// (-------16g------)
// / \
// (--------14-------) \
// / \ \
// ( 6 ) ( 13 ) \
// / \ / \ \
// (2) (5) (9) (12) \
// / \ / \ / \ / \ \
// (0) (1) (3) (4) (7) (8) (10) (11) (15)
// new root is generated
assert_matches!(tree.root(), EntryLink::Generated(_));
tree.for_children(tree.root(),|left, right|
assert_matches!(
(left, right),
(EntryLink::Stored(14), EntryLink::Stored(15))
)
);
// two stored nodes should leave us (leaf 16 and no longer needed node 17)
assert_eq!(deleted, 2);
assert_eq!(tree.len(), 16);
}
#[test]
fn tree_len() {
let mut tree = initial();
assert_eq!(tree.len(), 3);
for i in 0..2 {
tree.append_leaf(leaf(i+3)).expect("Failed to append");
}
assert_eq!(tree.len(), 7);
tree.truncate_leaf().expect("Failed to truncate");
assert_eq!(tree.len(), 4);
}
#[test]
fn tree_len_long() {
let mut tree = initial();
assert_eq!(tree.len(), 3);
for i in 0..4094 {
tree.append_leaf(leaf(i+3)).expect("Failed to append");
}
assert_eq!(tree.len(), 8191); // 4096*2-1 (full tree)
for _ in 0..2049 {
tree.truncate_leaf().expect("Failed to truncate");
}
assert_eq!(tree.len(), 4083); // 4095 - log2(4096)
}
quickcheck! {
fn there_and_back(number: u32) -> TestResult {
if number > 1024*1024 {
TestResult::discard()
} else {
let mut tree = initial();
for i in 0..number {
tree.append_leaf(leaf(i+3)).expect("Failed to append");
}
for _ in 0..number {
tree.truncate_leaf().expect("Failed to truncate");
}
TestResult::from_bool(if let EntryLink::Stored(2) = tree.root() { true } else { false })
}
}
fn leaf_count(number: u32) -> TestResult {
if number > 1024 * 1024 || number < 3 {
TestResult::discard()
} else {
let mut tree = initial();
for i in 1..(number-1) {
tree.append_leaf(leaf(i+2)).expect("Failed to append");
}
TestResult::from_bool(
tree.root_node().expect("no root").node.leaf_count() == number as u64
)
}
}
fn parity(number: u32) -> TestResult {
if number > 2048 * 2048 || number < 3 {
TestResult::discard()
} else {
let mut tree = initial();
for i in 1..(number-1) {
tree.append_leaf(leaf(i+2)).expect("Failed to append");
}
TestResult::from_bool(
if number & (number - 1) == 0 {
if let EntryLink::Stored(_) = tree.root() { true }
else { false }
} else {
if let EntryLink::Generated(_) = tree.root() { true }
else { false }
}
)
}
}
fn parity_with_truncate(add: u32, delete: u32) -> TestResult {
// First we add `add` number of leaves, then delete `delete` number of leaves
// What is left should be consistent with generated-stored structure
if add > 2048 * 2048 || add < delete {
TestResult::discard()
} else {
let mut tree = initial();
for i in 0..add {
tree.append_leaf(leaf(i+3)).expect("Failed to append");
}
for _ in 0..delete {
tree.truncate_leaf().expect("Failed to truncate");
}
let total = add - delete + 2;
TestResult::from_bool(
if total & total - 1 == 0 {
if let EntryLink::Stored(_) = tree.root() { true }
else { false }
} else {
if let EntryLink::Generated(_) = tree.root() { true }
else { false }
}
)
}
}
// Length of tree is always less than number of leaves squared
fn stored_length(add: u32, delete: u32) -> TestResult {
if add > 2048 * 2048 || add < delete {
TestResult::discard()
} else {
let mut tree = initial();
for i in 0..add {
tree.append_leaf(leaf(i+3)).expect("Failed to append");
}
for _ in 0..delete {
tree.truncate_leaf().expect("Failed to truncate");
}
let total = add - delete + 2;
TestResult::from_bool(total * total > tree.len())
}
}
}
}