Pull in trait changes from pairing

This commit is contained in:
Jack Grigg
2018-06-27 08:03:36 -04:00
parent 8201a3933f
commit 58cb06ee92
2 changed files with 160 additions and 21 deletions

View File

@@ -9,6 +9,7 @@ license = "MIT/Apache-2.0"
repository = "https://github.com/ebfull/ff"
[dependencies]
byteorder = "1"
rand = "0.3"
ff_derive = { version = "0.2.0", path = "ff_derive" }

View File

@@ -1,6 +1,6 @@
#![feature(i128_type)]
#![allow(unused_imports)]
extern crate byteorder;
extern crate rand;
#[macro_use]
@@ -8,11 +8,13 @@ extern crate ff_derive;
pub use ff_derive::*;
use std::error::Error;
use std::fmt;
use std::io::{self, Read, Write};
/// This trait represents an element of a field.
pub trait Field:
Sized + Eq + Copy + Clone + Send + Sync + fmt::Debug + 'static + rand::Rand
Sized + Eq + Copy + Clone + Send + Sync + fmt::Debug + fmt::Display + 'static + rand::Rand
{
/// Returns the zero element of the field, the additive identity.
fn zero() -> Self;
@@ -53,8 +55,15 @@ pub trait Field:
fn pow<S: AsRef<[u64]>>(&self, exp: S) -> Self {
let mut res = Self::one();
let mut found_one = false;
for i in BitIterator::new(exp) {
res.square();
if found_one {
res.square();
} else {
found_one = i;
}
if i {
res.mul_assign(self);
}
@@ -66,6 +75,9 @@ pub trait Field:
/// This trait represents an element of a field that has a square root operation described for it.
pub trait SqrtField: Field {
/// Returns the Legendre symbol of the field element.
fn legendre(&self) -> LegendreSymbol;
/// Returns the square root of the field element, if it is
/// quadratic residue.
fn sqrt(&self) -> Option<Self>;
@@ -82,19 +94,23 @@ pub trait PrimeFieldRepr:
+ Ord
+ Send
+ Sync
+ Default
+ fmt::Debug
+ fmt::Display
+ 'static
+ rand::Rand
+ AsRef<[u64]>
+ AsMut<[u64]>
+ From<u64>
{
/// Subtract another reprensetation from this one, returning the borrow bit.
fn sub_noborrow(&mut self, other: &Self) -> bool;
/// Subtract another represetation from this one.
fn sub_noborrow(&mut self, other: &Self);
/// Add another representation to this one, returning the carry bit.
fn add_nocarry(&mut self, other: &Self) -> bool;
/// Add another representation to this one.
fn add_nocarry(&mut self, other: &Self);
/// Compute the number of bits needed to encode this number.
/// Compute the number of bits needed to encode this number. Always a
/// multiple of 64.
fn num_bits(&self) -> u32;
/// Returns true iff this number is zero.
@@ -110,57 +126,179 @@ pub trait PrimeFieldRepr:
/// it by 2.
fn div2(&mut self);
/// Performs a rightwise bitshift of this number by some amount.
fn shr(&mut self, amt: u32);
/// Performs a leftwise bitshift of this number, effectively multiplying
/// it by 2. Overflow is ignored.
fn mul2(&mut self);
/// Performs a leftwise bitshift of this number by some amount.
fn shl(&mut self, amt: u32);
/// Writes this `PrimeFieldRepr` as a big endian integer.
fn write_be<W: Write>(&self, mut writer: W) -> io::Result<()> {
use byteorder::{BigEndian, WriteBytesExt};
for digit in self.as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit)?;
}
Ok(())
}
/// Reads a big endian integer into this representation.
fn read_be<R: Read>(&mut self, mut reader: R) -> io::Result<()> {
use byteorder::{BigEndian, ReadBytesExt};
for digit in self.as_mut().iter_mut().rev() {
*digit = reader.read_u64::<BigEndian>()?;
}
Ok(())
}
/// Writes this `PrimeFieldRepr` as a little endian integer.
fn write_le<W: Write>(&self, mut writer: W) -> io::Result<()> {
use byteorder::{LittleEndian, WriteBytesExt};
for digit in self.as_ref().iter() {
writer.write_u64::<LittleEndian>(*digit)?;
}
Ok(())
}
/// Reads a little endian integer into this representation.
fn read_le<R: Read>(&mut self, mut reader: R) -> io::Result<()> {
use byteorder::{LittleEndian, ReadBytesExt};
for digit in self.as_mut().iter_mut() {
*digit = reader.read_u64::<LittleEndian>()?;
}
Ok(())
}
}
#[derive(Debug, PartialEq)]
pub enum LegendreSymbol {
Zero = 0,
QuadraticResidue = 1,
QuadraticNonResidue = -1,
}
/// An error that may occur when trying to interpret a `PrimeFieldRepr` as a
/// `PrimeField` element.
#[derive(Debug)]
pub enum PrimeFieldDecodingError {
/// The encoded value is not in the field
NotInField(String),
}
impl Error for PrimeFieldDecodingError {
fn description(&self) -> &str {
match *self {
PrimeFieldDecodingError::NotInField(..) => "not an element of the field",
}
}
}
impl fmt::Display for PrimeFieldDecodingError {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
match *self {
PrimeFieldDecodingError::NotInField(ref repr) => {
write!(f, "{} is not an element of the field", repr)
}
}
}
}
/// This represents an element of a prime field.
pub trait PrimeField: Field {
/// The prime field can be converted back and forth into this biginteger
/// representation.
type Repr: PrimeFieldRepr;
type Repr: PrimeFieldRepr + From<Self>;
/// Interpret a string of numbers as a (congruent) prime field element.
/// Does not accept unnecessary leading zeroes or a blank string.
fn from_str(s: &str) -> Option<Self> {
if s.is_empty() {
return None;
}
if s == "0" {
return Some(Self::zero());
}
let mut res = Self::zero();
let ten = Self::from_repr(Self::Repr::from(10)).unwrap();
let mut first_digit = true;
for c in s.chars() {
match c.to_digit(10) {
Some(c) => {
if first_digit {
if c == 0 {
return None;
}
first_digit = false;
}
res.mul_assign(&ten);
res.add_assign(&Self::from_repr(Self::Repr::from(u64::from(c))).unwrap());
}
None => {
return None;
}
}
}
Some(res)
}
/// Convert this prime field element into a biginteger representation.
fn from_repr(Self::Repr) -> Result<Self, ()>;
fn from_repr(Self::Repr) -> Result<Self, PrimeFieldDecodingError>;
/// Convert a biginteger reprensentation into a prime field element, if
/// Convert a biginteger representation into a prime field element, if
/// the number is an element of the field.
fn into_repr(&self) -> Self::Repr;
/// Returns the field characteristic; the modulus.
fn char() -> Self::Repr;
/// Returns how many bits are needed to represent an element of this
/// field.
fn num_bits() -> u32;
/// How many bits are needed to represent an element of this field.
const NUM_BITS: u32;
/// Returns how many bits of information can be reliably stored in the
/// field element.
fn capacity() -> u32;
/// How many bits of information can be reliably stored in the field element.
const CAPACITY: u32;
/// Returns the multiplicative generator of `char()` - 1 order. This element
/// must also be quadratic nonresidue.
fn multiplicative_generator() -> Self;
/// Returns s such that 2^s * t = `char()` - 1 with t odd.
fn s() -> usize;
/// 2^s * t = `char()` - 1 with t odd.
const S: u32;
/// Returns the 2^s root of unity computed by exponentiating the `multiplicative_generator()`
/// by t.
fn root_of_unity() -> Self;
}
#[derive(Debug)]
pub struct BitIterator<E> {
t: E,
n: usize,
}
impl<E: AsRef<[u64]>> BitIterator<E> {
fn new(t: E) -> Self {
pub fn new(t: E) -> Self {
let n = t.as_ref().len() * 64;
BitIterator { t: t, n: n }
BitIterator { t, n }
}
}