mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-01-31 07:42:15 +00:00
Auto merge of #9 - ebfull:various-improvements, r=ebfull
Various improvements to project structure and implementation This makes wNAF/multiexp more modularized and abstract (for use later in remodeling groth) and starts moving other things around. Also, good chance to start working on buildbot.
This commit is contained in:
commit
732af319fe
@ -58,7 +58,8 @@ macro_rules! curve_impl {
|
||||
}
|
||||
}
|
||||
|
||||
impl CurveAffine<$engine, $name> for $name_affine {
|
||||
impl CurveAffine<$engine> for $name_affine {
|
||||
type Jacobian = $name;
|
||||
type Uncompressed = $name_uncompressed;
|
||||
|
||||
fn is_valid(&self, e: &$engine) -> bool {
|
||||
@ -111,10 +112,10 @@ macro_rules! curve_impl {
|
||||
self.infinity
|
||||
}
|
||||
|
||||
fn mul<S: Convert<[u64], $engine>>(&self, e: &$engine, other: &S) -> $name {
|
||||
fn mul<S: Convert<<$scalarfield as PrimeField<$engine>>::Repr, $engine>>(&self, e: &$engine, other: &S) -> $name {
|
||||
let mut res = $name::zero(e);
|
||||
|
||||
for i in BitIterator::from((*other.convert(e)).borrow())
|
||||
for i in BitIterator::new((*other.convert(e)).borrow())
|
||||
{
|
||||
res.double(e);
|
||||
|
||||
@ -133,6 +134,32 @@ macro_rules! curve_impl {
|
||||
}
|
||||
}
|
||||
|
||||
impl multiexp::Projective<$engine> for $name {
|
||||
type WindowTable = wnaf::WindowTable<$engine, $name>;
|
||||
|
||||
fn identity(e: &$engine) -> Self {
|
||||
Self::zero(e)
|
||||
}
|
||||
|
||||
fn add_to_projective(&self, e: &$engine, projective: &mut Self) {
|
||||
projective.add_assign(e, self);
|
||||
}
|
||||
|
||||
fn exponentiate(&mut self,
|
||||
e: &$engine,
|
||||
scalar: <$scalarfield as PrimeField<$engine>>::Repr,
|
||||
table: &mut Self::WindowTable,
|
||||
scratch: &mut wnaf::WNAFTable
|
||||
)
|
||||
{
|
||||
*self = self.optimal_exp(e, scalar, table, scratch);
|
||||
}
|
||||
|
||||
fn new_window_table(e: &$engine) -> Self::WindowTable {
|
||||
wnaf::WindowTable::<$engine, $name>::new(e, $name::zero(e), 2)
|
||||
}
|
||||
}
|
||||
|
||||
impl Curve<$engine> for $name {
|
||||
type Affine = $name_affine;
|
||||
type Prepared = $name_prepared;
|
||||
@ -147,7 +174,7 @@ macro_rules! curve_impl {
|
||||
None
|
||||
}
|
||||
|
||||
fn optimal_window_batch(&self, engine: &$engine, scalars: usize) -> WindowTable<$engine, $name, Vec<$name>> {
|
||||
fn optimal_window_batch(&self, engine: &$engine, scalars: usize) -> wnaf::WindowTable<$engine, $name> {
|
||||
let mut window = engine.$params_field.batch_windows.0;
|
||||
|
||||
for i in &engine.$params_field.batch_windows.1 {
|
||||
@ -158,10 +185,7 @@ macro_rules! curve_impl {
|
||||
}
|
||||
}
|
||||
|
||||
let mut table = WindowTable::new();
|
||||
table.set_base(engine, self, window);
|
||||
|
||||
table
|
||||
wnaf::WindowTable::new(engine, *self, window)
|
||||
}
|
||||
|
||||
fn zero(engine: &$engine) -> Self {
|
||||
@ -290,10 +314,10 @@ macro_rules! curve_impl {
|
||||
}
|
||||
}
|
||||
|
||||
fn mul_assign<S: Convert<[u64], $engine>>(&mut self, engine: &$engine, other: &S) {
|
||||
fn mul_assign<S: Convert<<$scalarfield as PrimeField<$engine>>::Repr, $engine>>(&mut self, engine: &$engine, other: &S) {
|
||||
let mut res = Self::zero(engine);
|
||||
|
||||
for i in BitIterator::from((*other.convert(engine)).borrow())
|
||||
for i in BitIterator::new((*other.convert(engine)).borrow())
|
||||
{
|
||||
res.double(engine);
|
||||
|
||||
|
@ -183,6 +183,7 @@ macro_rules! fp_impl {
|
||||
engine = $engine:ident,
|
||||
params = $params_field:ident : $params_name:ident,
|
||||
arith = $arith_mod:ident,
|
||||
repr = $repr:ident,
|
||||
limbs = $limbs:expr,
|
||||
$($params:tt)*
|
||||
) => {
|
||||
@ -218,15 +219,72 @@ macro_rules! fp_impl {
|
||||
#[repr(C)]
|
||||
pub struct $name([u64; $limbs]);
|
||||
|
||||
#[derive(Copy, Clone, PartialEq, Eq)]
|
||||
#[repr(C)]
|
||||
pub struct $repr([u64; $limbs]);
|
||||
|
||||
impl PrimeFieldRepr for $repr {
|
||||
fn from_u64(a: u64) -> Self {
|
||||
let mut tmp: [u64; $limbs] = Default::default();
|
||||
tmp[0] = a;
|
||||
$repr(tmp)
|
||||
}
|
||||
|
||||
fn sub_noborrow(&mut self, other: &Self) {
|
||||
$arith_mod::sub_noborrow(&mut self.0, &other.0);
|
||||
}
|
||||
|
||||
fn add_nocarry(&mut self, other: &Self) {
|
||||
$arith_mod::add_nocarry(&mut self.0, &other.0);
|
||||
}
|
||||
|
||||
fn num_bits(&self) -> usize {
|
||||
$arith_mod::num_bits(&self.0)
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
self.0.iter().all(|&e| e==0)
|
||||
}
|
||||
|
||||
fn is_odd(&self) -> bool {
|
||||
$arith_mod::odd(&self.0)
|
||||
}
|
||||
|
||||
fn div2(&mut self) {
|
||||
$arith_mod::div2(&mut self.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl AsRef<[u64]> for $repr {
|
||||
fn as_ref(&self) -> &[u64] {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl Ord for $repr {
|
||||
fn cmp(&self, other: &$repr) -> Ordering {
|
||||
if $arith_mod::lt(&self.0, &other.0) {
|
||||
Ordering::Less
|
||||
} else if self.0 == other.0 {
|
||||
Ordering::Equal
|
||||
} else {
|
||||
Ordering::Greater
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for $repr {
|
||||
fn partial_cmp(&self, other: &$repr) -> Option<Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for $name
|
||||
{
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
ENGINE.with(|e| {
|
||||
let mut repr = self.into_repr(&e);
|
||||
repr.reverse();
|
||||
|
||||
try!(write!(f, "Fp(0x"));
|
||||
for i in &repr {
|
||||
for i in self.into_repr(&e).0.iter().rev() {
|
||||
try!(write!(f, "{:016x}", *i));
|
||||
}
|
||||
write!(f, ")")
|
||||
@ -260,21 +318,21 @@ macro_rules! fp_impl {
|
||||
}
|
||||
}
|
||||
|
||||
impl Convert<[u64], $engine> for $name
|
||||
impl Convert<$repr, $engine> for $name
|
||||
{
|
||||
type Target = [u64; $limbs];
|
||||
type Target = $repr;
|
||||
|
||||
fn convert(&self, engine: &$engine) -> Cow<[u64; $limbs]> {
|
||||
fn convert(&self, engine: &$engine) -> Cow<$repr> {
|
||||
Cow::Owned(self.into_repr(engine))
|
||||
}
|
||||
}
|
||||
|
||||
impl PrimeField<$engine> for $name
|
||||
{
|
||||
type Repr = [u64; $limbs];
|
||||
type Repr = $repr;
|
||||
|
||||
fn from_repr(engine: &$engine, repr: Self::Repr) -> Result<Self, ()> {
|
||||
let mut tmp = $name(repr);
|
||||
let mut tmp = $name(repr.0);
|
||||
if $arith_mod::lt(&tmp.0, &engine.$params_field.modulus) {
|
||||
tmp.mul_assign(engine, &engine.$params_field.r2);
|
||||
Ok(tmp)
|
||||
@ -286,14 +344,14 @@ macro_rules! fp_impl {
|
||||
fn into_repr(&self, engine: &$engine) -> Self::Repr {
|
||||
let mut tmp = *self;
|
||||
tmp.mul_assign(engine, &engine.$params_field.one);
|
||||
tmp.0
|
||||
$repr(tmp.0)
|
||||
}
|
||||
|
||||
fn from_u64(engine: &$engine, n: u64) -> Self {
|
||||
let mut r = [0; $limbs];
|
||||
r[0] = n;
|
||||
|
||||
Self::from_repr(engine, r).unwrap()
|
||||
Self::from_repr(engine, $repr(r)).unwrap()
|
||||
}
|
||||
|
||||
fn from_str(engine: &$engine, s: &str) -> Result<Self, ()> {
|
||||
@ -313,12 +371,8 @@ macro_rules! fp_impl {
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
fn bits(&self, engine: &$engine) -> BitIterator<Self::Repr> {
|
||||
self.into_repr(engine).into()
|
||||
}
|
||||
|
||||
fn char(engine: &$engine) -> Self::Repr {
|
||||
engine.$params_field.modulus
|
||||
$repr(engine.$params_field.modulus)
|
||||
}
|
||||
|
||||
fn num_bits(engine: &$engine) -> usize {
|
||||
@ -457,19 +511,20 @@ macro_rules! fp_impl {
|
||||
}
|
||||
|
||||
mod $arith_mod {
|
||||
use super::BitIterator;
|
||||
// Arithmetic
|
||||
#[allow(dead_code)]
|
||||
pub fn num_bits(v: &[u64; $limbs]) -> usize
|
||||
{
|
||||
// TODO: optimize
|
||||
for (i, b) in BitIterator::from(&v[..]).enumerate() {
|
||||
if b {
|
||||
return ($limbs*64) - i;
|
||||
let mut ret = 64 * $limbs;
|
||||
for i in v.iter().rev() {
|
||||
let leading = i.leading_zeros() as usize;
|
||||
ret -= leading;
|
||||
if leading != 64 {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
0
|
||||
ret
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -1,21 +1,24 @@
|
||||
use rand;
|
||||
use std::fmt;
|
||||
|
||||
use std::cmp::Ordering;
|
||||
use std::borrow::Borrow;
|
||||
use ::BitIterator;
|
||||
use super::{
|
||||
WindowTable,
|
||||
Engine,
|
||||
Group,
|
||||
Curve,
|
||||
CurveAffine,
|
||||
CurveRepresentation,
|
||||
PrimeField,
|
||||
PrimeFieldRepr,
|
||||
Field,
|
||||
SnarkField,
|
||||
SqrtField,
|
||||
BitIterator,
|
||||
Convert,
|
||||
Cow
|
||||
Cow,
|
||||
multiexp,
|
||||
wnaf
|
||||
};
|
||||
|
||||
use serde::ser::{Serialize, Serializer, SerializeTuple};
|
||||
@ -61,6 +64,7 @@ fp_impl!(
|
||||
engine = Bls381,
|
||||
params = fqparams: FqParams,
|
||||
arith = fq_arith,
|
||||
repr = FqRepr,
|
||||
limbs = 6,
|
||||
// q = 4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787
|
||||
modulus = [ 0xb9feffffffffaaab, 0x1eabfffeb153ffff, 0x6730d2a0f6b0f624, 0x64774b84f38512bf, 0x4b1ba7b6434bacd7, 0x1a0111ea397fe69a ],
|
||||
@ -80,6 +84,7 @@ fp_impl!(
|
||||
engine = Bls381,
|
||||
params = frparams: FrParams,
|
||||
arith = fr_arith,
|
||||
repr = FrRepr,
|
||||
limbs = 4,
|
||||
// r = 52435875175126190479447740508185965837690552500527637822603658699938581184513
|
||||
modulus = [ 0xffffffff00000001, 0x53bda402fffe5bfe, 0x3339d80809a1d805, 0x73eda753299d7d48 ],
|
||||
@ -350,7 +355,9 @@ impl<'a> Deserialize<'a> for G2Uncompressed {
|
||||
}
|
||||
}
|
||||
|
||||
impl CurveRepresentation<Bls381, G1> for G1Uncompressed {
|
||||
impl CurveRepresentation<Bls381> for G1Uncompressed {
|
||||
type Affine = G1Affine;
|
||||
|
||||
fn to_affine_unchecked(&self, e: &Bls381) -> Result<G1Affine, ()> {
|
||||
match self {
|
||||
&G1Uncompressed::Infinity => {
|
||||
@ -372,8 +379,8 @@ impl CurveRepresentation<Bls381, G1> for G1Uncompressed {
|
||||
}
|
||||
|
||||
Ok(G1Affine {
|
||||
x: try!(Fq::from_repr(e, x)),
|
||||
y: try!(Fq::from_repr(e, y)),
|
||||
x: try!(Fq::from_repr(e, FqRepr(x))),
|
||||
y: try!(Fq::from_repr(e, FqRepr(y))),
|
||||
infinity: false
|
||||
})
|
||||
}
|
||||
@ -381,7 +388,9 @@ impl CurveRepresentation<Bls381, G1> for G1Uncompressed {
|
||||
}
|
||||
}
|
||||
|
||||
impl CurveRepresentation<Bls381, G2> for G2Uncompressed {
|
||||
impl CurveRepresentation<Bls381> for G2Uncompressed {
|
||||
type Affine = G2Affine;
|
||||
|
||||
fn to_affine_unchecked(&self, e: &Bls381) -> Result<G2Affine, ()> {
|
||||
match self {
|
||||
&G2Uncompressed::Infinity => {
|
||||
@ -406,12 +415,12 @@ impl CurveRepresentation<Bls381, G2> for G2Uncompressed {
|
||||
if let (Some(y_c1), y_c0) = fq_arith::divrem(&y, &e.fqparams.modulus) {
|
||||
return Ok(G2Affine {
|
||||
x: Fq2 {
|
||||
c0: try!(Fq::from_repr(e, x_c0)),
|
||||
c1: try!(Fq::from_repr(e, x_c1))
|
||||
c0: try!(Fq::from_repr(e, FqRepr(x_c0))),
|
||||
c1: try!(Fq::from_repr(e, FqRepr(x_c1)))
|
||||
},
|
||||
y: Fq2 {
|
||||
c0: try!(Fq::from_repr(e, y_c0)),
|
||||
c1: try!(Fq::from_repr(e, y_c1))
|
||||
c0: try!(Fq::from_repr(e, FqRepr(y_c0))),
|
||||
c1: try!(Fq::from_repr(e, FqRepr(y_c1)))
|
||||
},
|
||||
infinity: false
|
||||
});
|
||||
@ -435,14 +444,14 @@ impl G1Uncompressed {
|
||||
|
||||
{
|
||||
let mut tmp = &mut tmp[0..];
|
||||
for &digit in p.x.into_repr(e).iter().rev() {
|
||||
for &digit in p.x.into_repr(e).0.iter().rev() {
|
||||
tmp.write_u64::<BigEndian>(digit).unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let mut tmp = &mut tmp[48..];
|
||||
for &digit in p.y.into_repr(e).iter().rev() {
|
||||
for &digit in p.y.into_repr(e).0.iter().rev() {
|
||||
tmp.write_u64::<BigEndian>(digit).unwrap();
|
||||
}
|
||||
}
|
||||
@ -464,8 +473,8 @@ impl G2Uncompressed {
|
||||
{
|
||||
let mut tmp = &mut tmp[0..];
|
||||
let mut x = [0; 12];
|
||||
fq_arith::mac3(&mut x, &p.x.c1.into_repr(e), &e.fqparams.modulus);
|
||||
fq_arith::add_carry(&mut x, &p.x.c0.into_repr(e));
|
||||
fq_arith::mac3(&mut x, &p.x.c1.into_repr(e).0, &e.fqparams.modulus);
|
||||
fq_arith::add_carry(&mut x, &p.x.c0.into_repr(e).0);
|
||||
|
||||
for &digit in x.iter().rev() {
|
||||
tmp.write_u64::<BigEndian>(digit).unwrap();
|
||||
@ -475,8 +484,8 @@ impl G2Uncompressed {
|
||||
{
|
||||
let mut tmp = &mut tmp[96..];
|
||||
let mut y = [0; 12];
|
||||
fq_arith::mac3(&mut y, &p.y.c1.into_repr(e), &e.fqparams.modulus);
|
||||
fq_arith::add_carry(&mut y, &p.y.c0.into_repr(e));
|
||||
fq_arith::mac3(&mut y, &p.y.c1.into_repr(e).0, &e.fqparams.modulus);
|
||||
fq_arith::add_carry(&mut y, &p.y.c0.into_repr(e).0);
|
||||
|
||||
for &digit in y.iter().rev() {
|
||||
tmp.write_u64::<BigEndian>(digit).unwrap();
|
||||
@ -685,7 +694,7 @@ impl G2Prepared {
|
||||
let mut r = q.to_jacobian(e);
|
||||
|
||||
let mut found_one = false;
|
||||
for i in BitIterator::from([BLS_X >> 1]) {
|
||||
for i in BitIterator::new(&[BLS_X >> 1]) {
|
||||
if !found_one {
|
||||
found_one = i;
|
||||
continue;
|
||||
@ -999,7 +1008,7 @@ impl Engine for Bls381 {
|
||||
let mut f = Fq12::one(self);
|
||||
|
||||
let mut found_one = false;
|
||||
for i in BitIterator::from([BLS_X >> 1]) {
|
||||
for i in BitIterator::new(&[BLS_X >> 1]) {
|
||||
if !found_one {
|
||||
found_one = i;
|
||||
continue;
|
||||
@ -1037,7 +1046,8 @@ impl Engine for Bls381 {
|
||||
crossbeam::scope(|scope| {
|
||||
for (g, s) in g.chunks_mut(chunk).zip(scalars.as_ref().chunks(chunk)) {
|
||||
scope.spawn(move || {
|
||||
let mut table = WindowTable::new();
|
||||
let mut table = wnaf::WindowTable::new(self, G::zero(self), 2);
|
||||
let mut scratch = wnaf::WNAFTable::new();
|
||||
|
||||
for (g, s) in g.iter_mut().zip(s.iter()) {
|
||||
let mut s = *s;
|
||||
@ -1047,16 +1057,16 @@ impl Engine for Bls381 {
|
||||
},
|
||||
_ => {}
|
||||
};
|
||||
let mut newg = g.to_jacobian(self);
|
||||
opt_exp(self, &mut newg, s.into_repr(self), &mut table);
|
||||
*g = newg.to_affine(self);
|
||||
*g = g.to_jacobian(self)
|
||||
.optimal_exp(self, s.into_repr(self), &mut table, &mut scratch)
|
||||
.to_affine(self);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
fn batch_baseexp<G: Curve<Self>, S: AsRef<[Self::Fr]>>(&self, table: &WindowTable<Self, G, Vec<G>>, s: S) -> Vec<G::Affine>
|
||||
fn batch_baseexp<G: Curve<Self>, S: AsRef<[Self::Fr]>>(&self, table: &wnaf::WindowTable<Self, G>, s: S) -> Vec<G::Affine>
|
||||
{
|
||||
use crossbeam;
|
||||
use num_cpus;
|
||||
@ -1068,13 +1078,12 @@ impl Engine for Bls381 {
|
||||
let chunk = (s.len() / num_cpus::get()) + 1;
|
||||
|
||||
for (s, b) in s.chunks(chunk).zip(ret.chunks_mut(chunk)) {
|
||||
let mut table = table.shared();
|
||||
|
||||
scope.spawn(move || {
|
||||
let mut scratch = wnaf::WNAFTable::new();
|
||||
|
||||
for (s, b) in s.iter().zip(b.iter_mut()) {
|
||||
let mut tmp = G::zero(self);
|
||||
table.exp(self, &mut tmp, s.into_repr(self));
|
||||
*b = tmp.to_affine(self);
|
||||
scratch.set_scalar(table, s.into_repr(self));
|
||||
*b = table.exp(self, &scratch).to_affine(self);
|
||||
}
|
||||
});
|
||||
}
|
||||
@ -1084,232 +1093,7 @@ impl Engine for Bls381 {
|
||||
}
|
||||
|
||||
fn multiexp<G: Curve<Self>>(&self, g: &[G::Affine], s: &[Fr]) -> Result<G, ()> {
|
||||
if g.len() != s.len() {
|
||||
return Err(());
|
||||
}
|
||||
|
||||
use crossbeam;
|
||||
use num_cpus;
|
||||
|
||||
return crossbeam::scope(|scope| {
|
||||
let mut threads = vec![];
|
||||
|
||||
let chunk = (s.len() / num_cpus::get()) + 1;
|
||||
|
||||
for (g, s) in g.chunks(chunk).zip(s.chunks(chunk)) {
|
||||
threads.push(scope.spawn(move || {
|
||||
multiexp_inner(self, g, s)
|
||||
}));
|
||||
}
|
||||
|
||||
let mut acc = G::zero(self);
|
||||
for t in threads {
|
||||
acc.add_assign(self, &t.join());
|
||||
}
|
||||
|
||||
Ok(acc)
|
||||
});
|
||||
|
||||
fn multiexp_inner<G: Curve<Bls381>>(engine: &Bls381, g: &[G::Affine], s: &[Fr]) -> G
|
||||
{
|
||||
// This performs a multi-exponentiation calculation, i.e., multiplies
|
||||
// each group element by the corresponding scalar and adds all of the
|
||||
// terms together. We use the Bos-Coster algorithm to do this: sort
|
||||
// the exponents using a max heap, and rewrite the first two terms
|
||||
// a x + b y = (a-b) x + b(y+x). Reinsert the first element into the
|
||||
// heap after performing cheap scalar subtraction, and perform the
|
||||
// point addition. This continues until the heap is emptied as
|
||||
// elements are multiplied when a certain efficiency threshold is met
|
||||
// or discarded when their exponents become zero. The result of all
|
||||
// the multiplications are accumulated and returned when the heap
|
||||
// is empty.
|
||||
|
||||
assert!(g.len() == s.len());
|
||||
|
||||
use std::cmp::Ordering;
|
||||
use std::collections::BinaryHeap;
|
||||
|
||||
struct Exp {
|
||||
index: usize,
|
||||
value: <Fr as PrimeField<Bls381>>::Repr
|
||||
}
|
||||
|
||||
impl Exp {
|
||||
fn bits(&self) -> usize {
|
||||
fr_arith::num_bits(&self.value)
|
||||
}
|
||||
|
||||
fn justexp(&self, sub: &Exp) -> bool {
|
||||
use std::cmp::min;
|
||||
|
||||
let bbits = sub.bits();
|
||||
let abits = self.bits();
|
||||
let limit = min(abits-bbits, 20);
|
||||
|
||||
if bbits < (1<<limit) {
|
||||
true
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
self.value.iter().all(|&e| e == 0)
|
||||
}
|
||||
}
|
||||
|
||||
impl Ord for Exp {
|
||||
fn cmp(&self, other: &Exp) -> Ordering {
|
||||
if fr_arith::lt(&self.value, &other.value) {
|
||||
Ordering::Less
|
||||
} else if self.value == other.value {
|
||||
Ordering::Equal
|
||||
} else {
|
||||
Ordering::Greater
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for Exp {
|
||||
fn partial_cmp(&self, other: &Exp) -> Option<Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for Exp {
|
||||
fn eq(&self, other: &Exp) -> bool {
|
||||
self.value == other.value
|
||||
}
|
||||
}
|
||||
|
||||
impl Eq for Exp { }
|
||||
|
||||
let mut result = G::zero(engine);
|
||||
let one = Fr::one(engine);
|
||||
|
||||
let mut elements = Vec::with_capacity(g.len());
|
||||
let mut heap = BinaryHeap::with_capacity(g.len());
|
||||
|
||||
for (g, s) in g.iter().zip(s.iter()) {
|
||||
if s.is_zero() || g.is_zero() {
|
||||
// Skip.
|
||||
continue;
|
||||
}
|
||||
|
||||
if s == &one {
|
||||
// Just add.
|
||||
result.add_assign_mixed(engine, &g);
|
||||
continue;
|
||||
}
|
||||
|
||||
let index = elements.len();
|
||||
elements.push(g.to_jacobian(engine));
|
||||
|
||||
heap.push(Exp {
|
||||
index: index,
|
||||
value: s.into_repr(engine)
|
||||
});
|
||||
}
|
||||
|
||||
let mut table = WindowTable::new();
|
||||
|
||||
while let Some(mut greatest) = heap.pop() {
|
||||
{
|
||||
let second_greatest = heap.peek();
|
||||
if second_greatest.is_none() || greatest.justexp(second_greatest.unwrap()) {
|
||||
// Either this is the last value or multiplying is considered more efficient than
|
||||
// rewriting and reinsertion into the heap.
|
||||
opt_exp(engine, &mut elements[greatest.index], greatest.value, &mut table);
|
||||
result.add_assign(engine, &elements[greatest.index]);
|
||||
continue;
|
||||
} else {
|
||||
// Rewrite
|
||||
let second_greatest = second_greatest.unwrap();
|
||||
|
||||
fr_arith::sub_noborrow(&mut greatest.value, &second_greatest.value);
|
||||
let mut tmp = elements[second_greatest.index];
|
||||
tmp.add_assign(engine, &elements[greatest.index]);
|
||||
elements[second_greatest.index] = tmp;
|
||||
}
|
||||
}
|
||||
if !greatest.is_zero() {
|
||||
// Reinsert only nonzero scalars.
|
||||
heap.push(greatest);
|
||||
}
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<G: Curve<Bls381>, B: Borrow<[G]>> WindowTable<Bls381, G, B> {
|
||||
fn exp(&mut self, e: &Bls381, into: &mut G, mut c: <Fr as PrimeField<Bls381>>::Repr) {
|
||||
assert!(self.window > 1);
|
||||
|
||||
self.wnaf.truncate(0);
|
||||
self.wnaf.reserve(Fr::num_bits(e) + 1);
|
||||
|
||||
// Convert the scalar `c` into wNAF form.
|
||||
{
|
||||
use std::default::Default;
|
||||
let mut tmp = <Fr as PrimeField<Bls381>>::Repr::default();
|
||||
|
||||
while !c.iter().all(|&e| e==0) {
|
||||
let mut u;
|
||||
if fr_arith::odd(&c) {
|
||||
u = (c[0] % (1 << (self.window+1))) as i64;
|
||||
|
||||
if u > (1 << self.window) {
|
||||
u -= 1 << (self.window+1);
|
||||
}
|
||||
|
||||
if u > 0 {
|
||||
tmp[0] = u as u64;
|
||||
fr_arith::sub_noborrow(&mut c, &tmp);
|
||||
} else {
|
||||
tmp[0] = (-u) as u64;
|
||||
fr_arith::add_nocarry(&mut c, &tmp);
|
||||
}
|
||||
} else {
|
||||
u = 0;
|
||||
}
|
||||
|
||||
self.wnaf.push(u);
|
||||
|
||||
fr_arith::div2(&mut c);
|
||||
}
|
||||
}
|
||||
|
||||
// Perform wNAF exponentiation.
|
||||
*into = G::zero(e);
|
||||
|
||||
for n in self.wnaf.iter().rev() {
|
||||
into.double(e);
|
||||
|
||||
if *n != 0 {
|
||||
if *n > 0 {
|
||||
into.add_assign(e, &self.table.borrow()[(n/2) as usize]);
|
||||
} else {
|
||||
into.sub_assign(e, &self.table.borrow()[((-n)/2) as usize]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Performs optimal exponentiation
|
||||
fn opt_exp<G: Curve<Bls381>>(e: &Bls381, base: &mut G, scalar: <Fr as PrimeField<Bls381>>::Repr, table: &mut WindowTable<Bls381, G, Vec<G>>)
|
||||
{
|
||||
let bits = fr_arith::num_bits(&scalar);
|
||||
match G::optimal_window(e, bits) {
|
||||
Some(window) => {
|
||||
table.set_base(e, base, window);
|
||||
table.exp(e, base, scalar);
|
||||
},
|
||||
None => {
|
||||
base.mul_assign(e, &scalar);
|
||||
}
|
||||
super::multiexp::perform_multiexp(self, g, s)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -11,7 +11,7 @@ fn test_vectors<E: Engine, G: Curve<E>>(e: &E, expected: &[u8]) {
|
||||
for _ in 0..10000 {
|
||||
{
|
||||
let acc = acc.to_affine(e);
|
||||
let exp: <G::Affine as CurveAffine<E, G>>::Uncompressed =
|
||||
let exp: <G::Affine as CurveAffine<E>>::Uncompressed =
|
||||
bincode::deserialize_from(&mut expected_reader, bincode::Infinite).unwrap();
|
||||
|
||||
assert!(acc == exp.to_affine(e).unwrap());
|
||||
|
@ -1,4 +1,4 @@
|
||||
use curves::{Engine, Field, SnarkField, PrimeField, Group};
|
||||
use super::{Engine, Field, SnarkField, PrimeField, Group};
|
||||
use crossbeam;
|
||||
use num_cpus;
|
||||
|
@ -2,17 +2,20 @@ use rand;
|
||||
use std::fmt;
|
||||
|
||||
use std::borrow::Borrow;
|
||||
use std::marker::PhantomData;
|
||||
use serde::{Serialize, Deserialize};
|
||||
use super::BitIterator;
|
||||
|
||||
use super::{Cow, Convert};
|
||||
|
||||
pub mod bls381;
|
||||
pub mod multiexp;
|
||||
pub mod wnaf;
|
||||
pub mod domain;
|
||||
|
||||
pub trait Engine: Sized + Clone + Send + Sync
|
||||
{
|
||||
type Fq: PrimeField<Self>;
|
||||
type Fr: SnarkField<Self>;
|
||||
type Fq: PrimeField<Self> + Convert<<Self::Fq as PrimeField<Self>>::Repr, Self>;
|
||||
type Fr: SnarkField<Self> + Convert<<Self::Fr as PrimeField<Self>>::Repr, Self>;
|
||||
type Fqe: SqrtField<Self>;
|
||||
type Fqk: Field<Self>;
|
||||
type G1: Curve<Self> + Convert<<Self::G1 as Curve<Self>>::Affine, Self>;
|
||||
@ -43,7 +46,7 @@ pub trait Engine: Sized + Clone + Send + Sync
|
||||
|
||||
/// Perform multi-exponentiation. g and s must have the same length.
|
||||
fn multiexp<G: Curve<Self>>(&self, g: &[G::Affine], s: &[Self::Fr]) -> Result<G, ()>;
|
||||
fn batch_baseexp<G: Curve<Self>, S: AsRef<[Self::Fr]>>(&self, table: &WindowTable<Self, G, Vec<G>>, scalars: S) -> Vec<G::Affine>;
|
||||
fn batch_baseexp<G: Curve<Self>, S: AsRef<[Self::Fr]>>(&self, table: &wnaf::WindowTable<Self, G>, scalars: S) -> Vec<G::Affine>;
|
||||
|
||||
fn batchexp<G: Curve<Self>, S: AsRef<[Self::Fr]>>(&self, g: &mut [G::Affine], scalars: S, coeff: Option<&Self::Fr>);
|
||||
}
|
||||
@ -63,9 +66,10 @@ pub trait Curve<E: Engine>: Sized +
|
||||
Sync +
|
||||
fmt::Debug +
|
||||
'static +
|
||||
Group<E>
|
||||
Group<E> +
|
||||
self::multiexp::Projective<E>
|
||||
{
|
||||
type Affine: CurveAffine<E, Self>;
|
||||
type Affine: CurveAffine<E, Jacobian=Self>;
|
||||
type Prepared: Clone + Send + Sync + 'static;
|
||||
|
||||
fn zero(&E) -> Self;
|
||||
@ -83,13 +87,37 @@ pub trait Curve<E: Engine>: Sized +
|
||||
fn add_assign(&mut self, &E, other: &Self);
|
||||
fn sub_assign(&mut self, &E, other: &Self);
|
||||
fn add_assign_mixed(&mut self, &E, other: &Self::Affine);
|
||||
fn mul_assign<S: Convert<[u64], E>>(&mut self, &E, other: &S);
|
||||
fn mul_assign<S: Convert<<E::Fr as PrimeField<E>>::Repr, E>>(&mut self, &E, other: &S);
|
||||
|
||||
fn optimal_window(&E, scalar_bits: usize) -> Option<usize>;
|
||||
fn optimal_window_batch(&self, &E, scalars: usize) -> WindowTable<E, Self, Vec<Self>>;
|
||||
fn optimal_window_batch(&self, &E, scalars: usize) -> wnaf::WindowTable<E, Self>;
|
||||
|
||||
/// Performs optimal exponentiation of this curve element given the scalar, using
|
||||
/// wNAF when necessary.
|
||||
fn optimal_exp(
|
||||
&self,
|
||||
e: &E,
|
||||
scalar: <E::Fr as PrimeField<E>>::Repr,
|
||||
table: &mut wnaf::WindowTable<E, Self>,
|
||||
scratch: &mut wnaf::WNAFTable
|
||||
) -> Self {
|
||||
let bits = scalar.num_bits();
|
||||
match Self::optimal_window(e, bits) {
|
||||
Some(window) => {
|
||||
table.set_base(e, *self, window);
|
||||
scratch.set_scalar(table, scalar);
|
||||
table.exp(e, scratch)
|
||||
},
|
||||
None => {
|
||||
let mut tmp = *self;
|
||||
tmp.mul_assign(e, &scalar);
|
||||
tmp
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait CurveAffine<E: Engine, G: Curve<E>>: Copy +
|
||||
pub trait CurveAffine<E: Engine>: Copy +
|
||||
Clone +
|
||||
Sized +
|
||||
Send +
|
||||
@ -99,12 +127,13 @@ pub trait CurveAffine<E: Engine, G: Curve<E>>: Copy +
|
||||
Eq +
|
||||
'static
|
||||
{
|
||||
type Uncompressed: CurveRepresentation<E, G>;
|
||||
type Jacobian: Curve<E, Affine=Self>;
|
||||
type Uncompressed: CurveRepresentation<E, Affine=Self>;
|
||||
|
||||
fn to_jacobian(&self, &E) -> G;
|
||||
fn prepare(self, &E) -> G::Prepared;
|
||||
fn to_jacobian(&self, &E) -> Self::Jacobian;
|
||||
fn prepare(self, &E) -> <Self::Jacobian as Curve<E>>::Prepared;
|
||||
fn is_zero(&self) -> bool;
|
||||
fn mul<S: Convert<[u64], E>>(&self, &E, other: &S) -> G;
|
||||
fn mul<S: Convert<<E::Fr as PrimeField<E>>::Repr, E>>(&self, &E, other: &S) -> Self::Jacobian;
|
||||
fn negate(&mut self, &E);
|
||||
|
||||
/// Returns true iff the point is on the curve and in the correct
|
||||
@ -117,11 +146,13 @@ pub trait CurveAffine<E: Engine, G: Curve<E>>: Copy +
|
||||
fn to_uncompressed(&self, &E) -> Self::Uncompressed;
|
||||
}
|
||||
|
||||
pub trait CurveRepresentation<E: Engine, G: Curve<E>>: Serialize + for<'a> Deserialize<'a>
|
||||
pub trait CurveRepresentation<E: Engine>: Serialize + for<'a> Deserialize<'a>
|
||||
{
|
||||
type Affine: CurveAffine<E>;
|
||||
|
||||
/// If the point representation is valid (lies on the curve, correct
|
||||
/// subgroup) this function will return it.
|
||||
fn to_affine(&self, e: &E) -> Result<G::Affine, ()> {
|
||||
fn to_affine(&self, e: &E) -> Result<Self::Affine, ()> {
|
||||
let p = try!(self.to_affine_unchecked(e));
|
||||
|
||||
if p.is_valid(e) {
|
||||
@ -133,7 +164,7 @@ pub trait CurveRepresentation<E: Engine, G: Curve<E>>: Serialize + for<'a> Deser
|
||||
|
||||
/// Returns the point under the assumption that it is valid. Undefined
|
||||
/// behavior if `to_affine` would have rejected the point.
|
||||
fn to_affine_unchecked(&self, &E) -> Result<G::Affine, ()>;
|
||||
fn to_affine_unchecked(&self, &E) -> Result<Self::Affine, ()>;
|
||||
}
|
||||
|
||||
pub trait Field<E: Engine>: Sized +
|
||||
@ -158,11 +189,11 @@ pub trait Field<E: Engine>: Sized +
|
||||
fn mul_assign(&mut self, &E, other: &Self);
|
||||
fn inverse(&self, &E) -> Option<Self>;
|
||||
fn frobenius_map(&mut self, &E, power: usize);
|
||||
fn pow<S: Convert<[u64], E>>(&self, engine: &E, exp: &S) -> Self
|
||||
fn pow<S: AsRef<[u64]>>(&self, engine: &E, exp: S) -> Self
|
||||
{
|
||||
let mut res = Self::one(engine);
|
||||
|
||||
for i in BitIterator::from((*exp.convert(engine)).borrow()) {
|
||||
for i in BitIterator::new(exp) {
|
||||
res.square(engine);
|
||||
if i {
|
||||
res.mul_assign(engine, self);
|
||||
@ -180,18 +211,25 @@ pub trait SqrtField<E: Engine>: Field<E>
|
||||
fn sqrt(&self, engine: &E) -> Option<Self>;
|
||||
}
|
||||
|
||||
pub trait PrimeField<E: Engine>: SqrtField<E> + Convert<[u64], E>
|
||||
pub trait PrimeFieldRepr: Clone + Eq + Ord + AsRef<[u64]> {
|
||||
fn from_u64(a: u64) -> Self;
|
||||
fn sub_noborrow(&mut self, other: &Self);
|
||||
fn add_nocarry(&mut self, other: &Self);
|
||||
fn num_bits(&self) -> usize;
|
||||
fn is_zero(&self) -> bool;
|
||||
fn is_odd(&self) -> bool;
|
||||
fn div2(&mut self);
|
||||
}
|
||||
|
||||
pub trait PrimeField<E: Engine>: SqrtField<E>
|
||||
{
|
||||
/// Little endian representation of a field element.
|
||||
type Repr: Convert<[u64], E> + Eq + Clone;
|
||||
type Repr: PrimeFieldRepr;
|
||||
|
||||
fn from_u64(&E, u64) -> Self;
|
||||
fn from_str(&E, s: &str) -> Result<Self, ()>;
|
||||
fn from_repr(&E, Self::Repr) -> Result<Self, ()>;
|
||||
fn into_repr(&self, &E) -> Self::Repr;
|
||||
|
||||
/// Returns an interator over all bits, most significant bit first.
|
||||
fn bits(&self, &E) -> BitIterator<Self::Repr>;
|
||||
|
||||
/// Returns the field characteristic; the modulus.
|
||||
fn char(&E) -> Self::Repr;
|
||||
|
||||
@ -211,111 +249,6 @@ pub trait SnarkField<E: Engine>: PrimeField<E> + Group<E>
|
||||
fn root_of_unity(&E) -> Self;
|
||||
}
|
||||
|
||||
pub struct WindowTable<E, G, Table: Borrow<[G]>> {
|
||||
table: Table,
|
||||
wnaf: Vec<i64>,
|
||||
window: usize,
|
||||
_marker: PhantomData<(E, G)>
|
||||
}
|
||||
|
||||
impl<E: Engine, G: Curve<E>> WindowTable<E, G, Vec<G>> {
|
||||
fn new() -> Self {
|
||||
WindowTable {
|
||||
table: vec![],
|
||||
wnaf: vec![],
|
||||
window: 0,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
|
||||
fn set_base(&mut self, e: &E, base: &G, window: usize) {
|
||||
assert!(window > 1);
|
||||
|
||||
self.window = window;
|
||||
self.table.truncate(0);
|
||||
self.table.reserve(1 << (window-1));
|
||||
|
||||
let mut tmp = *base;
|
||||
let mut dbl = tmp;
|
||||
dbl.double(e);
|
||||
|
||||
for _ in 0..(1 << (window-1)) {
|
||||
self.table.push(tmp);
|
||||
tmp.add_assign(e, &dbl);
|
||||
}
|
||||
}
|
||||
|
||||
fn shared(&self) -> WindowTable<E, G, &[G]> {
|
||||
WindowTable {
|
||||
table: &self.table[..],
|
||||
wnaf: vec![],
|
||||
window: self.window,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct BitIterator<T> {
|
||||
t: T,
|
||||
n: usize
|
||||
}
|
||||
|
||||
impl<T: AsRef<[u64]>> Iterator for BitIterator<T> {
|
||||
type Item = bool;
|
||||
|
||||
fn next(&mut self) -> Option<bool> {
|
||||
if self.n == 0 {
|
||||
None
|
||||
} else {
|
||||
self.n -= 1;
|
||||
let part = self.n / 64;
|
||||
let bit = self.n - (64 * part);
|
||||
|
||||
Some(self.t.as_ref()[part] & (1 << bit) > 0)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> From<&'a [u64]> for BitIterator<&'a [u64]>
|
||||
{
|
||||
fn from(v: &'a [u64]) -> Self {
|
||||
assert!(v.len() < 100);
|
||||
|
||||
BitIterator {
|
||||
t: v,
|
||||
n: v.len() * 64
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! bit_iter_impl(
|
||||
($n:expr) => {
|
||||
impl From<[u64; $n]> for BitIterator<[u64; $n]> {
|
||||
fn from(v: [u64; $n]) -> Self {
|
||||
BitIterator {
|
||||
t: v,
|
||||
n: $n * 64
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<E> Convert<[u64], E> for [u64; $n] {
|
||||
type Target = [u64; $n];
|
||||
|
||||
fn convert(&self, _: &E) -> Cow<[u64; $n]> {
|
||||
Cow::Borrowed(self)
|
||||
}
|
||||
}
|
||||
};
|
||||
);
|
||||
|
||||
bit_iter_impl!(1);
|
||||
bit_iter_impl!(2);
|
||||
bit_iter_impl!(3);
|
||||
bit_iter_impl!(4);
|
||||
bit_iter_impl!(5);
|
||||
bit_iter_impl!(6);
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
|
232
src/curves/multiexp.rs
Normal file
232
src/curves/multiexp.rs
Normal file
@ -0,0 +1,232 @@
|
||||
//! This module provides an abstract implementation of the Bos-Coster multi-exponentiation algorithm.
|
||||
|
||||
use super::{Engine, Curve, CurveAffine, Field, PrimeField, PrimeFieldRepr};
|
||||
use super::wnaf;
|
||||
use std::cmp::Ordering;
|
||||
use std::collections::BinaryHeap;
|
||||
|
||||
pub trait Projective<E: Engine>: Sized + Copy + Clone + Send {
|
||||
type WindowTable;
|
||||
|
||||
/// Constructs an identity element.
|
||||
fn identity(e: &E) -> Self;
|
||||
|
||||
/// Adds this projective element to another projective element.
|
||||
fn add_to_projective(&self, e: &E, projective: &mut Self);
|
||||
|
||||
/// Exponentiates by a scalar.
|
||||
fn exponentiate(
|
||||
&mut self,
|
||||
e: &E,
|
||||
scalar: <E::Fr as PrimeField<E>>::Repr,
|
||||
table: &mut Self::WindowTable,
|
||||
scratch: &mut wnaf::WNAFTable
|
||||
);
|
||||
|
||||
/// Construct a blank window table
|
||||
fn new_window_table(e: &E) -> Self::WindowTable;
|
||||
}
|
||||
|
||||
pub trait Chunk<E: Engine>: Send {
|
||||
type Projective: Projective<E>;
|
||||
|
||||
/// Skips the next element from the source.
|
||||
fn skip(&mut self, e: &E) -> Result<(), ()>;
|
||||
|
||||
/// Adds the next element from the source to a projective element
|
||||
fn add_to_projective(&mut self, e: &E, acc: &mut Self::Projective) -> Result<(), ()>;
|
||||
|
||||
/// Turns the next element of the source into a projective element.
|
||||
fn into_projective(&mut self, e: &E) -> Result<Self::Projective, ()>;
|
||||
}
|
||||
|
||||
/// An `ElementSource` is something that contains a sequence of group elements or
|
||||
/// group element tuples.
|
||||
pub trait ElementSource<E: Engine> {
|
||||
type Chunk: Chunk<E>;
|
||||
|
||||
/// Gets the number of elements from the source.
|
||||
fn num_elements(&self) -> usize;
|
||||
|
||||
/// Returns a chunk size and a vector of chunks.
|
||||
fn chunks(&mut self, chunks: usize) -> (usize, Vec<Self::Chunk>);
|
||||
}
|
||||
|
||||
impl<'a, E: Engine, G: CurveAffine<E>> ElementSource<E> for &'a [G] {
|
||||
type Chunk = &'a [G];
|
||||
|
||||
fn num_elements(&self) -> usize {
|
||||
self.len()
|
||||
}
|
||||
|
||||
fn chunks(&mut self, chunks: usize) -> (usize, Vec<Self::Chunk>) {
|
||||
let chunk_size = (self.len() / chunks) + 1;
|
||||
|
||||
(chunk_size, (*self).chunks(chunk_size).collect())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, E: Engine, G: CurveAffine<E>> Chunk<E> for &'a [G]
|
||||
{
|
||||
type Projective = G::Jacobian;
|
||||
|
||||
fn skip(&mut self, _: &E) -> Result<(), ()> {
|
||||
if self.len() == 0 {
|
||||
Err(())
|
||||
} else {
|
||||
*self = &self[1..];
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
/// Adds the next element from the source to a projective element
|
||||
fn add_to_projective(&mut self, e: &E, acc: &mut Self::Projective) -> Result<(), ()> {
|
||||
if self.len() == 0 {
|
||||
Err(())
|
||||
} else {
|
||||
acc.add_assign_mixed(e, &self[0]);
|
||||
*self = &self[1..];
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
/// Turns the next element of the accumulator into a projective element.
|
||||
fn into_projective(&mut self, e: &E) -> Result<Self::Projective, ()> {
|
||||
if self.len() == 0 {
|
||||
Err(())
|
||||
} else {
|
||||
let ret = Ok(self[0].to_jacobian(e));
|
||||
*self = &self[1..];
|
||||
ret
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn justexp<E: Engine>(
|
||||
largest: &<E::Fr as PrimeField<E>>::Repr,
|
||||
smallest: &<E::Fr as PrimeField<E>>::Repr
|
||||
) -> bool
|
||||
{
|
||||
use std::cmp::min;
|
||||
|
||||
let abits = largest.num_bits();
|
||||
let bbits = smallest.num_bits();
|
||||
let limit = min(abits-bbits, 20);
|
||||
|
||||
if bbits < (1<<limit) {
|
||||
true
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
pub fn perform_multiexp<E: Engine, Source: ElementSource<E>>(
|
||||
e: &E,
|
||||
mut bases: Source,
|
||||
scalars: &[E::Fr]
|
||||
) -> Result<<Source::Chunk as Chunk<E>>::Projective, ()>
|
||||
{
|
||||
if bases.num_elements() != scalars.len() {
|
||||
return Err(())
|
||||
}
|
||||
|
||||
use crossbeam;
|
||||
use num_cpus;
|
||||
|
||||
let (chunk_len, bases) = bases.chunks(num_cpus::get());
|
||||
|
||||
return crossbeam::scope(|scope| {
|
||||
let mut threads = vec![];
|
||||
|
||||
for (mut chunk, scalars) in bases.into_iter().zip(scalars.chunks(chunk_len)) {
|
||||
threads.push(scope.spawn(move || {
|
||||
let mut heap: BinaryHeap<Exp<E>> = BinaryHeap::with_capacity(scalars.len());
|
||||
let mut elements = Vec::with_capacity(scalars.len());
|
||||
|
||||
let mut acc = Projective::<E>::identity(e);
|
||||
let one = E::Fr::one(e);
|
||||
|
||||
for scalar in scalars {
|
||||
if scalar.is_zero() {
|
||||
// Skip processing bases when we're multiplying by a zero anyway.
|
||||
chunk.skip(e)?;
|
||||
} else if *scalar == one {
|
||||
// Just perform mixed addition when we're multiplying by one.
|
||||
chunk.add_to_projective(e, &mut acc)?;
|
||||
} else {
|
||||
elements.push(chunk.into_projective(e)?);
|
||||
heap.push(Exp {
|
||||
scalar: scalar.into_repr(e),
|
||||
index: elements.len() - 1
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
let mut window = <<Source::Chunk as Chunk<E>>::Projective as Projective<E>>::new_window_table(e);
|
||||
let mut scratch = wnaf::WNAFTable::new();
|
||||
|
||||
// Now that the heap is populated...
|
||||
while let Some(mut greatest) = heap.pop() {
|
||||
{
|
||||
let second_greatest = heap.peek();
|
||||
if second_greatest.is_none() || justexp::<E>(&greatest.scalar, &second_greatest.unwrap().scalar) {
|
||||
// Either this is the last value or multiplying is considered more efficient than
|
||||
// rewriting and reinsertion into the heap.
|
||||
//opt_exp(engine, &mut elements[greatest.index], greatest.scalar, &mut table);
|
||||
elements[greatest.index].exponentiate(e, greatest.scalar, &mut window, &mut scratch);
|
||||
elements[greatest.index].add_to_projective(e, &mut acc);
|
||||
continue;
|
||||
} else {
|
||||
// Rewrite
|
||||
let second_greatest = second_greatest.unwrap();
|
||||
|
||||
greatest.scalar.sub_noborrow(&second_greatest.scalar);
|
||||
let mut tmp = elements[second_greatest.index];
|
||||
elements[greatest.index].add_to_projective(e, &mut tmp);
|
||||
elements[second_greatest.index] = tmp;
|
||||
}
|
||||
}
|
||||
if !greatest.scalar.is_zero() {
|
||||
// Reinsert only nonzero scalars.
|
||||
heap.push(greatest);
|
||||
}
|
||||
}
|
||||
|
||||
Ok(acc)
|
||||
}));
|
||||
}
|
||||
|
||||
|
||||
let mut acc = Projective::<E>::identity(e);
|
||||
for t in threads {
|
||||
t.join()?.add_to_projective(e, &mut acc);
|
||||
}
|
||||
|
||||
Ok(acc)
|
||||
})
|
||||
}
|
||||
|
||||
struct Exp<E: Engine> {
|
||||
scalar: <E::Fr as PrimeField<E>>::Repr,
|
||||
index: usize
|
||||
}
|
||||
|
||||
impl<E: Engine> Ord for Exp<E> {
|
||||
fn cmp(&self, other: &Exp<E>) -> Ordering {
|
||||
self.scalar.cmp(&other.scalar)
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> PartialOrd for Exp<E> {
|
||||
fn partial_cmp(&self, other: &Exp<E>) -> Option<Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> PartialEq for Exp<E> {
|
||||
fn eq(&self, other: &Exp<E>) -> bool {
|
||||
self.scalar == other.scalar
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Eq for Exp<E> { }
|
@ -106,7 +106,7 @@ fn test_bilinearity<E: Engine>(e: &E) {
|
||||
|
||||
let mut test4 = e.pairing(&a, &b);
|
||||
assert!(test4 != test1);
|
||||
test4 = test4.pow(e, &s);
|
||||
test4 = test4.pow(e, &s.into_repr(e));
|
||||
assert_eq!(test1, test4);
|
||||
}
|
||||
|
||||
|
110
src/curves/wnaf.rs
Normal file
110
src/curves/wnaf.rs
Normal file
@ -0,0 +1,110 @@
|
||||
use std::marker::PhantomData;
|
||||
use super::{Engine, Curve, PrimeField, PrimeFieldRepr};
|
||||
|
||||
/// Represents the scratch space for a wNAF form scalar.
|
||||
pub struct WNAFTable {
|
||||
window: usize,
|
||||
wnaf: Vec<i64>
|
||||
}
|
||||
|
||||
impl WNAFTable {
|
||||
pub fn new() -> WNAFTable {
|
||||
WNAFTable {
|
||||
window: 0,
|
||||
wnaf: vec![]
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert the scalar into wNAF form.
|
||||
pub fn set_scalar<E: Engine, G: Curve<E>>(&mut self, table: &WindowTable<E, G>, mut c: <E::Fr as PrimeField<E>>::Repr) {
|
||||
self.window = table.window;
|
||||
self.wnaf.truncate(0);
|
||||
|
||||
while !c.is_zero() {
|
||||
let mut u;
|
||||
if c.is_odd() {
|
||||
u = (c.as_ref()[0] % (1 << (self.window+1))) as i64;
|
||||
|
||||
if u > (1 << self.window) {
|
||||
u -= 1 << (self.window+1);
|
||||
}
|
||||
|
||||
if u > 0 {
|
||||
c.sub_noborrow(&<<E::Fr as PrimeField<E>>::Repr as PrimeFieldRepr>::from_u64(u as u64));
|
||||
} else {
|
||||
c.add_nocarry(&<<E::Fr as PrimeField<E>>::Repr as PrimeFieldRepr>::from_u64((-u) as u64));
|
||||
}
|
||||
} else {
|
||||
u = 0;
|
||||
}
|
||||
|
||||
self.wnaf.push(u);
|
||||
|
||||
c.div2();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents a window table for a base curve point.
|
||||
pub struct WindowTable<E: Engine, G: Curve<E>>{
|
||||
window: usize,
|
||||
table: Vec<G>,
|
||||
_marker: PhantomData<E>
|
||||
}
|
||||
|
||||
impl<E: Engine, G: Curve<E>> WindowTable<E, G> {
|
||||
/// Construct a new window table for a given base.
|
||||
pub fn new(e: &E, base: G, window: usize) -> Self {
|
||||
let mut tmp = WindowTable {
|
||||
window: 0,
|
||||
table: vec![],
|
||||
_marker: PhantomData
|
||||
};
|
||||
|
||||
tmp.set_base(e, base, window);
|
||||
|
||||
tmp
|
||||
}
|
||||
|
||||
/// Replace this window table with a new one generated by a different base.
|
||||
pub fn set_base(&mut self, e: &E, mut base: G, window: usize) {
|
||||
assert!(window < 23);
|
||||
assert!(window > 1);
|
||||
|
||||
self.window = window;
|
||||
self.table.truncate(0);
|
||||
self.table.reserve(1 << (window-1));
|
||||
|
||||
let mut dbl = base;
|
||||
dbl.double(e);
|
||||
|
||||
for _ in 0..(1 << (window-1)) {
|
||||
self.table.push(base);
|
||||
base.add_assign(e, &dbl);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn exp(&self, e: &E, wnaf: &WNAFTable) -> G {
|
||||
assert_eq!(wnaf.window, self.window);
|
||||
|
||||
let mut result = G::zero(e);
|
||||
|
||||
for n in wnaf.wnaf.iter().rev() {
|
||||
result.double(e);
|
||||
|
||||
if *n != 0 {
|
||||
if *n > 0 {
|
||||
result.add_assign(e, &self.table[(n/2) as usize]);
|
||||
} else {
|
||||
result.sub_assign(e, &self.table[((-n)/2) as usize]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
pub fn current_window(&self) -> usize {
|
||||
self.window
|
||||
}
|
||||
}
|
@ -1,8 +1,6 @@
|
||||
use curves::*;
|
||||
use super::*;
|
||||
|
||||
pub mod domain;
|
||||
|
||||
pub struct ProvingKey<E: Engine> {
|
||||
a_inputs: Vec<<E::G1 as Curve<E>>::Affine>,
|
||||
b1_inputs: Vec<<E::G1 as Curve<E>>::Affine>,
|
||||
@ -307,39 +305,16 @@ pub fn prepare_verifying_key<E: Engine>(
|
||||
}
|
||||
}
|
||||
|
||||
pub fn verify<E: Engine, C: Input<E>, F: FnOnce(&mut ConstraintSystem<E>) -> C>(
|
||||
e: &E,
|
||||
circuit: F,
|
||||
proof: &Proof<E>,
|
||||
pvk: &PreparedVerifyingKey<E>
|
||||
) -> bool
|
||||
{
|
||||
struct VerifierInput<'a, E: Engine + 'a> {
|
||||
pub struct VerifierInput<'a, E: Engine + 'a> {
|
||||
e: &'a E,
|
||||
acc: E::G1,
|
||||
ic: &'a [<E::G1 as Curve<E>>::Affine],
|
||||
insufficient_inputs: bool,
|
||||
num_inputs: usize,
|
||||
num_aux: usize
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, E: Engine> PublicConstraintSystem<E> for VerifierInput<'a, E> {
|
||||
fn alloc_input(&mut self, value: E::Fr) -> Variable {
|
||||
if self.ic.len() == 0 {
|
||||
self.insufficient_inputs = true;
|
||||
} else {
|
||||
self.acc.add_assign(self.e, &self.ic[0].mul(self.e, &value));
|
||||
self.ic = &self.ic[1..];
|
||||
}
|
||||
|
||||
let index = self.num_inputs;
|
||||
self.num_inputs += 1;
|
||||
|
||||
Variable(Index::Input(index))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, E: Engine> ConstraintSystem<E> for VerifierInput<'a, E> {
|
||||
impl<'a, E: Engine> ConstraintSystem<E> for VerifierInput<'a, E> {
|
||||
fn alloc(&mut self, _: E::Fr) -> Variable {
|
||||
let index = self.num_aux;
|
||||
self.num_aux += 1;
|
||||
@ -357,6 +332,47 @@ pub fn verify<E: Engine, C: Input<E>, F: FnOnce(&mut ConstraintSystem<E>) -> C>(
|
||||
// Do nothing; we don't care about the constraint system
|
||||
// in this context.
|
||||
}
|
||||
}
|
||||
|
||||
pub fn verify<'a, E: Engine, C: Input<E>, F: FnOnce(&mut VerifierInput<'a, E>) -> C>(
|
||||
e: &'a E,
|
||||
circuit: F,
|
||||
proof: &Proof<E>,
|
||||
pvk: &'a PreparedVerifyingKey<E>
|
||||
) -> bool
|
||||
{
|
||||
struct InputAllocator<T>(T);
|
||||
|
||||
impl<'a, 'b, E: Engine> PublicConstraintSystem<E> for InputAllocator<&'b mut VerifierInput<'a, E>> {
|
||||
fn alloc_input(&mut self, value: E::Fr) -> Variable {
|
||||
if self.0.ic.len() == 0 {
|
||||
self.0.insufficient_inputs = true;
|
||||
} else {
|
||||
self.0.acc.add_assign(self.0.e, &self.0.ic[0].mul(self.0.e, &value));
|
||||
self.0.ic = &self.0.ic[1..];
|
||||
}
|
||||
|
||||
let index = self.0.num_inputs;
|
||||
self.0.num_inputs += 1;
|
||||
|
||||
Variable(Index::Input(index))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, 'b, E: Engine> ConstraintSystem<E> for InputAllocator<&'b mut VerifierInput<'a, E>> {
|
||||
fn alloc(&mut self, num: E::Fr) -> Variable {
|
||||
self.0.alloc(num)
|
||||
}
|
||||
|
||||
fn enforce(
|
||||
&mut self,
|
||||
a: LinearCombination<E>,
|
||||
b: LinearCombination<E>,
|
||||
c: LinearCombination<E>
|
||||
)
|
||||
{
|
||||
self.0.enforce(a, b, c);
|
||||
}
|
||||
}
|
||||
|
||||
let mut witness = VerifierInput {
|
||||
@ -368,7 +384,7 @@ pub fn verify<E: Engine, C: Input<E>, F: FnOnce(&mut ConstraintSystem<E>) -> C>(
|
||||
num_aux: 0
|
||||
};
|
||||
|
||||
circuit(&mut witness).synthesize(e, &mut witness);
|
||||
circuit(&mut witness).synthesize(e, &mut InputAllocator(&mut witness));
|
||||
|
||||
if witness.ic.len() != 0 || witness.insufficient_inputs {
|
||||
return false;
|
||||
|
32
src/lib.rs
32
src/lib.rs
@ -181,3 +181,35 @@ impl<T, E> Convert<T, E> for T {
|
||||
Cow::Borrowed(self)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct BitIterator<T> {
|
||||
t: T,
|
||||
n: usize
|
||||
}
|
||||
|
||||
impl<T: AsRef<[u64]>> BitIterator<T> {
|
||||
fn new(t: T) -> Self {
|
||||
let bits = 64 * t.as_ref().len();
|
||||
|
||||
BitIterator {
|
||||
t: t,
|
||||
n: bits
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: AsRef<[u64]>> Iterator for BitIterator<T> {
|
||||
type Item = bool;
|
||||
|
||||
fn next(&mut self) -> Option<bool> {
|
||||
if self.n == 0 {
|
||||
None
|
||||
} else {
|
||||
self.n -= 1;
|
||||
let part = self.n / 64;
|
||||
let bit = self.n - (64 * part);
|
||||
|
||||
Some(self.t.as_ref()[part] & (1 << bit) > 0)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user