mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-07-31 12:31:22 +00:00
cargo fmt zcash_primitives
This commit is contained in:
@@ -1,12 +1,6 @@
|
||||
use ff::{BitIterator, Field, PrimeField, PrimeFieldRepr, SqrtField};
|
||||
|
||||
use super::{
|
||||
JubjubEngine,
|
||||
JubjubParams,
|
||||
Unknown,
|
||||
PrimeOrder,
|
||||
edwards
|
||||
};
|
||||
use super::{edwards, JubjubEngine, JubjubParams, PrimeOrder, Unknown};
|
||||
|
||||
use rand_core::RngCore;
|
||||
|
||||
@@ -17,29 +11,25 @@ pub struct Point<E: JubjubEngine, Subgroup> {
|
||||
x: E::Fr,
|
||||
y: E::Fr,
|
||||
infinity: bool,
|
||||
_marker: PhantomData<Subgroup>
|
||||
_marker: PhantomData<Subgroup>,
|
||||
}
|
||||
|
||||
fn convert_subgroup<E: JubjubEngine, S1, S2>(from: &Point<E, S1>) -> Point<E, S2>
|
||||
{
|
||||
fn convert_subgroup<E: JubjubEngine, S1, S2>(from: &Point<E, S1>) -> Point<E, S2> {
|
||||
Point {
|
||||
x: from.x,
|
||||
y: from.y,
|
||||
infinity: from.infinity,
|
||||
_marker: PhantomData
|
||||
_marker: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> From<Point<E, PrimeOrder>> for Point<E, Unknown>
|
||||
{
|
||||
fn from(p: Point<E, PrimeOrder>) -> Point<E, Unknown>
|
||||
{
|
||||
impl<E: JubjubEngine> From<Point<E, PrimeOrder>> for Point<E, Unknown> {
|
||||
fn from(p: Point<E, PrimeOrder>) -> Point<E, Unknown> {
|
||||
convert_subgroup(&p)
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine, Subgroup> Clone for Point<E, Subgroup>
|
||||
{
|
||||
impl<E: JubjubEngine, Subgroup> Clone for Point<E, Subgroup> {
|
||||
fn clone(&self) -> Self {
|
||||
convert_subgroup(self)
|
||||
}
|
||||
@@ -50,16 +40,13 @@ impl<E: JubjubEngine, Subgroup> PartialEq for Point<E, Subgroup> {
|
||||
match (self.infinity, other.infinity) {
|
||||
(true, true) => true,
|
||||
(true, false) | (false, true) => false,
|
||||
(false, false) => {
|
||||
self.x == other.x && self.y == other.y
|
||||
}
|
||||
(false, false) => self.x == other.x && self.y == other.y,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> Point<E, Unknown> {
|
||||
pub fn get_for_x(x: E::Fr, sign: bool, params: &E::Params) -> Option<Self>
|
||||
{
|
||||
pub fn get_for_x(x: E::Fr, sign: bool, params: &E::Params) -> Option<Self> {
|
||||
// Given an x on the curve, y = sqrt(x^3 + A*x^2 + x)
|
||||
|
||||
let mut x2 = x;
|
||||
@@ -81,34 +68,28 @@ impl<E: JubjubEngine> Point<E, Unknown> {
|
||||
x: x,
|
||||
y: y,
|
||||
infinity: false,
|
||||
_marker: PhantomData
|
||||
})
|
||||
},
|
||||
None => None
|
||||
_marker: PhantomData,
|
||||
});
|
||||
}
|
||||
None => None,
|
||||
}
|
||||
}
|
||||
|
||||
/// This guarantees the point is in the prime order subgroup
|
||||
#[must_use]
|
||||
pub fn mul_by_cofactor(&self, params: &E::Params) -> Point<E, PrimeOrder>
|
||||
{
|
||||
let tmp = self.double(params)
|
||||
.double(params)
|
||||
.double(params);
|
||||
pub fn mul_by_cofactor(&self, params: &E::Params) -> Point<E, PrimeOrder> {
|
||||
let tmp = self.double(params).double(params).double(params);
|
||||
|
||||
convert_subgroup(&tmp)
|
||||
}
|
||||
|
||||
pub fn rand<R: RngCore>(rng: &mut R, params: &E::Params) -> Self
|
||||
{
|
||||
pub fn rand<R: RngCore>(rng: &mut R, params: &E::Params) -> Self {
|
||||
loop {
|
||||
let x = E::Fr::random(rng);
|
||||
let sign = rng.next_u32() % 2 != 0;
|
||||
|
||||
match Self::get_for_x(x, sign, params) {
|
||||
Some(p) => {
|
||||
return p
|
||||
},
|
||||
Some(p) => return p,
|
||||
None => {}
|
||||
}
|
||||
}
|
||||
@@ -117,11 +98,7 @@ impl<E: JubjubEngine> Point<E, Unknown> {
|
||||
|
||||
impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
/// Convert from an Edwards point
|
||||
pub fn from_edwards(
|
||||
e: &edwards::Point<E, Subgroup>,
|
||||
params: &E::Params
|
||||
) -> Self
|
||||
{
|
||||
pub fn from_edwards(e: &edwards::Point<E, Subgroup>, params: &E::Params) -> Self {
|
||||
let (x, y) = e.into_xy();
|
||||
|
||||
if y == E::Fr::one() {
|
||||
@@ -149,7 +126,7 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
x: E::Fr::zero(),
|
||||
y: E::Fr::zero(),
|
||||
infinity: false,
|
||||
_marker: PhantomData
|
||||
_marker: PhantomData,
|
||||
}
|
||||
} else {
|
||||
// The mapping is defined as above.
|
||||
@@ -176,7 +153,7 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
x: u,
|
||||
y: v,
|
||||
infinity: false,
|
||||
_marker: PhantomData
|
||||
_marker: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -197,12 +174,11 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
x: E::Fr::zero(),
|
||||
y: E::Fr::zero(),
|
||||
infinity: true,
|
||||
_marker: PhantomData
|
||||
_marker: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn into_xy(&self) -> Option<(E::Fr, E::Fr)>
|
||||
{
|
||||
pub fn into_xy(&self) -> Option<(E::Fr, E::Fr)> {
|
||||
if self.infinity {
|
||||
None
|
||||
} else {
|
||||
@@ -272,13 +248,12 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
x: x3,
|
||||
y: y3,
|
||||
infinity: false,
|
||||
_marker: PhantomData
|
||||
_marker: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn add(&self, other: &Self, params: &E::Params) -> Self
|
||||
{
|
||||
pub fn add(&self, other: &Self, params: &E::Params) -> Self {
|
||||
// This is a standard affine point addition formula
|
||||
// See 4.3.2 The group law for Weierstrass curves
|
||||
// Montgomery curves and the Montgomery Ladder
|
||||
@@ -301,7 +276,10 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
{
|
||||
let mut tmp = other.x;
|
||||
tmp.sub_assign(&self.x);
|
||||
delta.mul_assign(&tmp.inverse().expect("self.x != other.x, so this must be nonzero"));
|
||||
delta.mul_assign(
|
||||
&tmp.inverse()
|
||||
.expect("self.x != other.x, so this must be nonzero"),
|
||||
);
|
||||
}
|
||||
|
||||
let mut x3 = delta;
|
||||
@@ -320,7 +298,7 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
x: x3,
|
||||
y: y3,
|
||||
infinity: false,
|
||||
_marker: PhantomData
|
||||
_marker: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -328,12 +306,7 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn mul<S: Into<<E::Fs as PrimeField>::Repr>>(
|
||||
&self,
|
||||
scalar: S,
|
||||
params: &E::Params
|
||||
) -> Self
|
||||
{
|
||||
pub fn mul<S: Into<<E::Fs as PrimeField>::Repr>>(&self, scalar: S, params: &E::Params) -> Self {
|
||||
// Standard double-and-add scalar multiplication
|
||||
|
||||
let mut res = Self::zero();
|
||||
|
Reference in New Issue
Block a user