mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-02-07 14:54:10 +00:00
Implementation of Montgomery point addition in the circuit.
This commit is contained in:
parent
041060e5ca
commit
87548f3d1d
@ -103,6 +103,21 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
|
||||
Ok(p)
|
||||
}
|
||||
|
||||
/// Interprets an (x, y) pair as a point
|
||||
/// in Montgomery, does not check that it's
|
||||
/// on the curve. Useful for constants and
|
||||
/// window table lookups.
|
||||
pub fn interpret_unchecked(
|
||||
x: AllocatedNum<E, Var>,
|
||||
y: AllocatedNum<E, Var>
|
||||
) -> Self
|
||||
{
|
||||
MontgomeryPoint {
|
||||
x: x,
|
||||
y: y
|
||||
}
|
||||
}
|
||||
|
||||
pub fn interpret<CS>(
|
||||
mut cs: CS,
|
||||
x: &AllocatedNum<E, Var>,
|
||||
@ -131,6 +146,99 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
|
||||
})
|
||||
}
|
||||
|
||||
/// Performs an affine point addition, not defined for
|
||||
/// coincident points.
|
||||
pub fn add<CS>(
|
||||
&self,
|
||||
mut cs: CS,
|
||||
other: &Self,
|
||||
params: &E::Params
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
{
|
||||
// Compute lambda = (y' - y) / (x' - x)
|
||||
let lambda = AllocatedNum::alloc(cs.namespace(|| "lambda"), || {
|
||||
let mut n = *other.y.get_value().get()?;
|
||||
n.sub_assign(self.y.get_value().get()?);
|
||||
|
||||
let mut d = *other.x.get_value().get()?;
|
||||
d.sub_assign(self.x.get_value().get()?);
|
||||
|
||||
match d.inverse() {
|
||||
Some(d) => {
|
||||
n.mul_assign(&d);
|
||||
Ok(n)
|
||||
},
|
||||
None => {
|
||||
// TODO: add more descriptive error
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
}
|
||||
}
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "evaluate lambda",
|
||||
LinearCombination::<Var, E>::zero() + other.x.get_variable()
|
||||
- self.x.get_variable(),
|
||||
|
||||
LinearCombination::zero() + lambda.get_variable(),
|
||||
|
||||
LinearCombination::<Var, E>::zero() + other.y.get_variable()
|
||||
- self.y.get_variable()
|
||||
);
|
||||
|
||||
// Compute x'' = lambda^2 - A - x - x'
|
||||
let xprime = AllocatedNum::alloc(cs.namespace(|| "xprime"), || {
|
||||
let mut t0 = *lambda.get_value().get()?;
|
||||
t0.square();
|
||||
t0.sub_assign(params.montgomery_a());
|
||||
t0.sub_assign(self.x.get_value().get()?);
|
||||
t0.sub_assign(other.x.get_value().get()?);
|
||||
|
||||
Ok(t0)
|
||||
})?;
|
||||
|
||||
// (lambda) * (lambda) = (A + x + x' + x'')
|
||||
let one = cs.one();
|
||||
cs.enforce(
|
||||
|| "evaluate xprime",
|
||||
LinearCombination::zero() + lambda.get_variable(),
|
||||
LinearCombination::zero() + lambda.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + (*params.montgomery_a(), one)
|
||||
+ self.x.get_variable()
|
||||
+ other.x.get_variable()
|
||||
+ xprime.get_variable()
|
||||
);
|
||||
|
||||
// Compute y' = -(y + lambda(x' - x))
|
||||
let yprime = AllocatedNum::alloc(cs.namespace(|| "yprime"), || {
|
||||
let mut t0 = *xprime.get_value().get()?;
|
||||
t0.sub_assign(self.x.get_value().get()?);
|
||||
t0.mul_assign(lambda.get_value().get()?);
|
||||
t0.add_assign(self.y.get_value().get()?);
|
||||
t0.negate();
|
||||
|
||||
Ok(t0)
|
||||
})?;
|
||||
|
||||
// y' + y = lambda(x - x')
|
||||
cs.enforce(
|
||||
|| "evaluate yprime",
|
||||
LinearCombination::zero() + self.x.get_variable()
|
||||
- xprime.get_variable(),
|
||||
|
||||
LinearCombination::zero() + lambda.get_variable(),
|
||||
|
||||
LinearCombination::<Var, E>::zero() + yprime.get_variable()
|
||||
+ self.y.get_variable()
|
||||
);
|
||||
|
||||
Ok(MontgomeryPoint {
|
||||
x: xprime,
|
||||
y: yprime
|
||||
})
|
||||
}
|
||||
|
||||
/// Performs an affine point doubling, not defined for
|
||||
/// the point of order two (0, 0).
|
||||
pub fn double<CS>(
|
||||
@ -299,7 +407,7 @@ mod test {
|
||||
num_unsatisfied += 1;
|
||||
} else {
|
||||
let p = p.unwrap();
|
||||
let (x, y) = expected.unwrap();
|
||||
let (x, y) = expected.unwrap().into_xy().unwrap();
|
||||
|
||||
assert_eq!(p.x.get_value().unwrap(), x);
|
||||
assert_eq!(p.y.get_value().unwrap(), y);
|
||||
@ -384,6 +492,84 @@ mod test {
|
||||
assert!(p.double(&mut cs, params).is_err());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_addition() {
|
||||
let params = &JubjubBls12::new();
|
||||
let rng = &mut XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..100 {
|
||||
let p1 = loop {
|
||||
let x: Fr = rng.gen();
|
||||
let s: bool = rng.gen();
|
||||
|
||||
if let Some(p) = montgomery::Point::<Bls12, _>::get_for_x(x, s, params) {
|
||||
break p;
|
||||
}
|
||||
};
|
||||
|
||||
let p2 = loop {
|
||||
let x: Fr = rng.gen();
|
||||
let s: bool = rng.gen();
|
||||
|
||||
if let Some(p) = montgomery::Point::<Bls12, _>::get_for_x(x, s, params) {
|
||||
break p;
|
||||
}
|
||||
};
|
||||
|
||||
let p3 = p1.add(&p2, params);
|
||||
|
||||
let (x0, y0) = p1.into_xy().unwrap();
|
||||
let (x1, y1) = p2.into_xy().unwrap();
|
||||
let (x2, y2) = p3.into_xy().unwrap();
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || {
|
||||
Ok(x0)
|
||||
}).unwrap();
|
||||
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || {
|
||||
Ok(y0)
|
||||
}).unwrap();
|
||||
|
||||
let num_x1 = AllocatedNum::alloc(cs.namespace(|| "x1"), || {
|
||||
Ok(x1)
|
||||
}).unwrap();
|
||||
let num_y1 = AllocatedNum::alloc(cs.namespace(|| "y1"), || {
|
||||
Ok(y1)
|
||||
}).unwrap();
|
||||
|
||||
let p1 = MontgomeryPoint {
|
||||
x: num_x0,
|
||||
y: num_y0
|
||||
};
|
||||
|
||||
let p2 = MontgomeryPoint {
|
||||
x: num_x1,
|
||||
y: num_y1
|
||||
};
|
||||
|
||||
let p3 = p1.add(cs.namespace(|| "addition"), &p2, params).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
assert!(p3.x.get_value().unwrap() == x2);
|
||||
assert!(p3.y.get_value().unwrap() == y2);
|
||||
|
||||
cs.set("addition/yprime/num", rng.gen());
|
||||
assert_eq!(cs.which_is_unsatisfied(), Some("addition/evaluate yprime"));
|
||||
cs.set("addition/yprime/num", y2);
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
cs.set("addition/xprime/num", rng.gen());
|
||||
assert_eq!(cs.which_is_unsatisfied(), Some("addition/evaluate xprime"));
|
||||
cs.set("addition/xprime/num", x2);
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
cs.set("addition/lambda/num", rng.gen());
|
||||
assert_eq!(cs.which_is_unsatisfied(), Some("addition/evaluate lambda"));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_doubling() {
|
||||
let params = &JubjubBls12::new();
|
||||
|
@ -10,7 +10,7 @@ use digest::{FixedOutput, Input};
|
||||
pub fn group_hash<E: JubjubEngine>(
|
||||
tag: &[u8],
|
||||
params: &E::Params
|
||||
) -> Option<(E::Fr, E::Fr)>
|
||||
) -> Option<montgomery::Point<E, PrimeOrder>>
|
||||
{
|
||||
// Check to see that scalar field is 255 bits
|
||||
assert!(E::Fr::NUM_BITS == 255);
|
||||
@ -33,7 +33,11 @@ pub fn group_hash<E: JubjubEngine>(
|
||||
// Enter into the prime order subgroup
|
||||
let p = p.mul_by_cofactor(params);
|
||||
|
||||
p.into_xy()
|
||||
if p != montgomery::Point::zero() {
|
||||
Some(p)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
} else {
|
||||
None
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user