mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-11-01 20:07:02 +00:00
cargo fmt bellman
This commit is contained in:
@@ -13,9 +13,7 @@
|
||||
use ff::{Field, PrimeField, ScalarEngine};
|
||||
use group::CurveProjective;
|
||||
|
||||
use super::{
|
||||
SynthesisError
|
||||
};
|
||||
use super::SynthesisError;
|
||||
|
||||
use super::multicore::Worker;
|
||||
|
||||
@@ -25,7 +23,7 @@ pub struct EvaluationDomain<E: ScalarEngine, G: Group<E>> {
|
||||
omega: E::Fr,
|
||||
omegainv: E::Fr,
|
||||
geninv: E::Fr,
|
||||
minv: E::Fr
|
||||
minv: E::Fr,
|
||||
}
|
||||
|
||||
impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
|
||||
@@ -41,8 +39,7 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
|
||||
self.coeffs
|
||||
}
|
||||
|
||||
pub fn from_coeffs(mut coeffs: Vec<G>) -> Result<EvaluationDomain<E, G>, SynthesisError>
|
||||
{
|
||||
pub fn from_coeffs(mut coeffs: Vec<G>) -> Result<EvaluationDomain<E, G>, SynthesisError> {
|
||||
// Compute the size of our evaluation domain
|
||||
let mut m = 1;
|
||||
let mut exp = 0;
|
||||
@@ -53,7 +50,7 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
|
||||
// The pairing-friendly curve may not be able to support
|
||||
// large enough (radix2) evaluation domains.
|
||||
if exp >= E::Fr::S {
|
||||
return Err(SynthesisError::PolynomialDegreeTooLarge)
|
||||
return Err(SynthesisError::PolynomialDegreeTooLarge);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -72,17 +69,18 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
|
||||
omega: omega,
|
||||
omegainv: omega.inverse().unwrap(),
|
||||
geninv: E::Fr::multiplicative_generator().inverse().unwrap(),
|
||||
minv: E::Fr::from_str(&format!("{}", m)).unwrap().inverse().unwrap()
|
||||
minv: E::Fr::from_str(&format!("{}", m))
|
||||
.unwrap()
|
||||
.inverse()
|
||||
.unwrap(),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn fft(&mut self, worker: &Worker)
|
||||
{
|
||||
pub fn fft(&mut self, worker: &Worker) {
|
||||
best_fft(&mut self.coeffs, worker, &self.omega, self.exp);
|
||||
}
|
||||
|
||||
pub fn ifft(&mut self, worker: &Worker)
|
||||
{
|
||||
pub fn ifft(&mut self, worker: &Worker) {
|
||||
best_fft(&mut self.coeffs, worker, &self.omegainv, self.exp);
|
||||
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
@@ -98,8 +96,7 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
|
||||
});
|
||||
}
|
||||
|
||||
pub fn distribute_powers(&mut self, worker: &Worker, g: E::Fr)
|
||||
{
|
||||
pub fn distribute_powers(&mut self, worker: &Worker, g: E::Fr) {
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
for (i, v) in self.coeffs.chunks_mut(chunk).enumerate() {
|
||||
scope.spawn(move || {
|
||||
@@ -113,14 +110,12 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
|
||||
});
|
||||
}
|
||||
|
||||
pub fn coset_fft(&mut self, worker: &Worker)
|
||||
{
|
||||
pub fn coset_fft(&mut self, worker: &Worker) {
|
||||
self.distribute_powers(worker, E::Fr::multiplicative_generator());
|
||||
self.fft(worker);
|
||||
}
|
||||
|
||||
pub fn icoset_fft(&mut self, worker: &Worker)
|
||||
{
|
||||
pub fn icoset_fft(&mut self, worker: &Worker) {
|
||||
let geninv = self.geninv;
|
||||
|
||||
self.ifft(worker);
|
||||
@@ -139,9 +134,11 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
|
||||
/// The target polynomial is the zero polynomial in our
|
||||
/// evaluation domain, so we must perform division over
|
||||
/// a coset.
|
||||
pub fn divide_by_z_on_coset(&mut self, worker: &Worker)
|
||||
{
|
||||
let i = self.z(&E::Fr::multiplicative_generator()).inverse().unwrap();
|
||||
pub fn divide_by_z_on_coset(&mut self, worker: &Worker) {
|
||||
let i = self
|
||||
.z(&E::Fr::multiplicative_generator())
|
||||
.inverse()
|
||||
.unwrap();
|
||||
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
for v in self.coeffs.chunks_mut(chunk) {
|
||||
@@ -159,7 +156,11 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
|
||||
assert_eq!(self.coeffs.len(), other.coeffs.len());
|
||||
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
for (a, b) in self.coeffs.chunks_mut(chunk).zip(other.coeffs.chunks(chunk)) {
|
||||
for (a, b) in self
|
||||
.coeffs
|
||||
.chunks_mut(chunk)
|
||||
.zip(other.coeffs.chunks(chunk))
|
||||
{
|
||||
scope.spawn(move || {
|
||||
for (a, b) in a.iter_mut().zip(b.iter()) {
|
||||
a.group_mul_assign(&b.0);
|
||||
@@ -174,7 +175,11 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
|
||||
assert_eq!(self.coeffs.len(), other.coeffs.len());
|
||||
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
for (a, b) in self.coeffs.chunks_mut(chunk).zip(other.coeffs.chunks(chunk)) {
|
||||
for (a, b) in self
|
||||
.coeffs
|
||||
.chunks_mut(chunk)
|
||||
.zip(other.coeffs.chunks(chunk))
|
||||
{
|
||||
scope.spawn(move || {
|
||||
for (a, b) in a.iter_mut().zip(b.iter()) {
|
||||
a.group_sub_assign(&b);
|
||||
@@ -200,7 +205,7 @@ impl<G: CurveProjective> PartialEq for Point<G> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<G: CurveProjective> Copy for Point<G> { }
|
||||
impl<G: CurveProjective> Copy for Point<G> {}
|
||||
|
||||
impl<G: CurveProjective> Clone for Point<G> {
|
||||
fn clone(&self) -> Point<G> {
|
||||
@@ -231,7 +236,7 @@ impl<E: ScalarEngine> PartialEq for Scalar<E> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: ScalarEngine> Copy for Scalar<E> { }
|
||||
impl<E: ScalarEngine> Copy for Scalar<E> {}
|
||||
|
||||
impl<E: ScalarEngine> Clone for Scalar<E> {
|
||||
fn clone(&self) -> Scalar<E> {
|
||||
@@ -254,8 +259,7 @@ impl<E: ScalarEngine> Group<E> for Scalar<E> {
|
||||
}
|
||||
}
|
||||
|
||||
fn best_fft<E: ScalarEngine, T: Group<E>>(a: &mut [T], worker: &Worker, omega: &E::Fr, log_n: u32)
|
||||
{
|
||||
fn best_fft<E: ScalarEngine, T: Group<E>>(a: &mut [T], worker: &Worker, omega: &E::Fr, log_n: u32) {
|
||||
let log_cpus = worker.log_num_cpus();
|
||||
|
||||
if log_n <= log_cpus {
|
||||
@@ -265,8 +269,7 @@ fn best_fft<E: ScalarEngine, T: Group<E>>(a: &mut [T], worker: &Worker, omega: &
|
||||
}
|
||||
}
|
||||
|
||||
fn serial_fft<E: ScalarEngine, T: Group<E>>(a: &mut [T], omega: &E::Fr, log_n: u32)
|
||||
{
|
||||
fn serial_fft<E: ScalarEngine, T: Group<E>>(a: &mut [T], omega: &E::Fr, log_n: u32) {
|
||||
fn bitreverse(mut n: u32, l: u32) -> u32 {
|
||||
let mut r = 0;
|
||||
for _ in 0..l {
|
||||
@@ -288,22 +291,22 @@ fn serial_fft<E: ScalarEngine, T: Group<E>>(a: &mut [T], omega: &E::Fr, log_n: u
|
||||
|
||||
let mut m = 1;
|
||||
for _ in 0..log_n {
|
||||
let w_m = omega.pow(&[(n / (2*m)) as u64]);
|
||||
let w_m = omega.pow(&[(n / (2 * m)) as u64]);
|
||||
|
||||
let mut k = 0;
|
||||
while k < n {
|
||||
let mut w = E::Fr::one();
|
||||
for j in 0..m {
|
||||
let mut t = a[(k+j+m) as usize];
|
||||
let mut t = a[(k + j + m) as usize];
|
||||
t.group_mul_assign(&w);
|
||||
let mut tmp = a[(k+j) as usize];
|
||||
let mut tmp = a[(k + j) as usize];
|
||||
tmp.group_sub_assign(&t);
|
||||
a[(k+j+m) as usize] = tmp;
|
||||
a[(k+j) as usize].group_add_assign(&t);
|
||||
a[(k + j + m) as usize] = tmp;
|
||||
a[(k + j) as usize].group_add_assign(&t);
|
||||
w.mul_assign(&w_m);
|
||||
}
|
||||
|
||||
k += 2*m;
|
||||
k += 2 * m;
|
||||
}
|
||||
|
||||
m *= 2;
|
||||
@@ -315,9 +318,8 @@ fn parallel_fft<E: ScalarEngine, T: Group<E>>(
|
||||
worker: &Worker,
|
||||
omega: &E::Fr,
|
||||
log_n: u32,
|
||||
log_cpus: u32
|
||||
)
|
||||
{
|
||||
log_cpus: u32,
|
||||
) {
|
||||
assert!(log_n >= log_cpus);
|
||||
|
||||
let num_cpus = 1 << log_cpus;
|
||||
@@ -377,14 +379,17 @@ fn polynomial_arith() {
|
||||
use pairing::bls12_381::Bls12;
|
||||
use rand_core::RngCore;
|
||||
|
||||
fn test_mul<E: ScalarEngine, R: RngCore>(rng: &mut R)
|
||||
{
|
||||
fn test_mul<E: ScalarEngine, R: RngCore>(rng: &mut R) {
|
||||
let worker = Worker::new();
|
||||
|
||||
for coeffs_a in 0..70 {
|
||||
for coeffs_b in 0..70 {
|
||||
let mut a: Vec<_> = (0..coeffs_a).map(|_| Scalar::<E>(E::Fr::random(rng))).collect();
|
||||
let mut b: Vec<_> = (0..coeffs_b).map(|_| Scalar::<E>(E::Fr::random(rng))).collect();
|
||||
let mut a: Vec<_> = (0..coeffs_a)
|
||||
.map(|_| Scalar::<E>(E::Fr::random(rng)))
|
||||
.collect();
|
||||
let mut b: Vec<_> = (0..coeffs_b)
|
||||
.map(|_| Scalar::<E>(E::Fr::random(rng)))
|
||||
.collect();
|
||||
|
||||
// naive evaluation
|
||||
let mut naive = vec![Scalar(E::Fr::zero()); coeffs_a + coeffs_b];
|
||||
@@ -425,8 +430,7 @@ fn fft_composition() {
|
||||
use pairing::bls12_381::Bls12;
|
||||
use rand_core::RngCore;
|
||||
|
||||
fn test_comp<E: ScalarEngine, R: RngCore>(rng: &mut R)
|
||||
{
|
||||
fn test_comp<E: ScalarEngine, R: RngCore>(rng: &mut R) {
|
||||
let worker = Worker::new();
|
||||
|
||||
for coeffs in 0..10 {
|
||||
@@ -465,19 +469,20 @@ fn parallel_fft_consistency() {
|
||||
use rand_core::RngCore;
|
||||
use std::cmp::min;
|
||||
|
||||
fn test_consistency<E: ScalarEngine, R: RngCore>(rng: &mut R)
|
||||
{
|
||||
fn test_consistency<E: ScalarEngine, R: RngCore>(rng: &mut R) {
|
||||
let worker = Worker::new();
|
||||
|
||||
for _ in 0..5 {
|
||||
for log_d in 0..10 {
|
||||
let d = 1 << log_d;
|
||||
|
||||
let v1 = (0..d).map(|_| Scalar::<E>(E::Fr::random(rng))).collect::<Vec<_>>();
|
||||
let v1 = (0..d)
|
||||
.map(|_| Scalar::<E>(E::Fr::random(rng)))
|
||||
.collect::<Vec<_>>();
|
||||
let mut v1 = EvaluationDomain::from_coeffs(v1).unwrap();
|
||||
let mut v2 = EvaluationDomain::from_coeffs(v1.coeffs.clone()).unwrap();
|
||||
|
||||
for log_cpus in log_d..min(log_d+1, 3) {
|
||||
for log_cpus in log_d..min(log_d + 1, 3) {
|
||||
parallel_fft(&mut v1.coeffs, &worker, &v1.omega, log_d, log_cpus);
|
||||
serial_fft(&mut v2.coeffs, &v2.omega, log_d);
|
||||
|
||||
|
||||
Reference in New Issue
Block a user