Add 'bellman/' from commit '10c5010fd9c2ca69442dc9775ea271e286e776d8'

git-subtree-dir: bellman
git-subtree-mainline: e924247e73
git-subtree-split: 10c5010fd9
This commit is contained in:
Jack Grigg
2018-08-28 23:03:52 +01:00
17 changed files with 4168 additions and 0 deletions

494
bellman/src/domain.rs Normal file
View File

@@ -0,0 +1,494 @@
//! This module contains an `EvaluationDomain` abstraction for
//! performing various kinds of polynomial arithmetic on top of
//! the scalar field.
//!
//! In pairing-based SNARKs like Groth16, we need to calculate
//! a quotient polynomial over a target polynomial with roots
//! at distinct points associated with each constraint of the
//! constraint system. In order to be efficient, we choose these
//! roots to be the powers of a 2^n root of unity in the field.
//! This allows us to perform polynomial operations in O(n)
//! by performing an O(n log n) FFT over such a domain.
use pairing::{
Engine,
Field,
PrimeField,
CurveProjective
};
use super::{
SynthesisError
};
use super::multicore::Worker;
pub struct EvaluationDomain<E: Engine, G: Group<E>> {
coeffs: Vec<G>,
exp: u32,
omega: E::Fr,
omegainv: E::Fr,
geninv: E::Fr,
minv: E::Fr
}
impl<E: Engine, G: Group<E>> EvaluationDomain<E, G> {
pub fn as_ref(&self) -> &[G] {
&self.coeffs
}
pub fn as_mut(&mut self) -> &mut [G] {
&mut self.coeffs
}
pub fn into_coeffs(self) -> Vec<G> {
self.coeffs
}
pub fn from_coeffs(mut coeffs: Vec<G>) -> Result<EvaluationDomain<E, G>, SynthesisError>
{
// Compute the size of our evaluation domain
let mut m = 1;
let mut exp = 0;
while m < coeffs.len() {
m *= 2;
exp += 1;
// The pairing-friendly curve may not be able to support
// large enough (radix2) evaluation domains.
if exp >= E::Fr::S {
return Err(SynthesisError::PolynomialDegreeTooLarge)
}
}
// Compute omega, the 2^exp primitive root of unity
let mut omega = E::Fr::root_of_unity();
for _ in exp..E::Fr::S {
omega.square();
}
// Extend the coeffs vector with zeroes if necessary
coeffs.resize(m, G::group_zero());
Ok(EvaluationDomain {
coeffs: coeffs,
exp: exp,
omega: omega,
omegainv: omega.inverse().unwrap(),
geninv: E::Fr::multiplicative_generator().inverse().unwrap(),
minv: E::Fr::from_str(&format!("{}", m)).unwrap().inverse().unwrap()
})
}
pub fn fft(&mut self, worker: &Worker)
{
best_fft(&mut self.coeffs, worker, &self.omega, self.exp);
}
pub fn ifft(&mut self, worker: &Worker)
{
best_fft(&mut self.coeffs, worker, &self.omegainv, self.exp);
worker.scope(self.coeffs.len(), |scope, chunk| {
let minv = self.minv;
for v in self.coeffs.chunks_mut(chunk) {
scope.spawn(move || {
for v in v {
v.group_mul_assign(&minv);
}
});
}
});
}
pub fn distribute_powers(&mut self, worker: &Worker, g: E::Fr)
{
worker.scope(self.coeffs.len(), |scope, chunk| {
for (i, v) in self.coeffs.chunks_mut(chunk).enumerate() {
scope.spawn(move || {
let mut u = g.pow(&[(i * chunk) as u64]);
for v in v.iter_mut() {
v.group_mul_assign(&u);
u.mul_assign(&g);
}
});
}
});
}
pub fn coset_fft(&mut self, worker: &Worker)
{
self.distribute_powers(worker, E::Fr::multiplicative_generator());
self.fft(worker);
}
pub fn icoset_fft(&mut self, worker: &Worker)
{
let geninv = self.geninv;
self.ifft(worker);
self.distribute_powers(worker, geninv);
}
/// This evaluates t(tau) for this domain, which is
/// tau^m - 1 for these radix-2 domains.
pub fn z(&self, tau: &E::Fr) -> E::Fr {
let mut tmp = tau.pow(&[self.coeffs.len() as u64]);
tmp.sub_assign(&E::Fr::one());
tmp
}
/// The target polynomial is the zero polynomial in our
/// evaluation domain, so we must perform division over
/// a coset.
pub fn divide_by_z_on_coset(&mut self, worker: &Worker)
{
let i = self.z(&E::Fr::multiplicative_generator()).inverse().unwrap();
worker.scope(self.coeffs.len(), |scope, chunk| {
for v in self.coeffs.chunks_mut(chunk) {
scope.spawn(move || {
for v in v {
v.group_mul_assign(&i);
}
});
}
});
}
/// Perform O(n) multiplication of two polynomials in the domain.
pub fn mul_assign(&mut self, worker: &Worker, other: &EvaluationDomain<E, Scalar<E>>) {
assert_eq!(self.coeffs.len(), other.coeffs.len());
worker.scope(self.coeffs.len(), |scope, chunk| {
for (a, b) in self.coeffs.chunks_mut(chunk).zip(other.coeffs.chunks(chunk)) {
scope.spawn(move || {
for (a, b) in a.iter_mut().zip(b.iter()) {
a.group_mul_assign(&b.0);
}
});
}
});
}
/// Perform O(n) subtraction of one polynomial from another in the domain.
pub fn sub_assign(&mut self, worker: &Worker, other: &EvaluationDomain<E, G>) {
assert_eq!(self.coeffs.len(), other.coeffs.len());
worker.scope(self.coeffs.len(), |scope, chunk| {
for (a, b) in self.coeffs.chunks_mut(chunk).zip(other.coeffs.chunks(chunk)) {
scope.spawn(move || {
for (a, b) in a.iter_mut().zip(b.iter()) {
a.group_sub_assign(&b);
}
});
}
});
}
}
pub trait Group<E: Engine>: Sized + Copy + Clone + Send + Sync {
fn group_zero() -> Self;
fn group_mul_assign(&mut self, by: &E::Fr);
fn group_add_assign(&mut self, other: &Self);
fn group_sub_assign(&mut self, other: &Self);
}
pub struct Point<G: CurveProjective>(pub G);
impl<G: CurveProjective> PartialEq for Point<G> {
fn eq(&self, other: &Point<G>) -> bool {
self.0 == other.0
}
}
impl<G: CurveProjective> Copy for Point<G> { }
impl<G: CurveProjective> Clone for Point<G> {
fn clone(&self) -> Point<G> {
*self
}
}
impl<G: CurveProjective> Group<G::Engine> for Point<G> {
fn group_zero() -> Self {
Point(G::zero())
}
fn group_mul_assign(&mut self, by: &G::Scalar) {
self.0.mul_assign(by.into_repr());
}
fn group_add_assign(&mut self, other: &Self) {
self.0.add_assign(&other.0);
}
fn group_sub_assign(&mut self, other: &Self) {
self.0.sub_assign(&other.0);
}
}
pub struct Scalar<E: Engine>(pub E::Fr);
impl<E: Engine> PartialEq for Scalar<E> {
fn eq(&self, other: &Scalar<E>) -> bool {
self.0 == other.0
}
}
impl<E: Engine> Copy for Scalar<E> { }
impl<E: Engine> Clone for Scalar<E> {
fn clone(&self) -> Scalar<E> {
*self
}
}
impl<E: Engine> Group<E> for Scalar<E> {
fn group_zero() -> Self {
Scalar(E::Fr::zero())
}
fn group_mul_assign(&mut self, by: &E::Fr) {
self.0.mul_assign(by);
}
fn group_add_assign(&mut self, other: &Self) {
self.0.add_assign(&other.0);
}
fn group_sub_assign(&mut self, other: &Self) {
self.0.sub_assign(&other.0);
}
}
fn best_fft<E: Engine, T: Group<E>>(a: &mut [T], worker: &Worker, omega: &E::Fr, log_n: u32)
{
let log_cpus = worker.log_num_cpus();
if log_n <= log_cpus {
serial_fft(a, omega, log_n);
} else {
parallel_fft(a, worker, omega, log_n, log_cpus);
}
}
fn serial_fft<E: Engine, T: Group<E>>(a: &mut [T], omega: &E::Fr, log_n: u32)
{
fn bitreverse(mut n: u32, l: u32) -> u32 {
let mut r = 0;
for _ in 0..l {
r = (r << 1) | (n & 1);
n >>= 1;
}
r
}
let n = a.len() as u32;
assert_eq!(n, 1 << log_n);
for k in 0..n {
let rk = bitreverse(k, log_n);
if k < rk {
a.swap(rk as usize, k as usize);
}
}
let mut m = 1;
for _ in 0..log_n {
let w_m = omega.pow(&[(n / (2*m)) as u64]);
let mut k = 0;
while k < n {
let mut w = E::Fr::one();
for j in 0..m {
let mut t = a[(k+j+m) as usize];
t.group_mul_assign(&w);
let mut tmp = a[(k+j) as usize];
tmp.group_sub_assign(&t);
a[(k+j+m) as usize] = tmp;
a[(k+j) as usize].group_add_assign(&t);
w.mul_assign(&w_m);
}
k += 2*m;
}
m *= 2;
}
}
fn parallel_fft<E: Engine, T: Group<E>>(
a: &mut [T],
worker: &Worker,
omega: &E::Fr,
log_n: u32,
log_cpus: u32
)
{
assert!(log_n >= log_cpus);
let num_cpus = 1 << log_cpus;
let log_new_n = log_n - log_cpus;
let mut tmp = vec![vec![T::group_zero(); 1 << log_new_n]; num_cpus];
let new_omega = omega.pow(&[num_cpus as u64]);
worker.scope(0, |scope, _| {
let a = &*a;
for (j, tmp) in tmp.iter_mut().enumerate() {
scope.spawn(move || {
// Shuffle into a sub-FFT
let omega_j = omega.pow(&[j as u64]);
let omega_step = omega.pow(&[(j as u64) << log_new_n]);
let mut elt = E::Fr::one();
for i in 0..(1 << log_new_n) {
for s in 0..num_cpus {
let idx = (i + (s << log_new_n)) % (1 << log_n);
let mut t = a[idx];
t.group_mul_assign(&elt);
tmp[i].group_add_assign(&t);
elt.mul_assign(&omega_step);
}
elt.mul_assign(&omega_j);
}
// Perform sub-FFT
serial_fft(tmp, &new_omega, log_new_n);
});
}
});
// TODO: does this hurt or help?
worker.scope(a.len(), |scope, chunk| {
let tmp = &tmp;
for (idx, a) in a.chunks_mut(chunk).enumerate() {
scope.spawn(move || {
let mut idx = idx * chunk;
let mask = (1 << log_cpus) - 1;
for a in a {
*a = tmp[idx & mask][idx >> log_cpus];
idx += 1;
}
});
}
});
}
// Test multiplying various (low degree) polynomials together and
// comparing with naive evaluations.
#[test]
fn polynomial_arith() {
use pairing::bls12_381::Bls12;
use rand::{self, Rand};
fn test_mul<E: Engine, R: rand::Rng>(rng: &mut R)
{
let worker = Worker::new();
for coeffs_a in 0..70 {
for coeffs_b in 0..70 {
let mut a: Vec<_> = (0..coeffs_a).map(|_| Scalar::<E>(E::Fr::rand(rng))).collect();
let mut b: Vec<_> = (0..coeffs_b).map(|_| Scalar::<E>(E::Fr::rand(rng))).collect();
// naive evaluation
let mut naive = vec![Scalar(E::Fr::zero()); coeffs_a + coeffs_b];
for (i1, a) in a.iter().enumerate() {
for (i2, b) in b.iter().enumerate() {
let mut prod = *a;
prod.group_mul_assign(&b.0);
naive[i1 + i2].group_add_assign(&prod);
}
}
a.resize(coeffs_a + coeffs_b, Scalar(E::Fr::zero()));
b.resize(coeffs_a + coeffs_b, Scalar(E::Fr::zero()));
let mut a = EvaluationDomain::from_coeffs(a).unwrap();
let mut b = EvaluationDomain::from_coeffs(b).unwrap();
a.fft(&worker);
b.fft(&worker);
a.mul_assign(&worker, &b);
a.ifft(&worker);
for (naive, fft) in naive.iter().zip(a.coeffs.iter()) {
assert!(naive == fft);
}
}
}
}
let rng = &mut rand::thread_rng();
test_mul::<Bls12, _>(rng);
}
#[test]
fn fft_composition() {
use pairing::bls12_381::Bls12;
use rand;
fn test_comp<E: Engine, R: rand::Rng>(rng: &mut R)
{
let worker = Worker::new();
for coeffs in 0..10 {
let coeffs = 1 << coeffs;
let mut v = vec![];
for _ in 0..coeffs {
v.push(Scalar::<E>(rng.gen()));
}
let mut domain = EvaluationDomain::from_coeffs(v.clone()).unwrap();
domain.ifft(&worker);
domain.fft(&worker);
assert!(v == domain.coeffs);
domain.fft(&worker);
domain.ifft(&worker);
assert!(v == domain.coeffs);
domain.icoset_fft(&worker);
domain.coset_fft(&worker);
assert!(v == domain.coeffs);
domain.coset_fft(&worker);
domain.icoset_fft(&worker);
assert!(v == domain.coeffs);
}
}
let rng = &mut rand::thread_rng();
test_comp::<Bls12, _>(rng);
}
#[test]
fn parallel_fft_consistency() {
use pairing::bls12_381::Bls12;
use rand::{self, Rand};
use std::cmp::min;
fn test_consistency<E: Engine, R: rand::Rng>(rng: &mut R)
{
let worker = Worker::new();
for _ in 0..5 {
for log_d in 0..10 {
let d = 1 << log_d;
let v1 = (0..d).map(|_| Scalar::<E>(E::Fr::rand(rng))).collect::<Vec<_>>();
let mut v1 = EvaluationDomain::from_coeffs(v1).unwrap();
let mut v2 = EvaluationDomain::from_coeffs(v1.coeffs.clone()).unwrap();
for log_cpus in log_d..min(log_d+1, 3) {
parallel_fft(&mut v1.coeffs, &worker, &v1.omega, log_d, log_cpus);
serial_fft(&mut v2.coeffs, &v2.omega, log_d);
assert!(v1.coeffs == v2.coeffs);
}
}
}
}
let rng = &mut rand::thread_rng();
test_consistency::<Bls12, _>(rng);
}

View File

@@ -0,0 +1,482 @@
use rand::Rng;
use std::sync::Arc;
use pairing::{
Engine,
PrimeField,
Field,
Wnaf,
CurveProjective,
CurveAffine
};
use super::{
Parameters,
VerifyingKey
};
use ::{
SynthesisError,
Circuit,
ConstraintSystem,
LinearCombination,
Variable,
Index
};
use ::domain::{
EvaluationDomain,
Scalar
};
use ::multicore::{
Worker
};
/// Generates a random common reference string for
/// a circuit.
pub fn generate_random_parameters<E, C, R>(
circuit: C,
rng: &mut R
) -> Result<Parameters<E>, SynthesisError>
where E: Engine, C: Circuit<E>, R: Rng
{
let g1 = rng.gen();
let g2 = rng.gen();
let alpha = rng.gen();
let beta = rng.gen();
let gamma = rng.gen();
let delta = rng.gen();
let tau = rng.gen();
generate_parameters::<E, C>(
circuit,
g1,
g2,
alpha,
beta,
gamma,
delta,
tau
)
}
/// This is our assembly structure that we'll use to synthesize the
/// circuit into a QAP.
struct KeypairAssembly<E: Engine> {
num_inputs: usize,
num_aux: usize,
num_constraints: usize,
at_inputs: Vec<Vec<(E::Fr, usize)>>,
bt_inputs: Vec<Vec<(E::Fr, usize)>>,
ct_inputs: Vec<Vec<(E::Fr, usize)>>,
at_aux: Vec<Vec<(E::Fr, usize)>>,
bt_aux: Vec<Vec<(E::Fr, usize)>>,
ct_aux: Vec<Vec<(E::Fr, usize)>>
}
impl<E: Engine> ConstraintSystem<E> for KeypairAssembly<E> {
type Root = Self;
fn alloc<F, A, AR>(
&mut self,
_: A,
_: F
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
// There is no assignment, so we don't even invoke the
// function for obtaining one.
let index = self.num_aux;
self.num_aux += 1;
self.at_aux.push(vec![]);
self.bt_aux.push(vec![]);
self.ct_aux.push(vec![]);
Ok(Variable(Index::Aux(index)))
}
fn alloc_input<F, A, AR>(
&mut self,
_: A,
_: F
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
// There is no assignment, so we don't even invoke the
// function for obtaining one.
let index = self.num_inputs;
self.num_inputs += 1;
self.at_inputs.push(vec![]);
self.bt_inputs.push(vec![]);
self.ct_inputs.push(vec![]);
Ok(Variable(Index::Input(index)))
}
fn enforce<A, AR, LA, LB, LC>(
&mut self,
_: A,
a: LA,
b: LB,
c: LC
)
where A: FnOnce() -> AR, AR: Into<String>,
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
{
fn eval<E: Engine>(
l: LinearCombination<E>,
inputs: &mut [Vec<(E::Fr, usize)>],
aux: &mut [Vec<(E::Fr, usize)>],
this_constraint: usize
)
{
for (index, coeff) in l.0 {
match index {
Variable(Index::Input(id)) => inputs[id].push((coeff, this_constraint)),
Variable(Index::Aux(id)) => aux[id].push((coeff, this_constraint))
}
}
}
eval(a(LinearCombination::zero()), &mut self.at_inputs, &mut self.at_aux, self.num_constraints);
eval(b(LinearCombination::zero()), &mut self.bt_inputs, &mut self.bt_aux, self.num_constraints);
eval(c(LinearCombination::zero()), &mut self.ct_inputs, &mut self.ct_aux, self.num_constraints);
self.num_constraints += 1;
}
fn push_namespace<NR, N>(&mut self, _: N)
where NR: Into<String>, N: FnOnce() -> NR
{
// Do nothing; we don't care about namespaces in this context.
}
fn pop_namespace(&mut self)
{
// Do nothing; we don't care about namespaces in this context.
}
fn get_root(&mut self) -> &mut Self::Root {
self
}
}
/// Create parameters for a circuit, given some toxic waste.
pub fn generate_parameters<E, C>(
circuit: C,
g1: E::G1,
g2: E::G2,
alpha: E::Fr,
beta: E::Fr,
gamma: E::Fr,
delta: E::Fr,
tau: E::Fr
) -> Result<Parameters<E>, SynthesisError>
where E: Engine, C: Circuit<E>
{
let mut assembly = KeypairAssembly {
num_inputs: 0,
num_aux: 0,
num_constraints: 0,
at_inputs: vec![],
bt_inputs: vec![],
ct_inputs: vec![],
at_aux: vec![],
bt_aux: vec![],
ct_aux: vec![]
};
// Allocate the "one" input variable
assembly.alloc_input(|| "", || Ok(E::Fr::one()))?;
// Synthesize the circuit.
circuit.synthesize(&mut assembly)?;
// Input constraints to ensure full density of IC query
// x * 0 = 0
for i in 0..assembly.num_inputs {
assembly.enforce(|| "",
|lc| lc + Variable(Index::Input(i)),
|lc| lc,
|lc| lc,
);
}
// Create bases for blind evaluation of polynomials at tau
let powers_of_tau = vec![Scalar::<E>(E::Fr::zero()); assembly.num_constraints];
let mut powers_of_tau = EvaluationDomain::from_coeffs(powers_of_tau)?;
// Compute G1 window table
let mut g1_wnaf = Wnaf::new();
let g1_wnaf = g1_wnaf.base(g1, {
// H query
(powers_of_tau.as_ref().len() - 1)
// IC/L queries
+ assembly.num_inputs + assembly.num_aux
// A query
+ assembly.num_inputs + assembly.num_aux
// B query
+ assembly.num_inputs + assembly.num_aux
});
// Compute G2 window table
let mut g2_wnaf = Wnaf::new();
let g2_wnaf = g2_wnaf.base(g2, {
// B query
assembly.num_inputs + assembly.num_aux
});
let gamma_inverse = gamma.inverse().ok_or(SynthesisError::UnexpectedIdentity)?;
let delta_inverse = delta.inverse().ok_or(SynthesisError::UnexpectedIdentity)?;
let worker = Worker::new();
let mut h = vec![E::G1::zero(); powers_of_tau.as_ref().len() - 1];
{
// Compute powers of tau
{
let powers_of_tau = powers_of_tau.as_mut();
worker.scope(powers_of_tau.len(), |scope, chunk| {
for (i, powers_of_tau) in powers_of_tau.chunks_mut(chunk).enumerate()
{
scope.spawn(move || {
let mut current_tau_power = tau.pow(&[(i*chunk) as u64]);
for p in powers_of_tau {
p.0 = current_tau_power;
current_tau_power.mul_assign(&tau);
}
});
}
});
}
// coeff = t(x) / delta
let mut coeff = powers_of_tau.z(&tau);
coeff.mul_assign(&delta_inverse);
// Compute the H query with multiple threads
worker.scope(h.len(), |scope, chunk| {
for (h, p) in h.chunks_mut(chunk).zip(powers_of_tau.as_ref().chunks(chunk))
{
let mut g1_wnaf = g1_wnaf.shared();
scope.spawn(move || {
// Set values of the H query to g1^{(tau^i * t(tau)) / delta}
for (h, p) in h.iter_mut().zip(p.iter())
{
// Compute final exponent
let mut exp = p.0;
exp.mul_assign(&coeff);
// Exponentiate
*h = g1_wnaf.scalar(exp.into_repr());
}
// Batch normalize
E::G1::batch_normalization(h);
});
}
});
}
// Use inverse FFT to convert powers of tau to Lagrange coefficients
powers_of_tau.ifft(&worker);
let powers_of_tau = powers_of_tau.into_coeffs();
let mut a = vec![E::G1::zero(); assembly.num_inputs + assembly.num_aux];
let mut b_g1 = vec![E::G1::zero(); assembly.num_inputs + assembly.num_aux];
let mut b_g2 = vec![E::G2::zero(); assembly.num_inputs + assembly.num_aux];
let mut ic = vec![E::G1::zero(); assembly.num_inputs];
let mut l = vec![E::G1::zero(); assembly.num_aux];
fn eval<E: Engine>(
// wNAF window tables
g1_wnaf: &Wnaf<usize, &[E::G1], &mut Vec<i64>>,
g2_wnaf: &Wnaf<usize, &[E::G2], &mut Vec<i64>>,
// Lagrange coefficients for tau
powers_of_tau: &[Scalar<E>],
// QAP polynomials
at: &[Vec<(E::Fr, usize)>],
bt: &[Vec<(E::Fr, usize)>],
ct: &[Vec<(E::Fr, usize)>],
// Resulting evaluated QAP polynomials
a: &mut [E::G1],
b_g1: &mut [E::G1],
b_g2: &mut [E::G2],
ext: &mut [E::G1],
// Inverse coefficient for ext elements
inv: &E::Fr,
// Trapdoors
alpha: &E::Fr,
beta: &E::Fr,
// Worker
worker: &Worker
)
{
// Sanity check
assert_eq!(a.len(), at.len());
assert_eq!(a.len(), bt.len());
assert_eq!(a.len(), ct.len());
assert_eq!(a.len(), b_g1.len());
assert_eq!(a.len(), b_g2.len());
assert_eq!(a.len(), ext.len());
// Evaluate polynomials in multiple threads
worker.scope(a.len(), |scope, chunk| {
for ((((((a, b_g1), b_g2), ext), at), bt), ct) in a.chunks_mut(chunk)
.zip(b_g1.chunks_mut(chunk))
.zip(b_g2.chunks_mut(chunk))
.zip(ext.chunks_mut(chunk))
.zip(at.chunks(chunk))
.zip(bt.chunks(chunk))
.zip(ct.chunks(chunk))
{
let mut g1_wnaf = g1_wnaf.shared();
let mut g2_wnaf = g2_wnaf.shared();
scope.spawn(move || {
for ((((((a, b_g1), b_g2), ext), at), bt), ct) in a.iter_mut()
.zip(b_g1.iter_mut())
.zip(b_g2.iter_mut())
.zip(ext.iter_mut())
.zip(at.iter())
.zip(bt.iter())
.zip(ct.iter())
{
fn eval_at_tau<E: Engine>(
powers_of_tau: &[Scalar<E>],
p: &[(E::Fr, usize)]
) -> E::Fr
{
let mut acc = E::Fr::zero();
for &(ref coeff, index) in p {
let mut n = powers_of_tau[index].0;
n.mul_assign(coeff);
acc.add_assign(&n);
}
acc
}
// Evaluate QAP polynomials at tau
let mut at = eval_at_tau(powers_of_tau, at);
let mut bt = eval_at_tau(powers_of_tau, bt);
let ct = eval_at_tau(powers_of_tau, ct);
// Compute A query (in G1)
if !at.is_zero() {
*a = g1_wnaf.scalar(at.into_repr());
}
// Compute B query (in G1/G2)
if !bt.is_zero() {
let bt_repr = bt.into_repr();
*b_g1 = g1_wnaf.scalar(bt_repr);
*b_g2 = g2_wnaf.scalar(bt_repr);
}
at.mul_assign(&beta);
bt.mul_assign(&alpha);
let mut e = at;
e.add_assign(&bt);
e.add_assign(&ct);
e.mul_assign(inv);
*ext = g1_wnaf.scalar(e.into_repr());
}
// Batch normalize
E::G1::batch_normalization(a);
E::G1::batch_normalization(b_g1);
E::G2::batch_normalization(b_g2);
E::G1::batch_normalization(ext);
});
}
});
}
// Evaluate for inputs.
eval(
&g1_wnaf,
&g2_wnaf,
&powers_of_tau,
&assembly.at_inputs,
&assembly.bt_inputs,
&assembly.ct_inputs,
&mut a[0..assembly.num_inputs],
&mut b_g1[0..assembly.num_inputs],
&mut b_g2[0..assembly.num_inputs],
&mut ic,
&gamma_inverse,
&alpha,
&beta,
&worker
);
// Evaluate for auxillary variables.
eval(
&g1_wnaf,
&g2_wnaf,
&powers_of_tau,
&assembly.at_aux,
&assembly.bt_aux,
&assembly.ct_aux,
&mut a[assembly.num_inputs..],
&mut b_g1[assembly.num_inputs..],
&mut b_g2[assembly.num_inputs..],
&mut l,
&delta_inverse,
&alpha,
&beta,
&worker
);
// Don't allow any elements be unconstrained, so that
// the L query is always fully dense.
for e in l.iter() {
if e.is_zero() {
return Err(SynthesisError::UnconstrainedVariable);
}
}
let g1 = g1.into_affine();
let g2 = g2.into_affine();
let vk = VerifyingKey::<E> {
alpha_g1: g1.mul(alpha).into_affine(),
beta_g1: g1.mul(beta).into_affine(),
beta_g2: g2.mul(beta).into_affine(),
gamma_g2: g2.mul(gamma).into_affine(),
delta_g1: g1.mul(delta).into_affine(),
delta_g2: g2.mul(delta).into_affine(),
ic: ic.into_iter().map(|e| e.into_affine()).collect()
};
Ok(Parameters {
vk: vk,
h: Arc::new(h.into_iter().map(|e| e.into_affine()).collect()),
l: Arc::new(l.into_iter().map(|e| e.into_affine()).collect()),
// Filter points at infinity away from A/B queries
a: Arc::new(a.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect()),
b_g1: Arc::new(b_g1.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect()),
b_g2: Arc::new(b_g2.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect())
})
}

576
bellman/src/groth16/mod.rs Normal file
View File

@@ -0,0 +1,576 @@
use pairing::{
Engine,
CurveAffine,
EncodedPoint
};
use ::{
SynthesisError
};
use multiexp::SourceBuilder;
use std::io::{self, Read, Write};
use std::sync::Arc;
use byteorder::{BigEndian, WriteBytesExt, ReadBytesExt};
#[cfg(test)]
mod tests;
mod generator;
mod prover;
mod verifier;
pub use self::generator::*;
pub use self::prover::*;
pub use self::verifier::*;
#[derive(Clone)]
pub struct Proof<E: Engine> {
pub a: E::G1Affine,
pub b: E::G2Affine,
pub c: E::G1Affine
}
impl<E: Engine> PartialEq for Proof<E> {
fn eq(&self, other: &Self) -> bool {
self.a == other.a &&
self.b == other.b &&
self.c == other.c
}
}
impl<E: Engine> Proof<E> {
pub fn write<W: Write>(
&self,
mut writer: W
) -> io::Result<()>
{
writer.write_all(self.a.into_compressed().as_ref())?;
writer.write_all(self.b.into_compressed().as_ref())?;
writer.write_all(self.c.into_compressed().as_ref())?;
Ok(())
}
pub fn read<R: Read>(
mut reader: R
) -> io::Result<Self>
{
let mut g1_repr = <E::G1Affine as CurveAffine>::Compressed::empty();
let mut g2_repr = <E::G2Affine as CurveAffine>::Compressed::empty();
reader.read_exact(g1_repr.as_mut())?;
let a = g1_repr
.into_affine()
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
.and_then(|e| if e.is_zero() {
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
} else {
Ok(e)
})?;
reader.read_exact(g2_repr.as_mut())?;
let b = g2_repr
.into_affine()
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
.and_then(|e| if e.is_zero() {
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
} else {
Ok(e)
})?;
reader.read_exact(g1_repr.as_mut())?;
let c = g1_repr
.into_affine()
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
.and_then(|e| if e.is_zero() {
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
} else {
Ok(e)
})?;
Ok(Proof {
a: a,
b: b,
c: c
})
}
}
#[derive(Clone)]
pub struct VerifyingKey<E: Engine> {
// alpha in g1 for verifying and for creating A/C elements of
// proof. Never the point at infinity.
pub alpha_g1: E::G1Affine,
// beta in g1 and g2 for verifying and for creating B/C elements
// of proof. Never the point at infinity.
pub beta_g1: E::G1Affine,
pub beta_g2: E::G2Affine,
// gamma in g2 for verifying. Never the point at infinity.
pub gamma_g2: E::G2Affine,
// delta in g1/g2 for verifying and proving, essentially the magic
// trapdoor that forces the prover to evaluate the C element of the
// proof with only components from the CRS. Never the point at
// infinity.
pub delta_g1: E::G1Affine,
pub delta_g2: E::G2Affine,
// Elements of the form (beta * u_i(tau) + alpha v_i(tau) + w_i(tau)) / gamma
// for all public inputs. Because all public inputs have a dummy constraint,
// this is the same size as the number of inputs, and never contains points
// at infinity.
pub ic: Vec<E::G1Affine>
}
impl<E: Engine> PartialEq for VerifyingKey<E> {
fn eq(&self, other: &Self) -> bool {
self.alpha_g1 == other.alpha_g1 &&
self.beta_g1 == other.beta_g1 &&
self.beta_g2 == other.beta_g2 &&
self.gamma_g2 == other.gamma_g2 &&
self.delta_g1 == other.delta_g1 &&
self.delta_g2 == other.delta_g2 &&
self.ic == other.ic
}
}
impl<E: Engine> VerifyingKey<E> {
pub fn write<W: Write>(
&self,
mut writer: W
) -> io::Result<()>
{
writer.write_all(self.alpha_g1.into_uncompressed().as_ref())?;
writer.write_all(self.beta_g1.into_uncompressed().as_ref())?;
writer.write_all(self.beta_g2.into_uncompressed().as_ref())?;
writer.write_all(self.gamma_g2.into_uncompressed().as_ref())?;
writer.write_all(self.delta_g1.into_uncompressed().as_ref())?;
writer.write_all(self.delta_g2.into_uncompressed().as_ref())?;
writer.write_u32::<BigEndian>(self.ic.len() as u32)?;
for ic in &self.ic {
writer.write_all(ic.into_uncompressed().as_ref())?;
}
Ok(())
}
pub fn read<R: Read>(
mut reader: R
) -> io::Result<Self>
{
let mut g1_repr = <E::G1Affine as CurveAffine>::Uncompressed::empty();
let mut g2_repr = <E::G2Affine as CurveAffine>::Uncompressed::empty();
reader.read_exact(g1_repr.as_mut())?;
let alpha_g1 = g1_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
reader.read_exact(g1_repr.as_mut())?;
let beta_g1 = g1_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
reader.read_exact(g2_repr.as_mut())?;
let beta_g2 = g2_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
reader.read_exact(g2_repr.as_mut())?;
let gamma_g2 = g2_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
reader.read_exact(g1_repr.as_mut())?;
let delta_g1 = g1_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
reader.read_exact(g2_repr.as_mut())?;
let delta_g2 = g2_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
let ic_len = reader.read_u32::<BigEndian>()? as usize;
let mut ic = vec![];
for _ in 0..ic_len {
reader.read_exact(g1_repr.as_mut())?;
let g1 = g1_repr
.into_affine()
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
.and_then(|e| if e.is_zero() {
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
} else {
Ok(e)
})?;
ic.push(g1);
}
Ok(VerifyingKey {
alpha_g1: alpha_g1,
beta_g1: beta_g1,
beta_g2: beta_g2,
gamma_g2: gamma_g2,
delta_g1: delta_g1,
delta_g2: delta_g2,
ic: ic
})
}
}
#[derive(Clone)]
pub struct Parameters<E: Engine> {
pub vk: VerifyingKey<E>,
// Elements of the form ((tau^i * t(tau)) / delta) for i between 0 and
// m-2 inclusive. Never contains points at infinity.
pub h: Arc<Vec<E::G1Affine>>,
// Elements of the form (beta * u_i(tau) + alpha v_i(tau) + w_i(tau)) / delta
// for all auxillary inputs. Variables can never be unconstrained, so this
// never contains points at infinity.
pub l: Arc<Vec<E::G1Affine>>,
// QAP "A" polynomials evaluated at tau in the Lagrange basis. Never contains
// points at infinity: polynomials that evaluate to zero are omitted from
// the CRS and the prover can deterministically skip their evaluation.
pub a: Arc<Vec<E::G1Affine>>,
// QAP "B" polynomials evaluated at tau in the Lagrange basis. Needed in
// G1 and G2 for C/B queries, respectively. Never contains points at
// infinity for the same reason as the "A" polynomials.
pub b_g1: Arc<Vec<E::G1Affine>>,
pub b_g2: Arc<Vec<E::G2Affine>>
}
impl<E: Engine> PartialEq for Parameters<E> {
fn eq(&self, other: &Self) -> bool {
self.vk == other.vk &&
self.h == other.h &&
self.l == other.l &&
self.a == other.a &&
self.b_g1 == other.b_g1 &&
self.b_g2 == other.b_g2
}
}
impl<E: Engine> Parameters<E> {
pub fn write<W: Write>(
&self,
mut writer: W
) -> io::Result<()>
{
self.vk.write(&mut writer)?;
writer.write_u32::<BigEndian>(self.h.len() as u32)?;
for g in &self.h[..] {
writer.write_all(g.into_uncompressed().as_ref())?;
}
writer.write_u32::<BigEndian>(self.l.len() as u32)?;
for g in &self.l[..] {
writer.write_all(g.into_uncompressed().as_ref())?;
}
writer.write_u32::<BigEndian>(self.a.len() as u32)?;
for g in &self.a[..] {
writer.write_all(g.into_uncompressed().as_ref())?;
}
writer.write_u32::<BigEndian>(self.b_g1.len() as u32)?;
for g in &self.b_g1[..] {
writer.write_all(g.into_uncompressed().as_ref())?;
}
writer.write_u32::<BigEndian>(self.b_g2.len() as u32)?;
for g in &self.b_g2[..] {
writer.write_all(g.into_uncompressed().as_ref())?;
}
Ok(())
}
pub fn read<R: Read>(
mut reader: R,
checked: bool
) -> io::Result<Self>
{
let read_g1 = |reader: &mut R| -> io::Result<E::G1Affine> {
let mut repr = <E::G1Affine as CurveAffine>::Uncompressed::empty();
reader.read_exact(repr.as_mut())?;
if checked {
repr
.into_affine()
} else {
repr
.into_affine_unchecked()
}
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
.and_then(|e| if e.is_zero() {
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
} else {
Ok(e)
})
};
let read_g2 = |reader: &mut R| -> io::Result<E::G2Affine> {
let mut repr = <E::G2Affine as CurveAffine>::Uncompressed::empty();
reader.read_exact(repr.as_mut())?;
if checked {
repr
.into_affine()
} else {
repr
.into_affine_unchecked()
}
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
.and_then(|e| if e.is_zero() {
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
} else {
Ok(e)
})
};
let vk = VerifyingKey::<E>::read(&mut reader)?;
let mut h = vec![];
let mut l = vec![];
let mut a = vec![];
let mut b_g1 = vec![];
let mut b_g2 = vec![];
{
let len = reader.read_u32::<BigEndian>()? as usize;
for _ in 0..len {
h.push(read_g1(&mut reader)?);
}
}
{
let len = reader.read_u32::<BigEndian>()? as usize;
for _ in 0..len {
l.push(read_g1(&mut reader)?);
}
}
{
let len = reader.read_u32::<BigEndian>()? as usize;
for _ in 0..len {
a.push(read_g1(&mut reader)?);
}
}
{
let len = reader.read_u32::<BigEndian>()? as usize;
for _ in 0..len {
b_g1.push(read_g1(&mut reader)?);
}
}
{
let len = reader.read_u32::<BigEndian>()? as usize;
for _ in 0..len {
b_g2.push(read_g2(&mut reader)?);
}
}
Ok(Parameters {
vk: vk,
h: Arc::new(h),
l: Arc::new(l),
a: Arc::new(a),
b_g1: Arc::new(b_g1),
b_g2: Arc::new(b_g2)
})
}
}
pub struct PreparedVerifyingKey<E: Engine> {
/// Pairing result of alpha*beta
alpha_g1_beta_g2: E::Fqk,
/// -gamma in G2
neg_gamma_g2: <E::G2Affine as CurveAffine>::Prepared,
/// -delta in G2
neg_delta_g2: <E::G2Affine as CurveAffine>::Prepared,
/// Copy of IC from `VerifiyingKey`.
ic: Vec<E::G1Affine>
}
pub trait ParameterSource<E: Engine> {
type G1Builder: SourceBuilder<E::G1Affine>;
type G2Builder: SourceBuilder<E::G2Affine>;
fn get_vk(
&mut self,
num_ic: usize
) -> Result<VerifyingKey<E>, SynthesisError>;
fn get_h(
&mut self,
num_h: usize
) -> Result<Self::G1Builder, SynthesisError>;
fn get_l(
&mut self,
num_l: usize
) -> Result<Self::G1Builder, SynthesisError>;
fn get_a(
&mut self,
num_inputs: usize,
num_aux: usize
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>;
fn get_b_g1(
&mut self,
num_inputs: usize,
num_aux: usize
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>;
fn get_b_g2(
&mut self,
num_inputs: usize,
num_aux: usize
) -> Result<(Self::G2Builder, Self::G2Builder), SynthesisError>;
}
impl<'a, E: Engine> ParameterSource<E> for &'a Parameters<E> {
type G1Builder = (Arc<Vec<E::G1Affine>>, usize);
type G2Builder = (Arc<Vec<E::G2Affine>>, usize);
fn get_vk(
&mut self,
_: usize
) -> Result<VerifyingKey<E>, SynthesisError>
{
Ok(self.vk.clone())
}
fn get_h(
&mut self,
_: usize
) -> Result<Self::G1Builder, SynthesisError>
{
Ok((self.h.clone(), 0))
}
fn get_l(
&mut self,
_: usize
) -> Result<Self::G1Builder, SynthesisError>
{
Ok((self.l.clone(), 0))
}
fn get_a(
&mut self,
num_inputs: usize,
_: usize
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>
{
Ok(((self.a.clone(), 0), (self.a.clone(), num_inputs)))
}
fn get_b_g1(
&mut self,
num_inputs: usize,
_: usize
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>
{
Ok(((self.b_g1.clone(), 0), (self.b_g1.clone(), num_inputs)))
}
fn get_b_g2(
&mut self,
num_inputs: usize,
_: usize
) -> Result<(Self::G2Builder, Self::G2Builder), SynthesisError>
{
Ok(((self.b_g2.clone(), 0), (self.b_g2.clone(), num_inputs)))
}
}
#[cfg(test)]
mod test_with_bls12_381 {
use super::*;
use {Circuit, SynthesisError, ConstraintSystem};
use rand::{Rand, thread_rng};
use pairing::{Field};
use pairing::bls12_381::{Bls12, Fr};
#[test]
fn serialization() {
struct MySillyCircuit<E: Engine> {
a: Option<E::Fr>,
b: Option<E::Fr>
}
impl<E: Engine> Circuit<E> for MySillyCircuit<E> {
fn synthesize<CS: ConstraintSystem<E>>(
self,
cs: &mut CS
) -> Result<(), SynthesisError>
{
let a = cs.alloc(|| "a", || self.a.ok_or(SynthesisError::AssignmentMissing))?;
let b = cs.alloc(|| "b", || self.b.ok_or(SynthesisError::AssignmentMissing))?;
let c = cs.alloc_input(|| "c", || {
let mut a = self.a.ok_or(SynthesisError::AssignmentMissing)?;
let b = self.b.ok_or(SynthesisError::AssignmentMissing)?;
a.mul_assign(&b);
Ok(a)
})?;
cs.enforce(
|| "a*b=c",
|lc| lc + a,
|lc| lc + b,
|lc| lc + c
);
Ok(())
}
}
let rng = &mut thread_rng();
let params = generate_random_parameters::<Bls12, _, _>(
MySillyCircuit { a: None, b: None },
rng
).unwrap();
{
let mut v = vec![];
params.write(&mut v).unwrap();
assert_eq!(v.len(), 2136);
let de_params = Parameters::read(&v[..], true).unwrap();
assert!(params == de_params);
let de_params = Parameters::read(&v[..], false).unwrap();
assert!(params == de_params);
}
let pvk = prepare_verifying_key::<Bls12>(&params.vk);
for _ in 0..100 {
let a = Fr::rand(rng);
let b = Fr::rand(rng);
let mut c = a;
c.mul_assign(&b);
let proof = create_random_proof(
MySillyCircuit {
a: Some(a),
b: Some(b)
},
&params,
rng
).unwrap();
let mut v = vec![];
proof.write(&mut v).unwrap();
assert_eq!(v.len(), 192);
let de_proof = Proof::read(&v[..]).unwrap();
assert!(proof == de_proof);
assert!(verify_proof(&pvk, &proof, &[c]).unwrap());
assert!(!verify_proof(&pvk, &proof, &[a]).unwrap());
}
}
}

View File

@@ -0,0 +1,334 @@
use rand::Rng;
use std::sync::Arc;
use futures::Future;
use pairing::{
Engine,
PrimeField,
Field,
CurveProjective,
CurveAffine
};
use super::{
ParameterSource,
Proof
};
use ::{
SynthesisError,
Circuit,
ConstraintSystem,
LinearCombination,
Variable,
Index
};
use ::domain::{
EvaluationDomain,
Scalar
};
use ::multiexp::{
DensityTracker,
FullDensity,
multiexp
};
use ::multicore::{
Worker
};
fn eval<E: Engine>(
lc: &LinearCombination<E>,
mut input_density: Option<&mut DensityTracker>,
mut aux_density: Option<&mut DensityTracker>,
input_assignment: &[E::Fr],
aux_assignment: &[E::Fr]
) -> E::Fr
{
let mut acc = E::Fr::zero();
for &(index, coeff) in lc.0.iter() {
let mut tmp;
match index {
Variable(Index::Input(i)) => {
tmp = input_assignment[i];
if let Some(ref mut v) = input_density {
v.inc(i);
}
},
Variable(Index::Aux(i)) => {
tmp = aux_assignment[i];
if let Some(ref mut v) = aux_density {
v.inc(i);
}
}
}
if coeff == E::Fr::one() {
acc.add_assign(&tmp);
} else {
tmp.mul_assign(&coeff);
acc.add_assign(&tmp);
}
}
acc
}
struct ProvingAssignment<E: Engine> {
// Density of queries
a_aux_density: DensityTracker,
b_input_density: DensityTracker,
b_aux_density: DensityTracker,
// Evaluations of A, B, C polynomials
a: Vec<Scalar<E>>,
b: Vec<Scalar<E>>,
c: Vec<Scalar<E>>,
// Assignments of variables
input_assignment: Vec<E::Fr>,
aux_assignment: Vec<E::Fr>
}
impl<E: Engine> ConstraintSystem<E> for ProvingAssignment<E> {
type Root = Self;
fn alloc<F, A, AR>(
&mut self,
_: A,
f: F
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
self.aux_assignment.push(f()?);
self.a_aux_density.add_element();
self.b_aux_density.add_element();
Ok(Variable(Index::Aux(self.aux_assignment.len() - 1)))
}
fn alloc_input<F, A, AR>(
&mut self,
_: A,
f: F
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
self.input_assignment.push(f()?);
self.b_input_density.add_element();
Ok(Variable(Index::Input(self.input_assignment.len() - 1)))
}
fn enforce<A, AR, LA, LB, LC>(
&mut self,
_: A,
a: LA,
b: LB,
c: LC
)
where A: FnOnce() -> AR, AR: Into<String>,
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
{
let a = a(LinearCombination::zero());
let b = b(LinearCombination::zero());
let c = c(LinearCombination::zero());
self.a.push(Scalar(eval(
&a,
// Inputs have full density in the A query
// because there are constraints of the
// form x * 0 = 0 for each input.
None,
Some(&mut self.a_aux_density),
&self.input_assignment,
&self.aux_assignment
)));
self.b.push(Scalar(eval(
&b,
Some(&mut self.b_input_density),
Some(&mut self.b_aux_density),
&self.input_assignment,
&self.aux_assignment
)));
self.c.push(Scalar(eval(
&c,
// There is no C polynomial query,
// though there is an (beta)A + (alpha)B + C
// query for all aux variables.
// However, that query has full density.
None,
None,
&self.input_assignment,
&self.aux_assignment
)));
}
fn push_namespace<NR, N>(&mut self, _: N)
where NR: Into<String>, N: FnOnce() -> NR
{
// Do nothing; we don't care about namespaces in this context.
}
fn pop_namespace(&mut self)
{
// Do nothing; we don't care about namespaces in this context.
}
fn get_root(&mut self) -> &mut Self::Root {
self
}
}
pub fn create_random_proof<E, C, R, P: ParameterSource<E>>(
circuit: C,
params: P,
rng: &mut R
) -> Result<Proof<E>, SynthesisError>
where E: Engine, C: Circuit<E>, R: Rng
{
let r = rng.gen();
let s = rng.gen();
create_proof::<E, C, P>(circuit, params, r, s)
}
pub fn create_proof<E, C, P: ParameterSource<E>>(
circuit: C,
mut params: P,
r: E::Fr,
s: E::Fr
) -> Result<Proof<E>, SynthesisError>
where E: Engine, C: Circuit<E>
{
let mut prover = ProvingAssignment {
a_aux_density: DensityTracker::new(),
b_input_density: DensityTracker::new(),
b_aux_density: DensityTracker::new(),
a: vec![],
b: vec![],
c: vec![],
input_assignment: vec![],
aux_assignment: vec![]
};
prover.alloc_input(|| "", || Ok(E::Fr::one()))?;
circuit.synthesize(&mut prover)?;
for i in 0..prover.input_assignment.len() {
prover.enforce(|| "",
|lc| lc + Variable(Index::Input(i)),
|lc| lc,
|lc| lc,
);
}
let worker = Worker::new();
let vk = params.get_vk(prover.input_assignment.len())?;
let h = {
let mut a = EvaluationDomain::from_coeffs(prover.a)?;
let mut b = EvaluationDomain::from_coeffs(prover.b)?;
let mut c = EvaluationDomain::from_coeffs(prover.c)?;
a.ifft(&worker);
a.coset_fft(&worker);
b.ifft(&worker);
b.coset_fft(&worker);
c.ifft(&worker);
c.coset_fft(&worker);
a.mul_assign(&worker, &b);
drop(b);
a.sub_assign(&worker, &c);
drop(c);
a.divide_by_z_on_coset(&worker);
a.icoset_fft(&worker);
let mut a = a.into_coeffs();
let a_len = a.len() - 1;
a.truncate(a_len);
// TODO: parallelize if it's even helpful
let a = Arc::new(a.into_iter().map(|s| s.0.into_repr()).collect::<Vec<_>>());
multiexp(&worker, params.get_h(a.len())?, FullDensity, a)
};
// TODO: parallelize if it's even helpful
let input_assignment = Arc::new(prover.input_assignment.into_iter().map(|s| s.into_repr()).collect::<Vec<_>>());
let aux_assignment = Arc::new(prover.aux_assignment.into_iter().map(|s| s.into_repr()).collect::<Vec<_>>());
let l = multiexp(&worker, params.get_l(aux_assignment.len())?, FullDensity, aux_assignment.clone());
let a_aux_density_total = prover.a_aux_density.get_total_density();
let (a_inputs_source, a_aux_source) = params.get_a(input_assignment.len(), a_aux_density_total)?;
let a_inputs = multiexp(&worker, a_inputs_source, FullDensity, input_assignment.clone());
let a_aux = multiexp(&worker, a_aux_source, Arc::new(prover.a_aux_density), aux_assignment.clone());
let b_input_density = Arc::new(prover.b_input_density);
let b_input_density_total = b_input_density.get_total_density();
let b_aux_density = Arc::new(prover.b_aux_density);
let b_aux_density_total = b_aux_density.get_total_density();
let (b_g1_inputs_source, b_g1_aux_source) = params.get_b_g1(b_input_density_total, b_aux_density_total)?;
let b_g1_inputs = multiexp(&worker, b_g1_inputs_source, b_input_density.clone(), input_assignment.clone());
let b_g1_aux = multiexp(&worker, b_g1_aux_source, b_aux_density.clone(), aux_assignment.clone());
let (b_g2_inputs_source, b_g2_aux_source) = params.get_b_g2(b_input_density_total, b_aux_density_total)?;
let b_g2_inputs = multiexp(&worker, b_g2_inputs_source, b_input_density, input_assignment);
let b_g2_aux = multiexp(&worker, b_g2_aux_source, b_aux_density, aux_assignment);
if vk.delta_g1.is_zero() || vk.delta_g2.is_zero() {
// If this element is zero, someone is trying to perform a
// subversion-CRS attack.
return Err(SynthesisError::UnexpectedIdentity);
}
let mut g_a = vk.delta_g1.mul(r);
g_a.add_assign_mixed(&vk.alpha_g1);
let mut g_b = vk.delta_g2.mul(s);
g_b.add_assign_mixed(&vk.beta_g2);
let mut g_c;
{
let mut rs = r;
rs.mul_assign(&s);
g_c = vk.delta_g1.mul(rs);
g_c.add_assign(&vk.alpha_g1.mul(s));
g_c.add_assign(&vk.beta_g1.mul(r));
}
let mut a_answer = a_inputs.wait()?;
a_answer.add_assign(&a_aux.wait()?);
g_a.add_assign(&a_answer);
a_answer.mul_assign(s);
g_c.add_assign(&a_answer);
let mut b1_answer = b_g1_inputs.wait()?;
b1_answer.add_assign(&b_g1_aux.wait()?);
let mut b2_answer = b_g2_inputs.wait()?;
b2_answer.add_assign(&b_g2_aux.wait()?);
g_b.add_assign(&b2_answer);
b1_answer.mul_assign(r);
g_c.add_assign(&b1_answer);
g_c.add_assign(&h.wait()?);
g_c.add_assign(&l.wait()?);
Ok(Proof {
a: g_a.into_affine(),
b: g_b.into_affine(),
c: g_c.into_affine()
})
}

View File

@@ -0,0 +1,451 @@
use pairing::{
Engine,
PrimeField,
PrimeFieldRepr,
Field,
SqrtField,
LegendreSymbol,
CurveProjective,
CurveAffine,
PrimeFieldDecodingError,
GroupDecodingError,
EncodedPoint
};
use std::cmp::Ordering;
use std::fmt;
use rand::{Rand, Rng};
use std::num::Wrapping;
const MODULUS_R: Wrapping<u32> = Wrapping(64513);
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct Fr(Wrapping<u32>);
impl fmt::Display for Fr {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write!(f, "{}", (self.0).0)
}
}
impl Rand for Fr {
fn rand<R: Rng>(rng: &mut R) -> Self {
Fr(Wrapping(rng.gen()) % MODULUS_R)
}
}
impl Field for Fr {
fn zero() -> Self {
Fr(Wrapping(0))
}
fn one() -> Self {
Fr(Wrapping(1))
}
fn is_zero(&self) -> bool {
(self.0).0 == 0
}
fn square(&mut self) {
self.0 = (self.0 * self.0) % MODULUS_R;
}
fn double(&mut self) {
self.0 = (self.0 << 1) % MODULUS_R;
}
fn negate(&mut self) {
if !<Fr as Field>::is_zero(self) {
self.0 = MODULUS_R - self.0;
}
}
fn add_assign(&mut self, other: &Self) {
self.0 = (self.0 + other.0) % MODULUS_R;
}
fn sub_assign(&mut self, other: &Self) {
self.0 = ((MODULUS_R + self.0) - other.0) % MODULUS_R;
}
fn mul_assign(&mut self, other: &Self) {
self.0 = (self.0 * other.0) % MODULUS_R;
}
fn inverse(&self) -> Option<Self> {
if <Fr as Field>::is_zero(self) {
None
} else {
Some(self.pow(&[(MODULUS_R.0 as u64) - 2]))
}
}
fn frobenius_map(&mut self, _: usize) {
// identity
}
}
impl SqrtField for Fr {
fn legendre(&self) -> LegendreSymbol {
// s = self^((r - 1) // 2)
let s = self.pow([32256]);
if s == <Fr as Field>::zero() { LegendreSymbol::Zero }
else if s == <Fr as Field>::one() { LegendreSymbol::QuadraticResidue }
else { LegendreSymbol::QuadraticNonResidue }
}
fn sqrt(&self) -> Option<Self> {
// Tonelli-Shank's algorithm for q mod 16 = 1
// https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
match self.legendre() {
LegendreSymbol::Zero => Some(*self),
LegendreSymbol::QuadraticNonResidue => None,
LegendreSymbol::QuadraticResidue => {
let mut c = Fr::root_of_unity();
// r = self^((t + 1) // 2)
let mut r = self.pow([32]);
// t = self^t
let mut t = self.pow([63]);
let mut m = Fr::S;
while t != <Fr as Field>::one() {
let mut i = 1;
{
let mut t2i = t;
t2i.square();
loop {
if t2i == <Fr as Field>::one() {
break;
}
t2i.square();
i += 1;
}
}
for _ in 0..(m - i - 1) {
c.square();
}
<Fr as Field>::mul_assign(&mut r, &c);
c.square();
<Fr as Field>::mul_assign(&mut t, &c);
m = i;
}
Some(r)
}
}
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct FrRepr([u64; 1]);
impl Ord for FrRepr {
fn cmp(&self, other: &FrRepr) -> Ordering {
(self.0)[0].cmp(&(other.0)[0])
}
}
impl PartialOrd for FrRepr {
fn partial_cmp(&self, other: &FrRepr) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Rand for FrRepr {
fn rand<R: Rng>(rng: &mut R) -> Self {
FrRepr([rng.gen()])
}
}
impl fmt::Display for FrRepr {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write!(f, "{}", (self.0)[0])
}
}
impl From<u64> for FrRepr {
fn from(v: u64) -> FrRepr {
FrRepr([v])
}
}
impl From<Fr> for FrRepr {
fn from(v: Fr) -> FrRepr {
FrRepr([(v.0).0 as u64])
}
}
impl AsMut<[u64]> for FrRepr {
fn as_mut(&mut self) -> &mut [u64] {
&mut self.0[..]
}
}
impl AsRef<[u64]> for FrRepr {
fn as_ref(&self) -> &[u64] {
&self.0[..]
}
}
impl Default for FrRepr {
fn default() -> FrRepr {
FrRepr::from(0u64)
}
}
impl PrimeFieldRepr for FrRepr {
fn sub_noborrow(&mut self, other: &Self) {
self.0[0] = self.0[0].wrapping_sub(other.0[0]);
}
fn add_nocarry(&mut self, other: &Self) {
self.0[0] = self.0[0].wrapping_add(other.0[0]);
}
fn num_bits(&self) -> u32 {
64 - self.0[0].leading_zeros()
}
fn is_zero(&self) -> bool {
self.0[0] == 0
}
fn is_odd(&self) -> bool {
!self.is_even()
}
fn is_even(&self) -> bool {
self.0[0] % 2 == 0
}
fn div2(&mut self) {
self.shr(1)
}
fn shr(&mut self, amt: u32) {
self.0[0] >>= amt;
}
fn mul2(&mut self) {
self.shl(1)
}
fn shl(&mut self, amt: u32) {
self.0[0] <<= amt;
}
}
impl PrimeField for Fr {
type Repr = FrRepr;
const NUM_BITS: u32 = 16;
const CAPACITY: u32 = 15;
const S: u32 = 10;
fn from_repr(repr: FrRepr) -> Result<Self, PrimeFieldDecodingError> {
if repr.0[0] >= (MODULUS_R.0 as u64) {
Err(PrimeFieldDecodingError::NotInField(format!("{}", repr)))
} else {
Ok(Fr(Wrapping(repr.0[0] as u32)))
}
}
fn into_repr(&self) -> FrRepr {
FrRepr::from(*self)
}
fn char() -> FrRepr {
Fr(MODULUS_R).into()
}
fn multiplicative_generator() -> Fr {
Fr(Wrapping(5))
}
fn root_of_unity() -> Fr {
Fr(Wrapping(57751))
}
}
#[derive(Clone)]
pub struct DummyEngine;
impl Engine for DummyEngine {
type Fr = Fr;
type G1 = Fr;
type G1Affine = Fr;
type G2 = Fr;
type G2Affine = Fr;
type Fq = Fr;
type Fqe = Fr;
// TODO: This should be F_645131 or something. Doesn't matter for now.
type Fqk = Fr;
fn miller_loop<'a, I>(i: I) -> Self::Fqk
where I: IntoIterator<Item=&'a (
&'a <Self::G1Affine as CurveAffine>::Prepared,
&'a <Self::G2Affine as CurveAffine>::Prepared
)>
{
let mut acc = <Fr as Field>::zero();
for &(a, b) in i {
let mut tmp = *a;
<Fr as Field>::mul_assign(&mut tmp, b);
<Fr as Field>::add_assign(&mut acc, &tmp);
}
acc
}
/// Perform final exponentiation of the result of a miller loop.
fn final_exponentiation(this: &Self::Fqk) -> Option<Self::Fqk>
{
Some(*this)
}
}
impl CurveProjective for Fr {
type Affine = Fr;
type Base = Fr;
type Scalar = Fr;
type Engine = DummyEngine;
fn zero() -> Self {
<Fr as Field>::zero()
}
fn one() -> Self {
<Fr as Field>::one()
}
fn is_zero(&self) -> bool {
<Fr as Field>::is_zero(self)
}
fn batch_normalization(_: &mut [Self]) {
}
fn is_normalized(&self) -> bool {
true
}
fn double(&mut self) {
<Fr as Field>::double(self);
}
fn add_assign(&mut self, other: &Self) {
<Fr as Field>::add_assign(self, other);
}
fn add_assign_mixed(&mut self, other: &Self) {
<Fr as Field>::add_assign(self, other);
}
fn negate(&mut self) {
<Fr as Field>::negate(self);
}
fn mul_assign<S: Into<<Self::Scalar as PrimeField>::Repr>>(&mut self, other: S)
{
let tmp = Fr::from_repr(other.into()).unwrap();
<Fr as Field>::mul_assign(self, &tmp);
}
fn into_affine(&self) -> Fr {
*self
}
fn recommended_wnaf_for_scalar(_: <Self::Scalar as PrimeField>::Repr) -> usize {
3
}
fn recommended_wnaf_for_num_scalars(_: usize) -> usize {
3
}
}
#[derive(Copy, Clone)]
pub struct FakePoint;
impl AsMut<[u8]> for FakePoint {
fn as_mut(&mut self) -> &mut [u8] {
unimplemented!()
}
}
impl AsRef<[u8]> for FakePoint {
fn as_ref(&self) -> &[u8] {
unimplemented!()
}
}
impl EncodedPoint for FakePoint {
type Affine = Fr;
fn empty() -> Self {
unimplemented!()
}
fn size() -> usize {
unimplemented!()
}
fn into_affine(&self) -> Result<Self::Affine, GroupDecodingError> {
unimplemented!()
}
fn into_affine_unchecked(&self) -> Result<Self::Affine, GroupDecodingError> {
unimplemented!()
}
fn from_affine(_: Self::Affine) -> Self {
unimplemented!()
}
}
impl CurveAffine for Fr {
type Pair = Fr;
type PairingResult = Fr;
type Compressed = FakePoint;
type Uncompressed = FakePoint;
type Prepared = Fr;
type Projective = Fr;
type Base = Fr;
type Scalar = Fr;
type Engine = DummyEngine;
fn zero() -> Self {
<Fr as Field>::zero()
}
fn one() -> Self {
<Fr as Field>::one()
}
fn is_zero(&self) -> bool {
<Fr as Field>::is_zero(self)
}
fn negate(&mut self) {
<Fr as Field>::negate(self);
}
fn mul<S: Into<<Self::Scalar as PrimeField>::Repr>>(&self, other: S) -> Self::Projective
{
let mut res = *self;
let tmp = Fr::from_repr(other.into()).unwrap();
<Fr as Field>::mul_assign(&mut res, &tmp);
res
}
fn prepare(&self) -> Self::Prepared {
*self
}
fn pairing_with(&self, other: &Self::Pair) -> Self::PairingResult {
self.mul(*other)
}
fn into_projective(&self) -> Self::Projective {
*self
}
}

View File

@@ -0,0 +1,400 @@
use pairing::{
Engine,
Field,
PrimeField
};
mod dummy_engine;
use self::dummy_engine::*;
use std::marker::PhantomData;
use ::{
Circuit,
ConstraintSystem,
SynthesisError
};
use super::{
generate_parameters,
prepare_verifying_key,
create_proof,
verify_proof
};
struct XORDemo<E: Engine> {
a: Option<bool>,
b: Option<bool>,
_marker: PhantomData<E>
}
impl<E: Engine> Circuit<E> for XORDemo<E> {
fn synthesize<CS: ConstraintSystem<E>>(
self,
cs: &mut CS
) -> Result<(), SynthesisError>
{
let a_var = cs.alloc(|| "a", || {
if self.a.is_some() {
if self.a.unwrap() {
Ok(E::Fr::one())
} else {
Ok(E::Fr::zero())
}
} else {
Err(SynthesisError::AssignmentMissing)
}
})?;
cs.enforce(
|| "a_boolean_constraint",
|lc| lc + CS::one() - a_var,
|lc| lc + a_var,
|lc| lc
);
let b_var = cs.alloc(|| "b", || {
if self.b.is_some() {
if self.b.unwrap() {
Ok(E::Fr::one())
} else {
Ok(E::Fr::zero())
}
} else {
Err(SynthesisError::AssignmentMissing)
}
})?;
cs.enforce(
|| "b_boolean_constraint",
|lc| lc + CS::one() - b_var,
|lc| lc + b_var,
|lc| lc
);
let c_var = cs.alloc_input(|| "c", || {
if self.a.is_some() && self.b.is_some() {
if self.a.unwrap() ^ self.b.unwrap() {
Ok(E::Fr::one())
} else {
Ok(E::Fr::zero())
}
} else {
Err(SynthesisError::AssignmentMissing)
}
})?;
cs.enforce(
|| "c_xor_constraint",
|lc| lc + a_var + a_var,
|lc| lc + b_var,
|lc| lc + a_var + b_var - c_var
);
Ok(())
}
}
#[test]
fn test_xordemo() {
let g1 = Fr::one();
let g2 = Fr::one();
let alpha = Fr::from_str("48577").unwrap();
let beta = Fr::from_str("22580").unwrap();
let gamma = Fr::from_str("53332").unwrap();
let delta = Fr::from_str("5481").unwrap();
let tau = Fr::from_str("3673").unwrap();
let params = {
let c = XORDemo::<DummyEngine> {
a: None,
b: None,
_marker: PhantomData
};
generate_parameters(
c,
g1,
g2,
alpha,
beta,
gamma,
delta,
tau
).unwrap()
};
// This will synthesize the constraint system:
//
// public inputs: a_0 = 1, a_1 = c
// aux inputs: a_2 = a, a_3 = b
// constraints:
// (a_0 - a_2) * (a_2) = 0
// (a_0 - a_3) * (a_3) = 0
// (a_2 + a_2) * (a_3) = (a_2 + a_3 - a_1)
// (a_0) * 0 = 0
// (a_1) * 0 = 0
// The evaluation domain is 8. The H query should
// have 7 elements (it's a quotient polynomial)
assert_eq!(7, params.h.len());
let mut root_of_unity = Fr::root_of_unity();
// We expect this to be a 2^10 root of unity
assert_eq!(Fr::one(), root_of_unity.pow(&[1 << 10]));
// Let's turn it into a 2^3 root of unity.
root_of_unity = root_of_unity.pow(&[1 << 7]);
assert_eq!(Fr::one(), root_of_unity.pow(&[1 << 3]));
assert_eq!(Fr::from_str("20201").unwrap(), root_of_unity);
// Let's compute all the points in our evaluation domain.
let mut points = Vec::with_capacity(8);
for i in 0..8 {
points.push(root_of_unity.pow(&[i]));
}
// Let's compute t(tau) = (tau - p_0)(tau - p_1)...
// = tau^8 - 1
let mut t_at_tau = tau.pow(&[8]);
t_at_tau.sub_assign(&Fr::one());
{
let mut tmp = Fr::one();
for p in &points {
let mut term = tau;
term.sub_assign(p);
tmp.mul_assign(&term);
}
assert_eq!(tmp, t_at_tau);
}
// We expect our H query to be 7 elements of the form...
// {tau^i t(tau) / delta}
let delta_inverse = delta.inverse().unwrap();
let gamma_inverse = gamma.inverse().unwrap();
{
let mut coeff = delta_inverse;
coeff.mul_assign(&t_at_tau);
let mut cur = Fr::one();
for h in params.h.iter() {
let mut tmp = cur;
tmp.mul_assign(&coeff);
assert_eq!(*h, tmp);
cur.mul_assign(&tau);
}
}
// The density of the IC query is 2 (2 inputs)
assert_eq!(2, params.vk.ic.len());
// The density of the L query is 2 (2 aux variables)
assert_eq!(2, params.l.len());
// The density of the A query is 4 (each variable is in at least one A term)
assert_eq!(4, params.a.len());
// The density of the B query is 2 (two variables are in at least one B term)
assert_eq!(2, params.b_g1.len());
assert_eq!(2, params.b_g2.len());
/*
Lagrange interpolation polynomials in our evaluation domain:
,-------------------------------. ,-------------------------------. ,-------------------------------.
| A TERM | | B TERM | | C TERM |
`-------------------------------. `-------------------------------' `-------------------------------'
| a_0 | a_1 | a_2 | a_3 | | a_0 | a_1 | a_2 | a_3 | | a_0 | a_1 | a_2 | a_3 |
| 1 | 0 | 64512 | 0 | | 0 | 0 | 1 | 0 | | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 64512 | | 0 | 0 | 0 | 1 | | 0 | 0 | 0 | 0 |
| 0 | 0 | 2 | 0 | | 0 | 0 | 0 | 1 | | 0 | 64512 | 1 | 1 |
| 1 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 |
`-------'-------'-------'-------' `-------'-------'-------'-------' `-------'-------'-------'-------'
Example for u_0:
sage: r = 64513
sage: Fr = GF(r)
sage: omega = (Fr(5)^63)^(2^7)
sage: tau = Fr(3673)
sage: R.<x> = PolynomialRing(Fr, 'x')
sage: def eval(tau, c0, c1, c2, c3, c4):
....: p = R.lagrange_polynomial([(omega^0, c0), (omega^1, c1), (omega^2, c2), (omega^3, c3), (omega^4, c4), (omega^5, 0), (omega^6, 0), (omega^7, 0)])
....: return p.substitute(tau)
sage: eval(tau, 1, 1, 0, 1, 0)
59158
*/
let u_i = [59158, 48317, 21767, 10402].iter().map(|e| {
Fr::from_str(&format!("{}", e)).unwrap()
}).collect::<Vec<Fr>>();
let v_i = [0, 0, 60619, 30791].iter().map(|e| {
Fr::from_str(&format!("{}", e)).unwrap()
}).collect::<Vec<Fr>>();
let w_i = [0, 23320, 41193, 41193].iter().map(|e| {
Fr::from_str(&format!("{}", e)).unwrap()
}).collect::<Vec<Fr>>();
for (u, a) in u_i.iter()
.zip(&params.a[..])
{
assert_eq!(u, a);
}
for (v, b) in v_i.iter()
.filter(|&&e| e != Fr::zero())
.zip(&params.b_g1[..])
{
assert_eq!(v, b);
}
for (v, b) in v_i.iter()
.filter(|&&e| e != Fr::zero())
.zip(&params.b_g2[..])
{
assert_eq!(v, b);
}
for i in 0..4 {
let mut tmp1 = beta;
tmp1.mul_assign(&u_i[i]);
let mut tmp2 = alpha;
tmp2.mul_assign(&v_i[i]);
tmp1.add_assign(&tmp2);
tmp1.add_assign(&w_i[i]);
if i < 2 {
// Check the correctness of the IC query elements
tmp1.mul_assign(&gamma_inverse);
assert_eq!(tmp1, params.vk.ic[i]);
} else {
// Check the correctness of the L query elements
tmp1.mul_assign(&delta_inverse);
assert_eq!(tmp1, params.l[i - 2]);
}
}
// Check consistency of the other elements
assert_eq!(alpha, params.vk.alpha_g1);
assert_eq!(beta, params.vk.beta_g1);
assert_eq!(beta, params.vk.beta_g2);
assert_eq!(gamma, params.vk.gamma_g2);
assert_eq!(delta, params.vk.delta_g1);
assert_eq!(delta, params.vk.delta_g2);
let pvk = prepare_verifying_key(&params.vk);
let r = Fr::from_str("27134").unwrap();
let s = Fr::from_str("17146").unwrap();
let proof = {
let c = XORDemo {
a: Some(true),
b: Some(false),
_marker: PhantomData
};
create_proof(
c,
&params,
r,
s
).unwrap()
};
// A(x) =
// a_0 * (44865*x^7 + 56449*x^6 + 44865*x^5 + 8064*x^4 + 3520*x^3 + 56449*x^2 + 3520*x + 40321) +
// a_1 * (8064*x^7 + 56449*x^6 + 8064*x^5 + 56449*x^4 + 8064*x^3 + 56449*x^2 + 8064*x + 56449) +
// a_2 * (16983*x^7 + 24192*x^6 + 63658*x^5 + 56449*x^4 + 16983*x^3 + 24192*x^2 + 63658*x + 56449) +
// a_3 * (5539*x^7 + 27797*x^6 + 6045*x^5 + 56449*x^4 + 58974*x^3 + 36716*x^2 + 58468*x + 8064) +
{
// proof A = alpha + A(tau) + delta * r
let mut expected_a = delta;
expected_a.mul_assign(&r);
expected_a.add_assign(&alpha);
expected_a.add_assign(&u_i[0]); // a_0 = 1
expected_a.add_assign(&u_i[1]); // a_1 = 1
expected_a.add_assign(&u_i[2]); // a_2 = 1
// a_3 = 0
assert_eq!(proof.a, expected_a);
}
// B(x) =
// a_0 * (0) +
// a_1 * (0) +
// a_2 * (56449*x^7 + 56449*x^6 + 56449*x^5 + 56449*x^4 + 56449*x^3 + 56449*x^2 + 56449*x + 56449) +
// a_3 * (31177*x^7 + 44780*x^6 + 21752*x^5 + 42255*x^3 + 35861*x^2 + 33842*x + 48385)
{
// proof B = beta + B(tau) + delta * s
let mut expected_b = delta;
expected_b.mul_assign(&s);
expected_b.add_assign(&beta);
expected_b.add_assign(&v_i[0]); // a_0 = 1
expected_b.add_assign(&v_i[1]); // a_1 = 1
expected_b.add_assign(&v_i[2]); // a_2 = 1
// a_3 = 0
assert_eq!(proof.b, expected_b);
}
// C(x) =
// a_0 * (0) +
// a_1 * (27797*x^7 + 56449*x^6 + 36716*x^5 + 8064*x^4 + 27797*x^3 + 56449*x^2 + 36716*x + 8064) +
// a_2 * (36716*x^7 + 8064*x^6 + 27797*x^5 + 56449*x^4 + 36716*x^3 + 8064*x^2 + 27797*x + 56449) +
// a_3 * (36716*x^7 + 8064*x^6 + 27797*x^5 + 56449*x^4 + 36716*x^3 + 8064*x^2 + 27797*x + 56449)
//
// If A * B = C at each point in the domain, then the following polynomial...
// P(x) = A(x) * B(x) - C(x)
// = 49752*x^14 + 13914*x^13 + 29243*x^12 + 27227*x^11 + 62362*x^10 + 35703*x^9 + 4032*x^8 + 14761*x^6 + 50599*x^5 + 35270*x^4 + 37286*x^3 + 2151*x^2 + 28810*x + 60481
//
// ... should be divisible by t(x), producing the quotient polynomial:
// h(x) = P(x) / t(x)
// = 49752*x^6 + 13914*x^5 + 29243*x^4 + 27227*x^3 + 62362*x^2 + 35703*x + 4032
{
let mut expected_c = Fr::zero();
// A * s
let mut tmp = proof.a;
tmp.mul_assign(&s);
expected_c.add_assign(&tmp);
// B * r
let mut tmp = proof.b;
tmp.mul_assign(&r);
expected_c.add_assign(&tmp);
// delta * r * s
let mut tmp = delta;
tmp.mul_assign(&r);
tmp.mul_assign(&s);
expected_c.sub_assign(&tmp);
// L query answer
// a_2 = 1, a_3 = 0
expected_c.add_assign(&params.l[0]);
// H query answer
for (i, coeff) in [5040, 11763, 10755, 63633, 128, 9747, 8739].iter().enumerate() {
let coeff = Fr::from_str(&format!("{}", coeff)).unwrap();
let mut tmp = params.h[i];
tmp.mul_assign(&coeff);
expected_c.add_assign(&tmp);
}
assert_eq!(expected_c, proof.c);
}
assert!(verify_proof(
&pvk,
&proof,
&[Fr::one()]
).unwrap());
}

View File

@@ -0,0 +1,66 @@
use pairing::{
Engine,
CurveProjective,
CurveAffine,
PrimeField
};
use super::{
Proof,
VerifyingKey,
PreparedVerifyingKey
};
use ::{
SynthesisError
};
pub fn prepare_verifying_key<E: Engine>(
vk: &VerifyingKey<E>
) -> PreparedVerifyingKey<E>
{
let mut gamma = vk.gamma_g2;
gamma.negate();
let mut delta = vk.delta_g2;
delta.negate();
PreparedVerifyingKey {
alpha_g1_beta_g2: E::pairing(vk.alpha_g1, vk.beta_g2),
neg_gamma_g2: gamma.prepare(),
neg_delta_g2: delta.prepare(),
ic: vk.ic.clone()
}
}
pub fn verify_proof<'a, E: Engine>(
pvk: &'a PreparedVerifyingKey<E>,
proof: &Proof<E>,
public_inputs: &[E::Fr]
) -> Result<bool, SynthesisError>
{
if (public_inputs.len() + 1) != pvk.ic.len() {
return Err(SynthesisError::MalformedVerifyingKey);
}
let mut acc = pvk.ic[0].into_projective();
for (i, b) in public_inputs.iter().zip(pvk.ic.iter().skip(1)) {
acc.add_assign(&b.mul(i.into_repr()));
}
// The original verification equation is:
// A * B = alpha * beta + inputs * gamma + C * delta
// ... however, we rearrange it so that it is:
// A * B - inputs * gamma - C * delta = alpha * beta
// or equivalently:
// A * B + inputs * (-gamma) + C * (-delta) = alpha * beta
// which allows us to do a single final exponentiation.
Ok(E::final_exponentiation(
&E::miller_loop([
(&proof.a.prepare(), &proof.b.prepare()),
(&acc.into_affine().prepare(), &pvk.neg_gamma_g2),
(&proof.c.prepare(), &pvk.neg_delta_g2)
].into_iter())
).unwrap() == pvk.alpha_g1_beta_g2)
}

424
bellman/src/lib.rs Normal file
View File

@@ -0,0 +1,424 @@
extern crate pairing;
extern crate rand;
extern crate num_cpus;
extern crate futures;
extern crate futures_cpupool;
extern crate bit_vec;
extern crate crossbeam;
extern crate byteorder;
pub mod multicore;
mod multiexp;
pub mod domain;
pub mod groth16;
use pairing::{Engine, Field};
use std::ops::{Add, Sub};
use std::fmt;
use std::error::Error;
use std::io;
use std::marker::PhantomData;
/// Computations are expressed in terms of arithmetic circuits, in particular
/// rank-1 quadratic constraint systems. The `Circuit` trait represents a
/// circuit that can be synthesized. The `synthesize` method is called during
/// CRS generation and during proving.
pub trait Circuit<E: Engine> {
/// Synthesize the circuit into a rank-1 quadratic constraint system
fn synthesize<CS: ConstraintSystem<E>>(
self,
cs: &mut CS
) -> Result<(), SynthesisError>;
}
/// Represents a variable in our constraint system.
#[derive(Copy, Clone, Debug)]
pub struct Variable(Index);
impl Variable {
/// This constructs a variable with an arbitrary index.
/// Circuit implementations are not recommended to use this.
pub fn new_unchecked(idx: Index) -> Variable {
Variable(idx)
}
/// This returns the index underlying the variable.
/// Circuit implementations are not recommended to use this.
pub fn get_unchecked(&self) -> Index {
self.0
}
}
/// Represents the index of either an input variable or
/// auxillary variable.
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum Index {
Input(usize),
Aux(usize)
}
/// This represents a linear combination of some variables, with coefficients
/// in the scalar field of a pairing-friendly elliptic curve group.
#[derive(Clone)]
pub struct LinearCombination<E: Engine>(Vec<(Variable, E::Fr)>);
impl<E: Engine> AsRef<[(Variable, E::Fr)]> for LinearCombination<E> {
fn as_ref(&self) -> &[(Variable, E::Fr)] {
&self.0
}
}
impl<E: Engine> LinearCombination<E> {
pub fn zero() -> LinearCombination<E> {
LinearCombination(vec![])
}
}
impl<E: Engine> Add<(E::Fr, Variable)> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn add(mut self, (coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
self.0.push((var, coeff));
self
}
}
impl<E: Engine> Sub<(E::Fr, Variable)> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn sub(self, (mut coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
coeff.negate();
self + (coeff, var)
}
}
impl<E: Engine> Add<Variable> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn add(self, other: Variable) -> LinearCombination<E> {
self + (E::Fr::one(), other)
}
}
impl<E: Engine> Sub<Variable> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn sub(self, other: Variable) -> LinearCombination<E> {
self - (E::Fr::one(), other)
}
}
impl<'a, E: Engine> Add<&'a LinearCombination<E>> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn add(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
for s in &other.0 {
self = self + (s.1, s.0);
}
self
}
}
impl<'a, E: Engine> Sub<&'a LinearCombination<E>> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn sub(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
for s in &other.0 {
self = self - (s.1, s.0);
}
self
}
}
impl<'a, E: Engine> Add<(E::Fr, &'a LinearCombination<E>)> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn add(mut self, (coeff, other): (E::Fr, &'a LinearCombination<E>)) -> LinearCombination<E> {
for s in &other.0 {
let mut tmp = s.1;
tmp.mul_assign(&coeff);
self = self + (tmp, s.0);
}
self
}
}
impl<'a, E: Engine> Sub<(E::Fr, &'a LinearCombination<E>)> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn sub(mut self, (coeff, other): (E::Fr, &'a LinearCombination<E>)) -> LinearCombination<E> {
for s in &other.0 {
let mut tmp = s.1;
tmp.mul_assign(&coeff);
self = self - (tmp, s.0);
}
self
}
}
/// This is an error that could occur during circuit synthesis contexts,
/// such as CRS generation, proving or verification.
#[derive(Debug)]
pub enum SynthesisError {
/// During synthesis, we lacked knowledge of a variable assignment.
AssignmentMissing,
/// During synthesis, we divided by zero.
DivisionByZero,
/// During synthesis, we constructed an unsatisfiable constraint system.
Unsatisfiable,
/// During synthesis, our polynomials ended up being too high of degree
PolynomialDegreeTooLarge,
/// During proof generation, we encountered an identity in the CRS
UnexpectedIdentity,
/// During proof generation, we encountered an I/O error with the CRS
IoError(io::Error),
/// During verification, our verifying key was malformed.
MalformedVerifyingKey,
/// During CRS generation, we observed an unconstrained auxillary variable
UnconstrainedVariable
}
impl From<io::Error> for SynthesisError {
fn from(e: io::Error) -> SynthesisError {
SynthesisError::IoError(e)
}
}
impl Error for SynthesisError {
fn description(&self) -> &str {
match *self {
SynthesisError::AssignmentMissing => "an assignment for a variable could not be computed",
SynthesisError::DivisionByZero => "division by zero",
SynthesisError::Unsatisfiable => "unsatisfiable constraint system",
SynthesisError::PolynomialDegreeTooLarge => "polynomial degree is too large",
SynthesisError::UnexpectedIdentity => "encountered an identity element in the CRS",
SynthesisError::IoError(_) => "encountered an I/O error",
SynthesisError::MalformedVerifyingKey => "malformed verifying key",
SynthesisError::UnconstrainedVariable => "auxillary variable was unconstrained"
}
}
}
impl fmt::Display for SynthesisError {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
if let &SynthesisError::IoError(ref e) = self {
write!(f, "I/O error: ")?;
e.fmt(f)
} else {
write!(f, "{}", self.description())
}
}
}
/// Represents a constraint system which can have new variables
/// allocated and constrains between them formed.
pub trait ConstraintSystem<E: Engine>: Sized {
/// Represents the type of the "root" of this constraint system
/// so that nested namespaces can minimize indirection.
type Root: ConstraintSystem<E>;
/// Return the "one" input variable
fn one() -> Variable {
Variable::new_unchecked(Index::Input(0))
}
/// Allocate a private variable in the constraint system. The provided function is used to
/// determine the assignment of the variable. The given `annotation` function is invoked
/// in testing contexts in order to derive a unique name for this variable in the current
/// namespace.
fn alloc<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>;
/// Allocate a public variable in the constraint system. The provided function is used to
/// determine the assignment of the variable.
fn alloc_input<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>;
/// Enforce that `A` * `B` = `C`. The `annotation` function is invoked in testing contexts
/// in order to derive a unique name for the constraint in the current namespace.
fn enforce<A, AR, LA, LB, LC>(
&mut self,
annotation: A,
a: LA,
b: LB,
c: LC
)
where A: FnOnce() -> AR, AR: Into<String>,
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>;
/// Create a new (sub)namespace and enter into it. Not intended
/// for downstream use; use `namespace` instead.
fn push_namespace<NR, N>(&mut self, name_fn: N)
where NR: Into<String>, N: FnOnce() -> NR;
/// Exit out of the existing namespace. Not intended for
/// downstream use; use `namespace` instead.
fn pop_namespace(&mut self);
/// Gets the "root" constraint system, bypassing the namespacing.
/// Not intended for downstream use; use `namespace` instead.
fn get_root(&mut self) -> &mut Self::Root;
/// Begin a namespace for this constraint system.
fn namespace<'a, NR, N>(
&'a mut self,
name_fn: N
) -> Namespace<'a, E, Self::Root>
where NR: Into<String>, N: FnOnce() -> NR
{
self.get_root().push_namespace(name_fn);
Namespace(self.get_root(), PhantomData)
}
}
/// This is a "namespaced" constraint system which borrows a constraint system (pushing
/// a namespace context) and, when dropped, pops out of the namespace context.
pub struct Namespace<'a, E: Engine, CS: ConstraintSystem<E> + 'a>(&'a mut CS, PhantomData<E>);
impl<'cs, E: Engine, CS: ConstraintSystem<E>> ConstraintSystem<E> for Namespace<'cs, E, CS> {
type Root = CS::Root;
fn one() -> Variable {
CS::one()
}
fn alloc<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
self.0.alloc(annotation, f)
}
fn alloc_input<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
self.0.alloc_input(annotation, f)
}
fn enforce<A, AR, LA, LB, LC>(
&mut self,
annotation: A,
a: LA,
b: LB,
c: LC
)
where A: FnOnce() -> AR, AR: Into<String>,
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
{
self.0.enforce(annotation, a, b, c)
}
// Downstream users who use `namespace` will never interact with these
// functions and they will never be invoked because the namespace is
// never a root constraint system.
fn push_namespace<NR, N>(&mut self, _: N)
where NR: Into<String>, N: FnOnce() -> NR
{
panic!("only the root's push_namespace should be called");
}
fn pop_namespace(&mut self)
{
panic!("only the root's pop_namespace should be called");
}
fn get_root(&mut self) -> &mut Self::Root
{
self.0.get_root()
}
}
impl<'a, E: Engine, CS: ConstraintSystem<E>> Drop for Namespace<'a, E, CS> {
fn drop(&mut self) {
self.get_root().pop_namespace()
}
}
/// Convenience implementation of ConstraintSystem<E> for mutable references to
/// constraint systems.
impl<'cs, E: Engine, CS: ConstraintSystem<E>> ConstraintSystem<E> for &'cs mut CS {
type Root = CS::Root;
fn one() -> Variable {
CS::one()
}
fn alloc<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
(**self).alloc(annotation, f)
}
fn alloc_input<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
(**self).alloc_input(annotation, f)
}
fn enforce<A, AR, LA, LB, LC>(
&mut self,
annotation: A,
a: LA,
b: LB,
c: LC
)
where A: FnOnce() -> AR, AR: Into<String>,
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
{
(**self).enforce(annotation, a, b, c)
}
fn push_namespace<NR, N>(&mut self, name_fn: N)
where NR: Into<String>, N: FnOnce() -> NR
{
(**self).push_namespace(name_fn)
}
fn pop_namespace(&mut self)
{
(**self).pop_namespace()
}
fn get_root(&mut self) -> &mut Self::Root
{
(**self).get_root()
}
}

106
bellman/src/multicore.rs Normal file
View File

@@ -0,0 +1,106 @@
//! This is an interface for dealing with the kinds of
//! parallel computations involved in bellman. It's
//! currently just a thin wrapper around CpuPool and
//! crossbeam but may be extended in the future to
//! allow for various parallelism strategies.
use num_cpus;
use futures::{Future, IntoFuture, Poll};
use futures_cpupool::{CpuPool, CpuFuture};
use crossbeam::{self, Scope};
#[derive(Clone)]
pub struct Worker {
cpus: usize,
pool: CpuPool
}
impl Worker {
// We don't expose this outside the library so that
// all `Worker` instances have the same number of
// CPUs configured.
pub(crate) fn new_with_cpus(cpus: usize) -> Worker {
Worker {
cpus: cpus,
pool: CpuPool::new(cpus)
}
}
pub fn new() -> Worker {
Self::new_with_cpus(num_cpus::get())
}
pub fn log_num_cpus(&self) -> u32 {
log2_floor(self.cpus)
}
pub fn compute<F, R>(
&self, f: F
) -> WorkerFuture<R::Item, R::Error>
where F: FnOnce() -> R + Send + 'static,
R: IntoFuture + 'static,
R::Future: Send + 'static,
R::Item: Send + 'static,
R::Error: Send + 'static
{
WorkerFuture {
future: self.pool.spawn_fn(f)
}
}
pub fn scope<'a, F, R>(
&self,
elements: usize,
f: F
) -> R
where F: FnOnce(&Scope<'a>, usize) -> R
{
let chunk_size = if elements < self.cpus {
1
} else {
elements / self.cpus
};
crossbeam::scope(|scope| {
f(scope, chunk_size)
})
}
}
pub struct WorkerFuture<T, E> {
future: CpuFuture<T, E>
}
impl<T: Send + 'static, E: Send + 'static> Future for WorkerFuture<T, E> {
type Item = T;
type Error = E;
fn poll(&mut self) -> Poll<Self::Item, Self::Error>
{
self.future.poll()
}
}
fn log2_floor(num: usize) -> u32 {
assert!(num > 0);
let mut pow = 0;
while (1 << (pow+1)) <= num {
pow += 1;
}
pow
}
#[test]
fn test_log2_floor() {
assert_eq!(log2_floor(1), 0);
assert_eq!(log2_floor(2), 1);
assert_eq!(log2_floor(3), 1);
assert_eq!(log2_floor(4), 2);
assert_eq!(log2_floor(5), 2);
assert_eq!(log2_floor(6), 2);
assert_eq!(log2_floor(7), 2);
assert_eq!(log2_floor(8), 3);
}

303
bellman/src/multiexp.rs Normal file
View File

@@ -0,0 +1,303 @@
use pairing::{
CurveAffine,
CurveProjective,
Engine,
PrimeField,
Field,
PrimeFieldRepr
};
use std::sync::Arc;
use std::io;
use bit_vec::{self, BitVec};
use std::iter;
use futures::{Future};
use super::multicore::Worker;
use super::SynthesisError;
/// An object that builds a source of bases.
pub trait SourceBuilder<G: CurveAffine>: Send + Sync + 'static + Clone {
type Source: Source<G>;
fn new(self) -> Self::Source;
}
/// A source of bases, like an iterator.
pub trait Source<G: CurveAffine> {
/// Parses the element from the source. Fails if the point is at infinity.
fn add_assign_mixed(&mut self, to: &mut <G as CurveAffine>::Projective) -> Result<(), SynthesisError>;
/// Skips `amt` elements from the source, avoiding deserialization.
fn skip(&mut self, amt: usize) -> Result<(), SynthesisError>;
}
impl<G: CurveAffine> SourceBuilder<G> for (Arc<Vec<G>>, usize) {
type Source = (Arc<Vec<G>>, usize);
fn new(self) -> (Arc<Vec<G>>, usize) {
(self.0.clone(), self.1)
}
}
impl<G: CurveAffine> Source<G> for (Arc<Vec<G>>, usize) {
fn add_assign_mixed(&mut self, to: &mut <G as CurveAffine>::Projective) -> Result<(), SynthesisError> {
if self.0.len() <= self.1 {
return Err(io::Error::new(io::ErrorKind::UnexpectedEof, "expected more bases from source").into());
}
if self.0[self.1].is_zero() {
return Err(SynthesisError::UnexpectedIdentity)
}
to.add_assign_mixed(&self.0[self.1]);
self.1 += 1;
Ok(())
}
fn skip(&mut self, amt: usize) -> Result<(), SynthesisError> {
if self.0.len() <= self.1 {
return Err(io::Error::new(io::ErrorKind::UnexpectedEof, "expected more bases from source").into());
}
self.1 += amt;
Ok(())
}
}
pub trait QueryDensity {
/// Returns whether the base exists.
type Iter: Iterator<Item=bool>;
fn iter(self) -> Self::Iter;
fn get_query_size(self) -> Option<usize>;
}
#[derive(Clone)]
pub struct FullDensity;
impl AsRef<FullDensity> for FullDensity {
fn as_ref(&self) -> &FullDensity {
self
}
}
impl<'a> QueryDensity for &'a FullDensity {
type Iter = iter::Repeat<bool>;
fn iter(self) -> Self::Iter {
iter::repeat(true)
}
fn get_query_size(self) -> Option<usize> {
None
}
}
pub struct DensityTracker {
bv: BitVec,
total_density: usize
}
impl<'a> QueryDensity for &'a DensityTracker {
type Iter = bit_vec::Iter<'a>;
fn iter(self) -> Self::Iter {
self.bv.iter()
}
fn get_query_size(self) -> Option<usize> {
Some(self.bv.len())
}
}
impl DensityTracker {
pub fn new() -> DensityTracker {
DensityTracker {
bv: BitVec::new(),
total_density: 0
}
}
pub fn add_element(&mut self) {
self.bv.push(false);
}
pub fn inc(&mut self, idx: usize) {
if !self.bv.get(idx).unwrap() {
self.bv.set(idx, true);
self.total_density += 1;
}
}
pub fn get_total_density(&self) -> usize {
self.total_density
}
}
fn multiexp_inner<Q, D, G, S>(
pool: &Worker,
bases: S,
density_map: D,
exponents: Arc<Vec<<<G::Engine as Engine>::Fr as PrimeField>::Repr>>,
mut skip: u32,
c: u32,
handle_trivial: bool
) -> Box<Future<Item=<G as CurveAffine>::Projective, Error=SynthesisError>>
where for<'a> &'a Q: QueryDensity,
D: Send + Sync + 'static + Clone + AsRef<Q>,
G: CurveAffine,
S: SourceBuilder<G>
{
// Perform this region of the multiexp
let this = {
let bases = bases.clone();
let exponents = exponents.clone();
let density_map = density_map.clone();
pool.compute(move || {
// Accumulate the result
let mut acc = G::Projective::zero();
// Build a source for the bases
let mut bases = bases.new();
// Create space for the buckets
let mut buckets = vec![<G as CurveAffine>::Projective::zero(); (1 << c) - 1];
let zero = <G::Engine as Engine>::Fr::zero().into_repr();
let one = <G::Engine as Engine>::Fr::one().into_repr();
// Sort the bases into buckets
for (&exp, density) in exponents.iter().zip(density_map.as_ref().iter()) {
if density {
if exp == zero {
bases.skip(1)?;
} else if exp == one {
if handle_trivial {
bases.add_assign_mixed(&mut acc)?;
} else {
bases.skip(1)?;
}
} else {
let mut exp = exp;
exp.shr(skip);
let exp = exp.as_ref()[0] % (1 << c);
if exp != 0 {
bases.add_assign_mixed(&mut buckets[(exp - 1) as usize])?;
} else {
bases.skip(1)?;
}
}
}
}
// Summation by parts
// e.g. 3a + 2b + 1c = a +
// (a) + b +
// ((a) + b) + c
let mut running_sum = G::Projective::zero();
for exp in buckets.into_iter().rev() {
running_sum.add_assign(&exp);
acc.add_assign(&running_sum);
}
Ok(acc)
})
};
skip += c;
if skip >= <G::Engine as Engine>::Fr::NUM_BITS {
// There isn't another region.
Box::new(this)
} else {
// There's another region more significant. Calculate and join it with
// this region recursively.
Box::new(
this.join(multiexp_inner(pool, bases, density_map, exponents, skip, c, false))
.map(move |(this, mut higher)| {
for _ in 0..c {
higher.double();
}
higher.add_assign(&this);
higher
})
)
}
}
/// Perform multi-exponentiation. The caller is responsible for ensuring the
/// query size is the same as the number of exponents.
pub fn multiexp<Q, D, G, S>(
pool: &Worker,
bases: S,
density_map: D,
exponents: Arc<Vec<<<G::Engine as Engine>::Fr as PrimeField>::Repr>>
) -> Box<Future<Item=<G as CurveAffine>::Projective, Error=SynthesisError>>
where for<'a> &'a Q: QueryDensity,
D: Send + Sync + 'static + Clone + AsRef<Q>,
G: CurveAffine,
S: SourceBuilder<G>
{
let c = if exponents.len() < 32 {
3u32
} else {
(f64::from(exponents.len() as u32)).ln().ceil() as u32
};
if let Some(query_size) = density_map.as_ref().get_query_size() {
// If the density map has a known query size, it should not be
// inconsistent with the number of exponents.
assert!(query_size == exponents.len());
}
multiexp_inner(pool, bases, density_map, exponents, 0, c, true)
}
#[test]
fn test_with_bls12() {
fn naive_multiexp<G: CurveAffine>(
bases: Arc<Vec<G>>,
exponents: Arc<Vec<<G::Scalar as PrimeField>::Repr>>
) -> G::Projective
{
assert_eq!(bases.len(), exponents.len());
let mut acc = G::Projective::zero();
for (base, exp) in bases.iter().zip(exponents.iter()) {
acc.add_assign(&base.mul(*exp));
}
acc
}
use rand::{self, Rand};
use pairing::bls12_381::Bls12;
const SAMPLES: usize = 1 << 14;
let rng = &mut rand::thread_rng();
let v = Arc::new((0..SAMPLES).map(|_| <Bls12 as Engine>::Fr::rand(rng).into_repr()).collect::<Vec<_>>());
let g = Arc::new((0..SAMPLES).map(|_| <Bls12 as Engine>::G1::rand(rng).into_affine()).collect::<Vec<_>>());
let naive = naive_multiexp(g.clone(), v.clone());
let pool = Worker::new();
let fast = multiexp(
&pool,
(g, 0),
FullDensity,
v
).wait().unwrap();
assert_eq!(naive, fast);
}