mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-08-01 12:51:30 +00:00
Add 'bellman/' from commit '10c5010fd9c2ca69442dc9775ea271e286e776d8'
git-subtree-dir: bellman git-subtree-mainline:e924247e73
git-subtree-split:10c5010fd9
This commit is contained in:
494
bellman/src/domain.rs
Normal file
494
bellman/src/domain.rs
Normal file
@@ -0,0 +1,494 @@
|
||||
//! This module contains an `EvaluationDomain` abstraction for
|
||||
//! performing various kinds of polynomial arithmetic on top of
|
||||
//! the scalar field.
|
||||
//!
|
||||
//! In pairing-based SNARKs like Groth16, we need to calculate
|
||||
//! a quotient polynomial over a target polynomial with roots
|
||||
//! at distinct points associated with each constraint of the
|
||||
//! constraint system. In order to be efficient, we choose these
|
||||
//! roots to be the powers of a 2^n root of unity in the field.
|
||||
//! This allows us to perform polynomial operations in O(n)
|
||||
//! by performing an O(n log n) FFT over such a domain.
|
||||
|
||||
use pairing::{
|
||||
Engine,
|
||||
Field,
|
||||
PrimeField,
|
||||
CurveProjective
|
||||
};
|
||||
|
||||
use super::{
|
||||
SynthesisError
|
||||
};
|
||||
|
||||
use super::multicore::Worker;
|
||||
|
||||
pub struct EvaluationDomain<E: Engine, G: Group<E>> {
|
||||
coeffs: Vec<G>,
|
||||
exp: u32,
|
||||
omega: E::Fr,
|
||||
omegainv: E::Fr,
|
||||
geninv: E::Fr,
|
||||
minv: E::Fr
|
||||
}
|
||||
|
||||
impl<E: Engine, G: Group<E>> EvaluationDomain<E, G> {
|
||||
pub fn as_ref(&self) -> &[G] {
|
||||
&self.coeffs
|
||||
}
|
||||
|
||||
pub fn as_mut(&mut self) -> &mut [G] {
|
||||
&mut self.coeffs
|
||||
}
|
||||
|
||||
pub fn into_coeffs(self) -> Vec<G> {
|
||||
self.coeffs
|
||||
}
|
||||
|
||||
pub fn from_coeffs(mut coeffs: Vec<G>) -> Result<EvaluationDomain<E, G>, SynthesisError>
|
||||
{
|
||||
// Compute the size of our evaluation domain
|
||||
let mut m = 1;
|
||||
let mut exp = 0;
|
||||
while m < coeffs.len() {
|
||||
m *= 2;
|
||||
exp += 1;
|
||||
|
||||
// The pairing-friendly curve may not be able to support
|
||||
// large enough (radix2) evaluation domains.
|
||||
if exp >= E::Fr::S {
|
||||
return Err(SynthesisError::PolynomialDegreeTooLarge)
|
||||
}
|
||||
}
|
||||
|
||||
// Compute omega, the 2^exp primitive root of unity
|
||||
let mut omega = E::Fr::root_of_unity();
|
||||
for _ in exp..E::Fr::S {
|
||||
omega.square();
|
||||
}
|
||||
|
||||
// Extend the coeffs vector with zeroes if necessary
|
||||
coeffs.resize(m, G::group_zero());
|
||||
|
||||
Ok(EvaluationDomain {
|
||||
coeffs: coeffs,
|
||||
exp: exp,
|
||||
omega: omega,
|
||||
omegainv: omega.inverse().unwrap(),
|
||||
geninv: E::Fr::multiplicative_generator().inverse().unwrap(),
|
||||
minv: E::Fr::from_str(&format!("{}", m)).unwrap().inverse().unwrap()
|
||||
})
|
||||
}
|
||||
|
||||
pub fn fft(&mut self, worker: &Worker)
|
||||
{
|
||||
best_fft(&mut self.coeffs, worker, &self.omega, self.exp);
|
||||
}
|
||||
|
||||
pub fn ifft(&mut self, worker: &Worker)
|
||||
{
|
||||
best_fft(&mut self.coeffs, worker, &self.omegainv, self.exp);
|
||||
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
let minv = self.minv;
|
||||
|
||||
for v in self.coeffs.chunks_mut(chunk) {
|
||||
scope.spawn(move || {
|
||||
for v in v {
|
||||
v.group_mul_assign(&minv);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
pub fn distribute_powers(&mut self, worker: &Worker, g: E::Fr)
|
||||
{
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
for (i, v) in self.coeffs.chunks_mut(chunk).enumerate() {
|
||||
scope.spawn(move || {
|
||||
let mut u = g.pow(&[(i * chunk) as u64]);
|
||||
for v in v.iter_mut() {
|
||||
v.group_mul_assign(&u);
|
||||
u.mul_assign(&g);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
pub fn coset_fft(&mut self, worker: &Worker)
|
||||
{
|
||||
self.distribute_powers(worker, E::Fr::multiplicative_generator());
|
||||
self.fft(worker);
|
||||
}
|
||||
|
||||
pub fn icoset_fft(&mut self, worker: &Worker)
|
||||
{
|
||||
let geninv = self.geninv;
|
||||
|
||||
self.ifft(worker);
|
||||
self.distribute_powers(worker, geninv);
|
||||
}
|
||||
|
||||
/// This evaluates t(tau) for this domain, which is
|
||||
/// tau^m - 1 for these radix-2 domains.
|
||||
pub fn z(&self, tau: &E::Fr) -> E::Fr {
|
||||
let mut tmp = tau.pow(&[self.coeffs.len() as u64]);
|
||||
tmp.sub_assign(&E::Fr::one());
|
||||
|
||||
tmp
|
||||
}
|
||||
|
||||
/// The target polynomial is the zero polynomial in our
|
||||
/// evaluation domain, so we must perform division over
|
||||
/// a coset.
|
||||
pub fn divide_by_z_on_coset(&mut self, worker: &Worker)
|
||||
{
|
||||
let i = self.z(&E::Fr::multiplicative_generator()).inverse().unwrap();
|
||||
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
for v in self.coeffs.chunks_mut(chunk) {
|
||||
scope.spawn(move || {
|
||||
for v in v {
|
||||
v.group_mul_assign(&i);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/// Perform O(n) multiplication of two polynomials in the domain.
|
||||
pub fn mul_assign(&mut self, worker: &Worker, other: &EvaluationDomain<E, Scalar<E>>) {
|
||||
assert_eq!(self.coeffs.len(), other.coeffs.len());
|
||||
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
for (a, b) in self.coeffs.chunks_mut(chunk).zip(other.coeffs.chunks(chunk)) {
|
||||
scope.spawn(move || {
|
||||
for (a, b) in a.iter_mut().zip(b.iter()) {
|
||||
a.group_mul_assign(&b.0);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/// Perform O(n) subtraction of one polynomial from another in the domain.
|
||||
pub fn sub_assign(&mut self, worker: &Worker, other: &EvaluationDomain<E, G>) {
|
||||
assert_eq!(self.coeffs.len(), other.coeffs.len());
|
||||
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
for (a, b) in self.coeffs.chunks_mut(chunk).zip(other.coeffs.chunks(chunk)) {
|
||||
scope.spawn(move || {
|
||||
for (a, b) in a.iter_mut().zip(b.iter()) {
|
||||
a.group_sub_assign(&b);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Group<E: Engine>: Sized + Copy + Clone + Send + Sync {
|
||||
fn group_zero() -> Self;
|
||||
fn group_mul_assign(&mut self, by: &E::Fr);
|
||||
fn group_add_assign(&mut self, other: &Self);
|
||||
fn group_sub_assign(&mut self, other: &Self);
|
||||
}
|
||||
|
||||
pub struct Point<G: CurveProjective>(pub G);
|
||||
|
||||
impl<G: CurveProjective> PartialEq for Point<G> {
|
||||
fn eq(&self, other: &Point<G>) -> bool {
|
||||
self.0 == other.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<G: CurveProjective> Copy for Point<G> { }
|
||||
|
||||
impl<G: CurveProjective> Clone for Point<G> {
|
||||
fn clone(&self) -> Point<G> {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
impl<G: CurveProjective> Group<G::Engine> for Point<G> {
|
||||
fn group_zero() -> Self {
|
||||
Point(G::zero())
|
||||
}
|
||||
fn group_mul_assign(&mut self, by: &G::Scalar) {
|
||||
self.0.mul_assign(by.into_repr());
|
||||
}
|
||||
fn group_add_assign(&mut self, other: &Self) {
|
||||
self.0.add_assign(&other.0);
|
||||
}
|
||||
fn group_sub_assign(&mut self, other: &Self) {
|
||||
self.0.sub_assign(&other.0);
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Scalar<E: Engine>(pub E::Fr);
|
||||
|
||||
impl<E: Engine> PartialEq for Scalar<E> {
|
||||
fn eq(&self, other: &Scalar<E>) -> bool {
|
||||
self.0 == other.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Copy for Scalar<E> { }
|
||||
|
||||
impl<E: Engine> Clone for Scalar<E> {
|
||||
fn clone(&self) -> Scalar<E> {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Group<E> for Scalar<E> {
|
||||
fn group_zero() -> Self {
|
||||
Scalar(E::Fr::zero())
|
||||
}
|
||||
fn group_mul_assign(&mut self, by: &E::Fr) {
|
||||
self.0.mul_assign(by);
|
||||
}
|
||||
fn group_add_assign(&mut self, other: &Self) {
|
||||
self.0.add_assign(&other.0);
|
||||
}
|
||||
fn group_sub_assign(&mut self, other: &Self) {
|
||||
self.0.sub_assign(&other.0);
|
||||
}
|
||||
}
|
||||
|
||||
fn best_fft<E: Engine, T: Group<E>>(a: &mut [T], worker: &Worker, omega: &E::Fr, log_n: u32)
|
||||
{
|
||||
let log_cpus = worker.log_num_cpus();
|
||||
|
||||
if log_n <= log_cpus {
|
||||
serial_fft(a, omega, log_n);
|
||||
} else {
|
||||
parallel_fft(a, worker, omega, log_n, log_cpus);
|
||||
}
|
||||
}
|
||||
|
||||
fn serial_fft<E: Engine, T: Group<E>>(a: &mut [T], omega: &E::Fr, log_n: u32)
|
||||
{
|
||||
fn bitreverse(mut n: u32, l: u32) -> u32 {
|
||||
let mut r = 0;
|
||||
for _ in 0..l {
|
||||
r = (r << 1) | (n & 1);
|
||||
n >>= 1;
|
||||
}
|
||||
r
|
||||
}
|
||||
|
||||
let n = a.len() as u32;
|
||||
assert_eq!(n, 1 << log_n);
|
||||
|
||||
for k in 0..n {
|
||||
let rk = bitreverse(k, log_n);
|
||||
if k < rk {
|
||||
a.swap(rk as usize, k as usize);
|
||||
}
|
||||
}
|
||||
|
||||
let mut m = 1;
|
||||
for _ in 0..log_n {
|
||||
let w_m = omega.pow(&[(n / (2*m)) as u64]);
|
||||
|
||||
let mut k = 0;
|
||||
while k < n {
|
||||
let mut w = E::Fr::one();
|
||||
for j in 0..m {
|
||||
let mut t = a[(k+j+m) as usize];
|
||||
t.group_mul_assign(&w);
|
||||
let mut tmp = a[(k+j) as usize];
|
||||
tmp.group_sub_assign(&t);
|
||||
a[(k+j+m) as usize] = tmp;
|
||||
a[(k+j) as usize].group_add_assign(&t);
|
||||
w.mul_assign(&w_m);
|
||||
}
|
||||
|
||||
k += 2*m;
|
||||
}
|
||||
|
||||
m *= 2;
|
||||
}
|
||||
}
|
||||
|
||||
fn parallel_fft<E: Engine, T: Group<E>>(
|
||||
a: &mut [T],
|
||||
worker: &Worker,
|
||||
omega: &E::Fr,
|
||||
log_n: u32,
|
||||
log_cpus: u32
|
||||
)
|
||||
{
|
||||
assert!(log_n >= log_cpus);
|
||||
|
||||
let num_cpus = 1 << log_cpus;
|
||||
let log_new_n = log_n - log_cpus;
|
||||
let mut tmp = vec![vec![T::group_zero(); 1 << log_new_n]; num_cpus];
|
||||
let new_omega = omega.pow(&[num_cpus as u64]);
|
||||
|
||||
worker.scope(0, |scope, _| {
|
||||
let a = &*a;
|
||||
|
||||
for (j, tmp) in tmp.iter_mut().enumerate() {
|
||||
scope.spawn(move || {
|
||||
// Shuffle into a sub-FFT
|
||||
let omega_j = omega.pow(&[j as u64]);
|
||||
let omega_step = omega.pow(&[(j as u64) << log_new_n]);
|
||||
|
||||
let mut elt = E::Fr::one();
|
||||
for i in 0..(1 << log_new_n) {
|
||||
for s in 0..num_cpus {
|
||||
let idx = (i + (s << log_new_n)) % (1 << log_n);
|
||||
let mut t = a[idx];
|
||||
t.group_mul_assign(&elt);
|
||||
tmp[i].group_add_assign(&t);
|
||||
elt.mul_assign(&omega_step);
|
||||
}
|
||||
elt.mul_assign(&omega_j);
|
||||
}
|
||||
|
||||
// Perform sub-FFT
|
||||
serial_fft(tmp, &new_omega, log_new_n);
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
// TODO: does this hurt or help?
|
||||
worker.scope(a.len(), |scope, chunk| {
|
||||
let tmp = &tmp;
|
||||
|
||||
for (idx, a) in a.chunks_mut(chunk).enumerate() {
|
||||
scope.spawn(move || {
|
||||
let mut idx = idx * chunk;
|
||||
let mask = (1 << log_cpus) - 1;
|
||||
for a in a {
|
||||
*a = tmp[idx & mask][idx >> log_cpus];
|
||||
idx += 1;
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Test multiplying various (low degree) polynomials together and
|
||||
// comparing with naive evaluations.
|
||||
#[test]
|
||||
fn polynomial_arith() {
|
||||
use pairing::bls12_381::Bls12;
|
||||
use rand::{self, Rand};
|
||||
|
||||
fn test_mul<E: Engine, R: rand::Rng>(rng: &mut R)
|
||||
{
|
||||
let worker = Worker::new();
|
||||
|
||||
for coeffs_a in 0..70 {
|
||||
for coeffs_b in 0..70 {
|
||||
let mut a: Vec<_> = (0..coeffs_a).map(|_| Scalar::<E>(E::Fr::rand(rng))).collect();
|
||||
let mut b: Vec<_> = (0..coeffs_b).map(|_| Scalar::<E>(E::Fr::rand(rng))).collect();
|
||||
|
||||
// naive evaluation
|
||||
let mut naive = vec![Scalar(E::Fr::zero()); coeffs_a + coeffs_b];
|
||||
for (i1, a) in a.iter().enumerate() {
|
||||
for (i2, b) in b.iter().enumerate() {
|
||||
let mut prod = *a;
|
||||
prod.group_mul_assign(&b.0);
|
||||
naive[i1 + i2].group_add_assign(&prod);
|
||||
}
|
||||
}
|
||||
|
||||
a.resize(coeffs_a + coeffs_b, Scalar(E::Fr::zero()));
|
||||
b.resize(coeffs_a + coeffs_b, Scalar(E::Fr::zero()));
|
||||
|
||||
let mut a = EvaluationDomain::from_coeffs(a).unwrap();
|
||||
let mut b = EvaluationDomain::from_coeffs(b).unwrap();
|
||||
|
||||
a.fft(&worker);
|
||||
b.fft(&worker);
|
||||
a.mul_assign(&worker, &b);
|
||||
a.ifft(&worker);
|
||||
|
||||
for (naive, fft) in naive.iter().zip(a.coeffs.iter()) {
|
||||
assert!(naive == fft);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
test_mul::<Bls12, _>(rng);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn fft_composition() {
|
||||
use pairing::bls12_381::Bls12;
|
||||
use rand;
|
||||
|
||||
fn test_comp<E: Engine, R: rand::Rng>(rng: &mut R)
|
||||
{
|
||||
let worker = Worker::new();
|
||||
|
||||
for coeffs in 0..10 {
|
||||
let coeffs = 1 << coeffs;
|
||||
|
||||
let mut v = vec![];
|
||||
for _ in 0..coeffs {
|
||||
v.push(Scalar::<E>(rng.gen()));
|
||||
}
|
||||
|
||||
let mut domain = EvaluationDomain::from_coeffs(v.clone()).unwrap();
|
||||
domain.ifft(&worker);
|
||||
domain.fft(&worker);
|
||||
assert!(v == domain.coeffs);
|
||||
domain.fft(&worker);
|
||||
domain.ifft(&worker);
|
||||
assert!(v == domain.coeffs);
|
||||
domain.icoset_fft(&worker);
|
||||
domain.coset_fft(&worker);
|
||||
assert!(v == domain.coeffs);
|
||||
domain.coset_fft(&worker);
|
||||
domain.icoset_fft(&worker);
|
||||
assert!(v == domain.coeffs);
|
||||
}
|
||||
}
|
||||
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
test_comp::<Bls12, _>(rng);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn parallel_fft_consistency() {
|
||||
use pairing::bls12_381::Bls12;
|
||||
use rand::{self, Rand};
|
||||
use std::cmp::min;
|
||||
|
||||
fn test_consistency<E: Engine, R: rand::Rng>(rng: &mut R)
|
||||
{
|
||||
let worker = Worker::new();
|
||||
|
||||
for _ in 0..5 {
|
||||
for log_d in 0..10 {
|
||||
let d = 1 << log_d;
|
||||
|
||||
let v1 = (0..d).map(|_| Scalar::<E>(E::Fr::rand(rng))).collect::<Vec<_>>();
|
||||
let mut v1 = EvaluationDomain::from_coeffs(v1).unwrap();
|
||||
let mut v2 = EvaluationDomain::from_coeffs(v1.coeffs.clone()).unwrap();
|
||||
|
||||
for log_cpus in log_d..min(log_d+1, 3) {
|
||||
parallel_fft(&mut v1.coeffs, &worker, &v1.omega, log_d, log_cpus);
|
||||
serial_fft(&mut v2.coeffs, &v2.omega, log_d);
|
||||
|
||||
assert!(v1.coeffs == v2.coeffs);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
test_consistency::<Bls12, _>(rng);
|
||||
}
|
Reference in New Issue
Block a user