mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-01-30 15:32:14 +00:00
Add 'group/' from commit 'ef56fabf7ba3ed990a7886836c855298c9c5eefa'
git-subtree-dir: group git-subtree-mainline:af9f9c17ee
git-subtree-split:ef56fabf7b
This commit is contained in:
commit
b1ce3905d6
3
group/.gitignore
vendored
Normal file
3
group/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
/target
|
||||
**/*.rs.bk
|
||||
Cargo.lock
|
14
group/COPYRIGHT
Normal file
14
group/COPYRIGHT
Normal file
@ -0,0 +1,14 @@
|
||||
Copyrights in the "group" library are retained by their contributors. No
|
||||
copyright assignment is required to contribute to the "group" library.
|
||||
|
||||
The "group" library is licensed under either of
|
||||
|
||||
* Apache License, Version 2.0, (see ./LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
|
||||
* MIT license (see ./LICENSE-MIT or http://opensource.org/licenses/MIT)
|
||||
|
||||
at your option.
|
||||
|
||||
Unless you explicitly state otherwise, any contribution intentionally
|
||||
submitted for inclusion in the work by you, as defined in the Apache-2.0
|
||||
license, shall be dual licensed as above, without any additional terms or
|
||||
conditions.
|
17
group/Cargo.toml
Normal file
17
group/Cargo.toml
Normal file
@ -0,0 +1,17 @@
|
||||
[package]
|
||||
name = "group"
|
||||
version = "0.1.0"
|
||||
authors = [
|
||||
"Sean Bowe <ewillbefull@gmail.com>",
|
||||
"Jack Grigg <jack@z.cash>",
|
||||
]
|
||||
license = "MIT/Apache-2.0"
|
||||
|
||||
description = "Elliptic curve group traits and utilities"
|
||||
documentation = "https://docs.rs/group/"
|
||||
homepage = "https://github.com/ebfull/group"
|
||||
repository = "https://github.com/ebfull/group"
|
||||
|
||||
[dependencies]
|
||||
ff = "0.4"
|
||||
rand = "0.4"
|
201
group/LICENSE-APACHE
Normal file
201
group/LICENSE-APACHE
Normal file
@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
23
group/LICENSE-MIT
Normal file
23
group/LICENSE-MIT
Normal file
@ -0,0 +1,23 @@
|
||||
Permission is hereby granted, free of charge, to any
|
||||
person obtaining a copy of this software and associated
|
||||
documentation files (the "Software"), to deal in the
|
||||
Software without restriction, including without
|
||||
limitation the rights to use, copy, modify, merge,
|
||||
publish, distribute, sublicense, and/or sell copies of
|
||||
the Software, and to permit persons to whom the Software
|
||||
is furnished to do so, subject to the following
|
||||
conditions:
|
||||
|
||||
The above copyright notice and this permission notice
|
||||
shall be included in all copies or substantial portions
|
||||
of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
|
||||
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
|
||||
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
|
||||
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
|
||||
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
|
||||
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
DEALINGS IN THE SOFTWARE.
|
17
group/README.md
Normal file
17
group/README.md
Normal file
@ -0,0 +1,17 @@
|
||||
# group [![Crates.io](https://img.shields.io/crates/v/group.svg)](https://crates.io/crates/group) #
|
||||
|
||||
## License
|
||||
|
||||
Licensed under either of
|
||||
|
||||
* Apache License, Version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
|
||||
* MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
|
||||
|
||||
at your option.
|
||||
|
||||
### Contribution
|
||||
|
||||
Unless you explicitly state otherwise, any contribution intentionally
|
||||
submitted for inclusion in the work by you, as defined in the Apache-2.0
|
||||
license, shall be dual licensed as above, without any additional terms or
|
||||
conditions.
|
196
group/src/lib.rs
Normal file
196
group/src/lib.rs
Normal file
@ -0,0 +1,196 @@
|
||||
extern crate ff;
|
||||
extern crate rand;
|
||||
|
||||
use ff::{PrimeField, PrimeFieldDecodingError, ScalarEngine, SqrtField};
|
||||
use std::error::Error;
|
||||
use std::fmt;
|
||||
|
||||
pub mod tests;
|
||||
|
||||
mod wnaf;
|
||||
pub use self::wnaf::Wnaf;
|
||||
|
||||
/// Projective representation of an elliptic curve point guaranteed to be
|
||||
/// in the correct prime order subgroup.
|
||||
pub trait CurveProjective:
|
||||
PartialEq
|
||||
+ Eq
|
||||
+ Sized
|
||||
+ Copy
|
||||
+ Clone
|
||||
+ Send
|
||||
+ Sync
|
||||
+ fmt::Debug
|
||||
+ fmt::Display
|
||||
+ rand::Rand
|
||||
+ 'static
|
||||
{
|
||||
type Engine: ScalarEngine<Fr = Self::Scalar>;
|
||||
type Scalar: PrimeField + SqrtField;
|
||||
type Base: SqrtField;
|
||||
type Affine: CurveAffine<Projective = Self, Scalar = Self::Scalar>;
|
||||
|
||||
/// Returns the additive identity.
|
||||
fn zero() -> Self;
|
||||
|
||||
/// Returns a fixed generator of unknown exponent.
|
||||
fn one() -> Self;
|
||||
|
||||
/// Determines if this point is the point at infinity.
|
||||
fn is_zero(&self) -> bool;
|
||||
|
||||
/// Normalizes a slice of projective elements so that
|
||||
/// conversion to affine is cheap.
|
||||
fn batch_normalization(v: &mut [Self]);
|
||||
|
||||
/// Checks if the point is already "normalized" so that
|
||||
/// cheap affine conversion is possible.
|
||||
fn is_normalized(&self) -> bool;
|
||||
|
||||
/// Doubles this element.
|
||||
fn double(&mut self);
|
||||
|
||||
/// Adds another element to this element.
|
||||
fn add_assign(&mut self, other: &Self);
|
||||
|
||||
/// Subtracts another element from this element.
|
||||
fn sub_assign(&mut self, other: &Self) {
|
||||
let mut tmp = *other;
|
||||
tmp.negate();
|
||||
self.add_assign(&tmp);
|
||||
}
|
||||
|
||||
/// Adds an affine element to this element.
|
||||
fn add_assign_mixed(&mut self, other: &Self::Affine);
|
||||
|
||||
/// Negates this element.
|
||||
fn negate(&mut self);
|
||||
|
||||
/// Performs scalar multiplication of this element.
|
||||
fn mul_assign<S: Into<<Self::Scalar as PrimeField>::Repr>>(&mut self, other: S);
|
||||
|
||||
/// Converts this element into its affine representation.
|
||||
fn into_affine(&self) -> Self::Affine;
|
||||
|
||||
/// Recommends a wNAF window table size given a scalar. Always returns a number
|
||||
/// between 2 and 22, inclusive.
|
||||
fn recommended_wnaf_for_scalar(scalar: <Self::Scalar as PrimeField>::Repr) -> usize;
|
||||
|
||||
/// Recommends a wNAF window size given the number of scalars you intend to multiply
|
||||
/// a base by. Always returns a number between 2 and 22, inclusive.
|
||||
fn recommended_wnaf_for_num_scalars(num_scalars: usize) -> usize;
|
||||
}
|
||||
|
||||
/// Affine representation of an elliptic curve point guaranteed to be
|
||||
/// in the correct prime order subgroup.
|
||||
pub trait CurveAffine:
|
||||
Copy + Clone + Sized + Send + Sync + fmt::Debug + fmt::Display + PartialEq + Eq + 'static
|
||||
{
|
||||
type Engine: ScalarEngine<Fr = Self::Scalar>;
|
||||
type Scalar: PrimeField + SqrtField;
|
||||
type Base: SqrtField;
|
||||
type Projective: CurveProjective<Affine = Self, Scalar = Self::Scalar>;
|
||||
type Uncompressed: EncodedPoint<Affine = Self>;
|
||||
type Compressed: EncodedPoint<Affine = Self>;
|
||||
|
||||
/// Returns the additive identity.
|
||||
fn zero() -> Self;
|
||||
|
||||
/// Returns a fixed generator of unknown exponent.
|
||||
fn one() -> Self;
|
||||
|
||||
/// Determines if this point represents the point at infinity; the
|
||||
/// additive identity.
|
||||
fn is_zero(&self) -> bool;
|
||||
|
||||
/// Negates this element.
|
||||
fn negate(&mut self);
|
||||
|
||||
/// Performs scalar multiplication of this element with mixed addition.
|
||||
fn mul<S: Into<<Self::Scalar as PrimeField>::Repr>>(&self, other: S) -> Self::Projective;
|
||||
|
||||
/// Converts this element into its affine representation.
|
||||
fn into_projective(&self) -> Self::Projective;
|
||||
|
||||
/// Converts this element into its compressed encoding, so long as it's not
|
||||
/// the point at infinity.
|
||||
fn into_compressed(&self) -> Self::Compressed {
|
||||
<Self::Compressed as EncodedPoint>::from_affine(*self)
|
||||
}
|
||||
|
||||
/// Converts this element into its uncompressed encoding, so long as it's not
|
||||
/// the point at infinity.
|
||||
fn into_uncompressed(&self) -> Self::Uncompressed {
|
||||
<Self::Uncompressed as EncodedPoint>::from_affine(*self)
|
||||
}
|
||||
}
|
||||
|
||||
/// An encoded elliptic curve point, which should essentially wrap a `[u8; N]`.
|
||||
pub trait EncodedPoint:
|
||||
Sized + Send + Sync + AsRef<[u8]> + AsMut<[u8]> + Clone + Copy + 'static
|
||||
{
|
||||
type Affine: CurveAffine;
|
||||
|
||||
/// Creates an empty representation.
|
||||
fn empty() -> Self;
|
||||
|
||||
/// Returns the number of bytes consumed by this representation.
|
||||
fn size() -> usize;
|
||||
|
||||
/// Converts an `EncodedPoint` into a `CurveAffine` element,
|
||||
/// if the encoding represents a valid element.
|
||||
fn into_affine(&self) -> Result<Self::Affine, GroupDecodingError>;
|
||||
|
||||
/// Converts an `EncodedPoint` into a `CurveAffine` element,
|
||||
/// without guaranteeing that the encoding represents a valid
|
||||
/// element. This is useful when the caller knows the encoding is
|
||||
/// valid already.
|
||||
///
|
||||
/// If the encoding is invalid, this can break API invariants,
|
||||
/// so caution is strongly encouraged.
|
||||
fn into_affine_unchecked(&self) -> Result<Self::Affine, GroupDecodingError>;
|
||||
|
||||
/// Creates an `EncodedPoint` from an affine point, as long as the
|
||||
/// point is not the point at infinity.
|
||||
fn from_affine(affine: Self::Affine) -> Self;
|
||||
}
|
||||
|
||||
/// An error that may occur when trying to decode an `EncodedPoint`.
|
||||
#[derive(Debug)]
|
||||
pub enum GroupDecodingError {
|
||||
/// The coordinate(s) do not lie on the curve.
|
||||
NotOnCurve,
|
||||
/// The element is not part of the r-order subgroup.
|
||||
NotInSubgroup,
|
||||
/// One of the coordinates could not be decoded
|
||||
CoordinateDecodingError(&'static str, PrimeFieldDecodingError),
|
||||
/// The compression mode of the encoded element was not as expected
|
||||
UnexpectedCompressionMode,
|
||||
/// The encoding contained bits that should not have been set
|
||||
UnexpectedInformation,
|
||||
}
|
||||
|
||||
impl Error for GroupDecodingError {
|
||||
fn description(&self) -> &str {
|
||||
match *self {
|
||||
GroupDecodingError::NotOnCurve => "coordinate(s) do not lie on the curve",
|
||||
GroupDecodingError::NotInSubgroup => "the element is not part of an r-order subgroup",
|
||||
GroupDecodingError::CoordinateDecodingError(..) => "coordinate(s) could not be decoded",
|
||||
GroupDecodingError::UnexpectedCompressionMode => {
|
||||
"encoding has unexpected compression mode"
|
||||
}
|
||||
GroupDecodingError::UnexpectedInformation => "encoding has unexpected information",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for GroupDecodingError {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
||||
match *self {
|
||||
GroupDecodingError::CoordinateDecodingError(description, ref err) => {
|
||||
write!(f, "{} decoding error: {}", description, err)
|
||||
}
|
||||
_ => write!(f, "{}", self.description()),
|
||||
}
|
||||
}
|
||||
}
|
421
group/src/tests/mod.rs
Normal file
421
group/src/tests/mod.rs
Normal file
@ -0,0 +1,421 @@
|
||||
use rand::{Rand, Rng, SeedableRng, XorShiftRng};
|
||||
|
||||
use {CurveAffine, CurveProjective, EncodedPoint};
|
||||
|
||||
pub fn curve_tests<G: CurveProjective>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
// Negation edge case with zero.
|
||||
{
|
||||
let mut z = G::zero();
|
||||
z.negate();
|
||||
assert!(z.is_zero());
|
||||
}
|
||||
|
||||
// Doubling edge case with zero.
|
||||
{
|
||||
let mut z = G::zero();
|
||||
z.double();
|
||||
assert!(z.is_zero());
|
||||
}
|
||||
|
||||
// Addition edge cases with zero
|
||||
{
|
||||
let mut r = G::rand(&mut rng);
|
||||
let rcopy = r;
|
||||
r.add_assign(&G::zero());
|
||||
assert_eq!(r, rcopy);
|
||||
r.add_assign_mixed(&G::Affine::zero());
|
||||
assert_eq!(r, rcopy);
|
||||
|
||||
let mut z = G::zero();
|
||||
z.add_assign(&G::zero());
|
||||
assert!(z.is_zero());
|
||||
z.add_assign_mixed(&G::Affine::zero());
|
||||
assert!(z.is_zero());
|
||||
|
||||
let mut z2 = z;
|
||||
z2.add_assign(&r);
|
||||
|
||||
z.add_assign_mixed(&r.into_affine());
|
||||
|
||||
assert_eq!(z, z2);
|
||||
assert_eq!(z, r);
|
||||
}
|
||||
|
||||
// Transformations
|
||||
{
|
||||
let a = G::rand(&mut rng);
|
||||
let b = a.into_affine().into_projective();
|
||||
let c = a.into_affine()
|
||||
.into_projective()
|
||||
.into_affine()
|
||||
.into_projective();
|
||||
assert_eq!(a, b);
|
||||
assert_eq!(b, c);
|
||||
}
|
||||
|
||||
random_addition_tests::<G>();
|
||||
random_multiplication_tests::<G>();
|
||||
random_doubling_tests::<G>();
|
||||
random_negation_tests::<G>();
|
||||
random_transformation_tests::<G>();
|
||||
random_wnaf_tests::<G>();
|
||||
random_encoding_tests::<G::Affine>();
|
||||
}
|
||||
|
||||
fn random_wnaf_tests<G: CurveProjective>() {
|
||||
use ff::PrimeField;
|
||||
|
||||
use wnaf::*;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
{
|
||||
let mut table = vec![];
|
||||
let mut wnaf = vec![];
|
||||
|
||||
for w in 2..14 {
|
||||
for _ in 0..100 {
|
||||
let g = G::rand(&mut rng);
|
||||
let s = G::Scalar::rand(&mut rng).into_repr();
|
||||
let mut g1 = g;
|
||||
g1.mul_assign(s);
|
||||
|
||||
wnaf_table(&mut table, g, w);
|
||||
wnaf_form(&mut wnaf, s, w);
|
||||
let g2 = wnaf_exp(&table, &wnaf);
|
||||
|
||||
assert_eq!(g1, g2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
fn only_compiles_if_send<S: Send>(_: &S) {}
|
||||
|
||||
for _ in 0..100 {
|
||||
let g = G::rand(&mut rng);
|
||||
let s = G::Scalar::rand(&mut rng).into_repr();
|
||||
let mut g1 = g;
|
||||
g1.mul_assign(s);
|
||||
|
||||
let g2 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
wnaf.base(g, 1).scalar(s)
|
||||
};
|
||||
let g3 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
wnaf.scalar(s).base(g)
|
||||
};
|
||||
let g4 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
let mut shared = wnaf.base(g, 1).shared();
|
||||
|
||||
only_compiles_if_send(&shared);
|
||||
|
||||
shared.scalar(s)
|
||||
};
|
||||
let g5 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
let mut shared = wnaf.scalar(s).shared();
|
||||
|
||||
only_compiles_if_send(&shared);
|
||||
|
||||
shared.base(g)
|
||||
};
|
||||
|
||||
let g6 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
{
|
||||
// Populate the vectors.
|
||||
wnaf.base(rng.gen(), 1).scalar(rng.gen());
|
||||
}
|
||||
wnaf.base(g, 1).scalar(s)
|
||||
};
|
||||
let g7 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
{
|
||||
// Populate the vectors.
|
||||
wnaf.base(rng.gen(), 1).scalar(rng.gen());
|
||||
}
|
||||
wnaf.scalar(s).base(g)
|
||||
};
|
||||
let g8 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
{
|
||||
// Populate the vectors.
|
||||
wnaf.base(rng.gen(), 1).scalar(rng.gen());
|
||||
}
|
||||
let mut shared = wnaf.base(g, 1).shared();
|
||||
|
||||
only_compiles_if_send(&shared);
|
||||
|
||||
shared.scalar(s)
|
||||
};
|
||||
let g9 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
{
|
||||
// Populate the vectors.
|
||||
wnaf.base(rng.gen(), 1).scalar(rng.gen());
|
||||
}
|
||||
let mut shared = wnaf.scalar(s).shared();
|
||||
|
||||
only_compiles_if_send(&shared);
|
||||
|
||||
shared.base(g)
|
||||
};
|
||||
|
||||
assert_eq!(g1, g2);
|
||||
assert_eq!(g1, g3);
|
||||
assert_eq!(g1, g4);
|
||||
assert_eq!(g1, g5);
|
||||
assert_eq!(g1, g6);
|
||||
assert_eq!(g1, g7);
|
||||
assert_eq!(g1, g8);
|
||||
assert_eq!(g1, g9);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn random_negation_tests<G: CurveProjective>() {
|
||||
use ff::Field;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let r = G::rand(&mut rng);
|
||||
|
||||
let s = G::Scalar::rand(&mut rng);
|
||||
let mut sneg = s;
|
||||
sneg.negate();
|
||||
|
||||
let mut t1 = r;
|
||||
t1.mul_assign(s);
|
||||
|
||||
let mut t2 = r;
|
||||
t2.mul_assign(sneg);
|
||||
|
||||
let mut t3 = t1;
|
||||
t3.add_assign(&t2);
|
||||
assert!(t3.is_zero());
|
||||
|
||||
let mut t4 = t1;
|
||||
t4.add_assign_mixed(&t2.into_affine());
|
||||
assert!(t4.is_zero());
|
||||
|
||||
t1.negate();
|
||||
assert_eq!(t1, t2);
|
||||
}
|
||||
}
|
||||
|
||||
fn random_doubling_tests<G: CurveProjective>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut a = G::rand(&mut rng);
|
||||
let mut b = G::rand(&mut rng);
|
||||
|
||||
// 2(a + b)
|
||||
let mut tmp1 = a;
|
||||
tmp1.add_assign(&b);
|
||||
tmp1.double();
|
||||
|
||||
// 2a + 2b
|
||||
a.double();
|
||||
b.double();
|
||||
|
||||
let mut tmp2 = a;
|
||||
tmp2.add_assign(&b);
|
||||
|
||||
let mut tmp3 = a;
|
||||
tmp3.add_assign_mixed(&b.into_affine());
|
||||
|
||||
assert_eq!(tmp1, tmp2);
|
||||
assert_eq!(tmp1, tmp3);
|
||||
}
|
||||
}
|
||||
|
||||
fn random_multiplication_tests<G: CurveProjective>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut a = G::rand(&mut rng);
|
||||
let mut b = G::rand(&mut rng);
|
||||
let a_affine = a.into_affine();
|
||||
let b_affine = b.into_affine();
|
||||
|
||||
let s = G::Scalar::rand(&mut rng);
|
||||
|
||||
// s ( a + b )
|
||||
let mut tmp1 = a;
|
||||
tmp1.add_assign(&b);
|
||||
tmp1.mul_assign(s);
|
||||
|
||||
// sa + sb
|
||||
a.mul_assign(s);
|
||||
b.mul_assign(s);
|
||||
|
||||
let mut tmp2 = a;
|
||||
tmp2.add_assign(&b);
|
||||
|
||||
// Affine multiplication
|
||||
let mut tmp3 = a_affine.mul(s);
|
||||
tmp3.add_assign(&b_affine.mul(s));
|
||||
|
||||
assert_eq!(tmp1, tmp2);
|
||||
assert_eq!(tmp1, tmp3);
|
||||
}
|
||||
}
|
||||
|
||||
fn random_addition_tests<G: CurveProjective>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let a = G::rand(&mut rng);
|
||||
let b = G::rand(&mut rng);
|
||||
let c = G::rand(&mut rng);
|
||||
let a_affine = a.into_affine();
|
||||
let b_affine = b.into_affine();
|
||||
let c_affine = c.into_affine();
|
||||
|
||||
// a + a should equal the doubling
|
||||
{
|
||||
let mut aplusa = a;
|
||||
aplusa.add_assign(&a);
|
||||
|
||||
let mut aplusamixed = a;
|
||||
aplusamixed.add_assign_mixed(&a.into_affine());
|
||||
|
||||
let mut adouble = a;
|
||||
adouble.double();
|
||||
|
||||
assert_eq!(aplusa, adouble);
|
||||
assert_eq!(aplusa, aplusamixed);
|
||||
}
|
||||
|
||||
let mut tmp = vec![G::zero(); 6];
|
||||
|
||||
// (a + b) + c
|
||||
tmp[0] = a;
|
||||
tmp[0].add_assign(&b);
|
||||
tmp[0].add_assign(&c);
|
||||
|
||||
// a + (b + c)
|
||||
tmp[1] = b;
|
||||
tmp[1].add_assign(&c);
|
||||
tmp[1].add_assign(&a);
|
||||
|
||||
// (a + c) + b
|
||||
tmp[2] = a;
|
||||
tmp[2].add_assign(&c);
|
||||
tmp[2].add_assign(&b);
|
||||
|
||||
// Mixed addition
|
||||
|
||||
// (a + b) + c
|
||||
tmp[3] = a_affine.into_projective();
|
||||
tmp[3].add_assign_mixed(&b_affine);
|
||||
tmp[3].add_assign_mixed(&c_affine);
|
||||
|
||||
// a + (b + c)
|
||||
tmp[4] = b_affine.into_projective();
|
||||
tmp[4].add_assign_mixed(&c_affine);
|
||||
tmp[4].add_assign_mixed(&a_affine);
|
||||
|
||||
// (a + c) + b
|
||||
tmp[5] = a_affine.into_projective();
|
||||
tmp[5].add_assign_mixed(&c_affine);
|
||||
tmp[5].add_assign_mixed(&b_affine);
|
||||
|
||||
// Comparisons
|
||||
for i in 0..6 {
|
||||
for j in 0..6 {
|
||||
assert_eq!(tmp[i], tmp[j]);
|
||||
assert_eq!(tmp[i].into_affine(), tmp[j].into_affine());
|
||||
}
|
||||
|
||||
assert!(tmp[i] != a);
|
||||
assert!(tmp[i] != b);
|
||||
assert!(tmp[i] != c);
|
||||
|
||||
assert!(a != tmp[i]);
|
||||
assert!(b != tmp[i]);
|
||||
assert!(c != tmp[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn random_transformation_tests<G: CurveProjective>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let g = G::rand(&mut rng);
|
||||
let g_affine = g.into_affine();
|
||||
let g_projective = g_affine.into_projective();
|
||||
assert_eq!(g, g_projective);
|
||||
}
|
||||
|
||||
// Batch normalization
|
||||
for _ in 0..10 {
|
||||
let mut v = (0..1000).map(|_| G::rand(&mut rng)).collect::<Vec<_>>();
|
||||
|
||||
for i in &v {
|
||||
assert!(!i.is_normalized());
|
||||
}
|
||||
|
||||
use rand::distributions::{IndependentSample, Range};
|
||||
let between = Range::new(0, 1000);
|
||||
// Sprinkle in some normalized points
|
||||
for _ in 0..5 {
|
||||
v[between.ind_sample(&mut rng)] = G::zero();
|
||||
}
|
||||
for _ in 0..5 {
|
||||
let s = between.ind_sample(&mut rng);
|
||||
v[s] = v[s].into_affine().into_projective();
|
||||
}
|
||||
|
||||
let expected_v = v.iter()
|
||||
.map(|v| v.into_affine().into_projective())
|
||||
.collect::<Vec<_>>();
|
||||
G::batch_normalization(&mut v);
|
||||
|
||||
for i in &v {
|
||||
assert!(i.is_normalized());
|
||||
}
|
||||
|
||||
assert_eq!(v, expected_v);
|
||||
}
|
||||
}
|
||||
|
||||
fn random_encoding_tests<G: CurveAffine>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
assert_eq!(
|
||||
G::zero().into_uncompressed().into_affine().unwrap(),
|
||||
G::zero()
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
G::zero().into_compressed().into_affine().unwrap(),
|
||||
G::zero()
|
||||
);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut r = G::Projective::rand(&mut rng).into_affine();
|
||||
|
||||
let uncompressed = r.into_uncompressed();
|
||||
let de_uncompressed = uncompressed.into_affine().unwrap();
|
||||
assert_eq!(de_uncompressed, r);
|
||||
|
||||
let compressed = r.into_compressed();
|
||||
let de_compressed = compressed.into_affine().unwrap();
|
||||
assert_eq!(de_compressed, r);
|
||||
|
||||
r.negate();
|
||||
|
||||
let compressed = r.into_compressed();
|
||||
let de_compressed = compressed.into_affine().unwrap();
|
||||
assert_eq!(de_compressed, r);
|
||||
}
|
||||
}
|
181
group/src/wnaf.rs
Normal file
181
group/src/wnaf.rs
Normal file
@ -0,0 +1,181 @@
|
||||
use ff::{PrimeField, PrimeFieldRepr};
|
||||
|
||||
use super::CurveProjective;
|
||||
|
||||
/// Replaces the contents of `table` with a w-NAF window table for the given window size.
|
||||
pub(crate) fn wnaf_table<G: CurveProjective>(table: &mut Vec<G>, mut base: G, window: usize) {
|
||||
table.truncate(0);
|
||||
table.reserve(1 << (window - 1));
|
||||
|
||||
let mut dbl = base;
|
||||
dbl.double();
|
||||
|
||||
for _ in 0..(1 << (window - 1)) {
|
||||
table.push(base);
|
||||
base.add_assign(&dbl);
|
||||
}
|
||||
}
|
||||
|
||||
/// Replaces the contents of `wnaf` with the w-NAF representation of a scalar.
|
||||
pub(crate) fn wnaf_form<S: PrimeFieldRepr>(wnaf: &mut Vec<i64>, mut c: S, window: usize) {
|
||||
wnaf.truncate(0);
|
||||
|
||||
while !c.is_zero() {
|
||||
let mut u;
|
||||
if c.is_odd() {
|
||||
u = (c.as_ref()[0] % (1 << (window + 1))) as i64;
|
||||
|
||||
if u > (1 << window) {
|
||||
u -= 1 << (window + 1);
|
||||
}
|
||||
|
||||
if u > 0 {
|
||||
c.sub_noborrow(&S::from(u as u64));
|
||||
} else {
|
||||
c.add_nocarry(&S::from((-u) as u64));
|
||||
}
|
||||
} else {
|
||||
u = 0;
|
||||
}
|
||||
|
||||
wnaf.push(u);
|
||||
|
||||
c.div2();
|
||||
}
|
||||
}
|
||||
|
||||
/// Performs w-NAF exponentiation with the provided window table and w-NAF form scalar.
|
||||
///
|
||||
/// This function must be provided a `table` and `wnaf` that were constructed with
|
||||
/// the same window size; otherwise, it may panic or produce invalid results.
|
||||
pub(crate) fn wnaf_exp<G: CurveProjective>(table: &[G], wnaf: &[i64]) -> G {
|
||||
let mut result = G::zero();
|
||||
|
||||
let mut found_one = false;
|
||||
|
||||
for n in wnaf.iter().rev() {
|
||||
if found_one {
|
||||
result.double();
|
||||
}
|
||||
|
||||
if *n != 0 {
|
||||
found_one = true;
|
||||
|
||||
if *n > 0 {
|
||||
result.add_assign(&table[(n / 2) as usize]);
|
||||
} else {
|
||||
result.sub_assign(&table[((-n) / 2) as usize]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
/// A "w-ary non-adjacent form" exponentiation context.
|
||||
#[derive(Debug)]
|
||||
pub struct Wnaf<W, B, S> {
|
||||
base: B,
|
||||
scalar: S,
|
||||
window_size: W,
|
||||
}
|
||||
|
||||
impl<G: CurveProjective> Wnaf<(), Vec<G>, Vec<i64>> {
|
||||
/// Construct a new wNAF context without allocating.
|
||||
pub fn new() -> Self {
|
||||
Wnaf {
|
||||
base: vec![],
|
||||
scalar: vec![],
|
||||
window_size: (),
|
||||
}
|
||||
}
|
||||
|
||||
/// Given a base and a number of scalars, compute a window table and return a `Wnaf` object that
|
||||
/// can perform exponentiations with `.scalar(..)`.
|
||||
pub fn base(&mut self, base: G, num_scalars: usize) -> Wnaf<usize, &[G], &mut Vec<i64>> {
|
||||
// Compute the appropriate window size based on the number of scalars.
|
||||
let window_size = G::recommended_wnaf_for_num_scalars(num_scalars);
|
||||
|
||||
// Compute a wNAF table for the provided base and window size.
|
||||
wnaf_table(&mut self.base, base, window_size);
|
||||
|
||||
// Return a Wnaf object that immutably borrows the computed base storage location,
|
||||
// but mutably borrows the scalar storage location.
|
||||
Wnaf {
|
||||
base: &self.base[..],
|
||||
scalar: &mut self.scalar,
|
||||
window_size,
|
||||
}
|
||||
}
|
||||
|
||||
/// Given a scalar, compute its wNAF representation and return a `Wnaf` object that can perform
|
||||
/// exponentiations with `.base(..)`.
|
||||
pub fn scalar(
|
||||
&mut self,
|
||||
scalar: <<G as CurveProjective>::Scalar as PrimeField>::Repr,
|
||||
) -> Wnaf<usize, &mut Vec<G>, &[i64]> {
|
||||
// Compute the appropriate window size for the scalar.
|
||||
let window_size = G::recommended_wnaf_for_scalar(scalar);
|
||||
|
||||
// Compute the wNAF form of the scalar.
|
||||
wnaf_form(&mut self.scalar, scalar, window_size);
|
||||
|
||||
// Return a Wnaf object that mutably borrows the base storage location, but
|
||||
// immutably borrows the computed wNAF form scalar location.
|
||||
Wnaf {
|
||||
base: &mut self.base,
|
||||
scalar: &self.scalar[..],
|
||||
window_size,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, G: CurveProjective> Wnaf<usize, &'a [G], &'a mut Vec<i64>> {
|
||||
/// Constructs new space for the scalar representation while borrowing
|
||||
/// the computed window table, for sending the window table across threads.
|
||||
pub fn shared(&self) -> Wnaf<usize, &'a [G], Vec<i64>> {
|
||||
Wnaf {
|
||||
base: self.base,
|
||||
scalar: vec![],
|
||||
window_size: self.window_size,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, G: CurveProjective> Wnaf<usize, &'a mut Vec<G>, &'a [i64]> {
|
||||
/// Constructs new space for the window table while borrowing
|
||||
/// the computed scalar representation, for sending the scalar representation
|
||||
/// across threads.
|
||||
pub fn shared(&self) -> Wnaf<usize, Vec<G>, &'a [i64]> {
|
||||
Wnaf {
|
||||
base: vec![],
|
||||
scalar: self.scalar,
|
||||
window_size: self.window_size,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<B, S: AsRef<[i64]>> Wnaf<usize, B, S> {
|
||||
/// Performs exponentiation given a base.
|
||||
pub fn base<G: CurveProjective>(&mut self, base: G) -> G
|
||||
where
|
||||
B: AsMut<Vec<G>>,
|
||||
{
|
||||
wnaf_table(self.base.as_mut(), base, self.window_size);
|
||||
wnaf_exp(self.base.as_mut(), self.scalar.as_ref())
|
||||
}
|
||||
}
|
||||
|
||||
impl<B, S: AsMut<Vec<i64>>> Wnaf<usize, B, S> {
|
||||
/// Performs exponentiation given a scalar.
|
||||
pub fn scalar<G: CurveProjective>(
|
||||
&mut self,
|
||||
scalar: <<G as CurveProjective>::Scalar as PrimeField>::Repr,
|
||||
) -> G
|
||||
where
|
||||
B: AsRef<[G]>,
|
||||
{
|
||||
wnaf_form(self.scalar.as_mut(), scalar, self.window_size);
|
||||
wnaf_exp(self.base.as_ref(), self.scalar.as_mut())
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user