mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-01-30 15:32:14 +00:00
Make Field::square take &self and return Self
This commit is contained in:
parent
9dac748224
commit
cded08b0c5
@ -63,7 +63,7 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
|
||||
// Compute omega, the 2^exp primitive root of unity
|
||||
let mut omega = E::Fr::root_of_unity();
|
||||
for _ in exp..E::Fr::S {
|
||||
omega.square();
|
||||
omega = omega.square();
|
||||
}
|
||||
|
||||
// Extend the coeffs vector with zeroes if necessary
|
||||
|
@ -254,8 +254,7 @@ impl<E: ScalarEngine> AllocatedNum<E> {
|
||||
let var = cs.alloc(
|
||||
|| "squared num",
|
||||
|| {
|
||||
let mut tmp = *self.value.get()?;
|
||||
tmp.square();
|
||||
let tmp = self.value.get()?.square();
|
||||
|
||||
value = Some(tmp);
|
||||
|
||||
|
@ -140,8 +140,8 @@ impl Field for Fr {
|
||||
(self.0).0 == 0
|
||||
}
|
||||
|
||||
fn square(&mut self) {
|
||||
self.0 = (self.0 * self.0) % MODULUS_R;
|
||||
fn square(&self) -> Self {
|
||||
Fr((self.0 * self.0) % MODULUS_R)
|
||||
}
|
||||
|
||||
fn double(&self) -> Self {
|
||||
@ -191,22 +191,21 @@ impl SqrtField for Fr {
|
||||
while t != <Fr as Field>::one() {
|
||||
let mut i = 1;
|
||||
{
|
||||
let mut t2i = t;
|
||||
t2i.square();
|
||||
let mut t2i = t.square();
|
||||
loop {
|
||||
if t2i == <Fr as Field>::one() {
|
||||
break;
|
||||
}
|
||||
t2i.square();
|
||||
t2i = t2i.square();
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
|
||||
for _ in 0..(m - i - 1) {
|
||||
c.square();
|
||||
c = c.square();
|
||||
}
|
||||
MulAssign::mul_assign(&mut r, &c);
|
||||
c.square();
|
||||
c = c.square();
|
||||
MulAssign::mul_assign(&mut t, &c);
|
||||
m = i;
|
||||
}
|
||||
|
@ -41,8 +41,7 @@ fn mimc<E: Engine>(mut xl: E::Fr, mut xr: E::Fr, constants: &[E::Fr]) -> E::Fr {
|
||||
for i in 0..MIMC_ROUNDS {
|
||||
let mut tmp1 = xl;
|
||||
tmp1.add_assign(&constants[i]);
|
||||
let mut tmp2 = tmp1;
|
||||
tmp2.square();
|
||||
let mut tmp2 = tmp1.square();
|
||||
tmp2.mul_assign(&tmp1);
|
||||
tmp2.add_assign(&xr);
|
||||
xr = xl;
|
||||
@ -88,8 +87,7 @@ impl<'a, E: Engine> Circuit<E> for MiMCDemo<'a, E> {
|
||||
// tmp = (xL + Ci)^2
|
||||
let tmp_value = xl_value.map(|mut e| {
|
||||
e.add_assign(&self.constants[i]);
|
||||
e.square();
|
||||
e
|
||||
e.square()
|
||||
});
|
||||
let tmp = cs.alloc(
|
||||
|| "tmp",
|
||||
|
@ -447,8 +447,7 @@ fn prime_field_constants_and_sqrt(
|
||||
|
||||
let mut a1 = self.pow(#mod_minus_3_over_4);
|
||||
|
||||
let mut a0 = a1;
|
||||
a0.square();
|
||||
let mut a0 = a1.square();
|
||||
a0.mul_assign(self);
|
||||
|
||||
if a0.0 == #repr(#rneg) {
|
||||
@ -484,22 +483,21 @@ fn prime_field_constants_and_sqrt(
|
||||
while t != Self::one() {
|
||||
let mut i = 1;
|
||||
{
|
||||
let mut t2i = t;
|
||||
t2i.square();
|
||||
let mut t2i = t.square();
|
||||
loop {
|
||||
if t2i == Self::one() {
|
||||
break;
|
||||
}
|
||||
t2i.square();
|
||||
t2i = t2i.square();
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
|
||||
for _ in 0..(m - i - 1) {
|
||||
c.square();
|
||||
c = c.square();
|
||||
}
|
||||
r.mul_assign(&c);
|
||||
c.square();
|
||||
c = c.square();
|
||||
t.mul_assign(&c);
|
||||
m = i;
|
||||
}
|
||||
@ -715,7 +713,9 @@ fn prime_field_impl(
|
||||
);
|
||||
|
||||
gen.extend(quote! {
|
||||
self.mont_reduce(#mont_calling);
|
||||
let mut ret = *self;
|
||||
ret.mont_reduce(#mont_calling);
|
||||
ret
|
||||
});
|
||||
|
||||
gen
|
||||
@ -1113,7 +1113,7 @@ fn prime_field_impl(
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn square(&mut self)
|
||||
fn square(&self) -> Self
|
||||
{
|
||||
#squaring_impl
|
||||
}
|
||||
|
@ -51,7 +51,8 @@ pub trait Field:
|
||||
fn is_zero(&self) -> bool;
|
||||
|
||||
/// Squares this element.
|
||||
fn square(&mut self);
|
||||
#[must_use]
|
||||
fn square(&self) -> Self;
|
||||
|
||||
/// Doubles this element.
|
||||
#[must_use]
|
||||
@ -73,7 +74,7 @@ pub trait Field:
|
||||
|
||||
for i in BitIterator::new(exp) {
|
||||
if found_one {
|
||||
res.square();
|
||||
res = res.square();
|
||||
} else {
|
||||
found_one = i;
|
||||
}
|
||||
|
@ -210,8 +210,7 @@ fn bench_fq_square(b: &mut ::test::Bencher) {
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count];
|
||||
tmp.square();
|
||||
let tmp = v[count].square();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
@ -264,11 +263,7 @@ fn bench_fq_sqrt(b: &mut ::test::Bencher) {
|
||||
]);
|
||||
|
||||
let v: Vec<Fq> = (0..SAMPLES)
|
||||
.map(|_| {
|
||||
let mut tmp = Fq::random(&mut rng);
|
||||
tmp.square();
|
||||
tmp
|
||||
})
|
||||
.map(|_| Fq::random(&mut rng).square())
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
|
@ -84,8 +84,7 @@ fn bench_fq12_squaring(b: &mut ::test::Bencher) {
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count];
|
||||
tmp.square();
|
||||
let tmp = v[count].square();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
|
@ -84,8 +84,7 @@ fn bench_fq2_squaring(b: &mut ::test::Bencher) {
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count];
|
||||
tmp.square();
|
||||
let tmp = v[count].square();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
|
@ -210,8 +210,7 @@ fn bench_fr_square(b: &mut ::test::Bencher) {
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count];
|
||||
tmp.square();
|
||||
let tmp = v[count].square();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
@ -264,11 +263,7 @@ fn bench_fr_sqrt(b: &mut ::test::Bencher) {
|
||||
]);
|
||||
|
||||
let v: Vec<Fr> = (0..SAMPLES)
|
||||
.map(|_| {
|
||||
let mut tmp = Fr::random(&mut rng);
|
||||
tmp.square();
|
||||
tmp
|
||||
})
|
||||
.map(|_| Fr::random(&mut rng).square())
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
|
@ -54,10 +54,8 @@ macro_rules! curve_impl {
|
||||
// are equal when (X * Z^2) = (X' * Z'^2)
|
||||
// and (Y * Z^3) = (Y' * Z'^3).
|
||||
|
||||
let mut z1 = self.z;
|
||||
z1.square();
|
||||
let mut z2 = other.z;
|
||||
z2.square();
|
||||
let mut z1 = self.z.square();
|
||||
let mut z2 = other.z.square();
|
||||
|
||||
let mut tmp1 = self.x;
|
||||
tmp1.mul_assign(&z2);
|
||||
@ -101,8 +99,7 @@ macro_rules! curve_impl {
|
||||
/// largest y-coordinate be selected.
|
||||
fn get_point_from_x(x: $basefield, greatest: bool) -> Option<$affine> {
|
||||
// Compute x^3 + b
|
||||
let mut x3b = x;
|
||||
x3b.square();
|
||||
let mut x3b = x.square();
|
||||
x3b.mul_assign(&x);
|
||||
x3b.add_assign(&$affine::get_coeff_b());
|
||||
|
||||
@ -122,11 +119,9 @@ macro_rules! curve_impl {
|
||||
true
|
||||
} else {
|
||||
// Check that the point is on the curve
|
||||
let mut y2 = self.y;
|
||||
y2.square();
|
||||
let y2 = self.y.square();
|
||||
|
||||
let mut x3b = self.x;
|
||||
x3b.square();
|
||||
let mut x3b = self.x.square();
|
||||
x3b.mul_assign(&self.x);
|
||||
x3b.add_assign(&Self::get_coeff_b());
|
||||
|
||||
@ -283,8 +278,7 @@ macro_rules! curve_impl {
|
||||
|
||||
// Perform affine transformations
|
||||
for g in v.iter_mut().filter(|g| !g.is_normalized()) {
|
||||
let mut z = g.z; // 1/z
|
||||
z.square(); // 1/z^2
|
||||
let mut z = g.z.square(); // 1/z^2
|
||||
g.x.mul_assign(&z); // x/z^2
|
||||
z.mul_assign(&g.z); // 1/z^3
|
||||
g.y.mul_assign(&z); // y/z^3
|
||||
@ -305,21 +299,18 @@ macro_rules! curve_impl {
|
||||
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
|
||||
|
||||
// A = X1^2
|
||||
let mut a = self.x;
|
||||
a.square();
|
||||
let a = self.x.square();
|
||||
|
||||
// B = Y1^2
|
||||
let mut b = self.y;
|
||||
b.square();
|
||||
let b = self.y.square();
|
||||
|
||||
// C = B^2
|
||||
let mut c = b;
|
||||
c.square();
|
||||
let mut c = b.square();
|
||||
|
||||
// D = 2*((X1+B)2-A-C)
|
||||
let mut d = self.x;
|
||||
d.add_assign(&b);
|
||||
d.square();
|
||||
d = d.square();
|
||||
d.sub_assign(&a);
|
||||
d.sub_assign(&c);
|
||||
d = d.double();
|
||||
@ -329,8 +320,7 @@ macro_rules! curve_impl {
|
||||
e.add_assign(&a);
|
||||
|
||||
// F = E^2
|
||||
let mut f = e;
|
||||
f.square();
|
||||
let f = e.square();
|
||||
|
||||
// Z3 = 2*Y1*Z1
|
||||
self.z.mul_assign(&self.y);
|
||||
@ -362,12 +352,10 @@ macro_rules! curve_impl {
|
||||
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
|
||||
|
||||
// Z1Z1 = Z1^2
|
||||
let mut z1z1 = self.z;
|
||||
z1z1.square();
|
||||
let z1z1 = self.z.square();
|
||||
|
||||
// Z2Z2 = Z2^2
|
||||
let mut z2z2 = other.z;
|
||||
z2z2.square();
|
||||
let z2z2 = other.z.square();
|
||||
|
||||
// U1 = X1*Z2Z2
|
||||
let mut u1 = self.x;
|
||||
@ -398,8 +386,7 @@ macro_rules! curve_impl {
|
||||
h.sub_assign(&u1);
|
||||
|
||||
// I = (2*H)^2
|
||||
let mut i = h.double();
|
||||
i.square();
|
||||
let i = h.double().square();
|
||||
|
||||
// J = H*I
|
||||
let mut j = h;
|
||||
@ -415,8 +402,7 @@ macro_rules! curve_impl {
|
||||
v.mul_assign(&i);
|
||||
|
||||
// X3 = r^2 - J - 2*V
|
||||
self.x = r;
|
||||
self.x.square();
|
||||
self.x = r.square();
|
||||
self.x.sub_assign(&j);
|
||||
self.x.sub_assign(&v);
|
||||
self.x.sub_assign(&v);
|
||||
@ -431,7 +417,7 @@ macro_rules! curve_impl {
|
||||
|
||||
// Z3 = ((Z1+Z2)^2 - Z1Z1 - Z2Z2)*H
|
||||
self.z.add_assign(&other.z);
|
||||
self.z.square();
|
||||
self.z = self.z.square();
|
||||
self.z.sub_assign(&z1z1);
|
||||
self.z.sub_assign(&z2z2);
|
||||
self.z.mul_assign(&h);
|
||||
@ -453,8 +439,7 @@ macro_rules! curve_impl {
|
||||
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl
|
||||
|
||||
// Z1Z1 = Z1^2
|
||||
let mut z1z1 = self.z;
|
||||
z1z1.square();
|
||||
let z1z1 = self.z.square();
|
||||
|
||||
// U2 = X2*Z1Z1
|
||||
let mut u2 = other.x;
|
||||
@ -476,8 +461,7 @@ macro_rules! curve_impl {
|
||||
h.sub_assign(&self.x);
|
||||
|
||||
// HH = H^2
|
||||
let mut hh = h;
|
||||
hh.square();
|
||||
let hh = h.square();
|
||||
|
||||
// I = 4*HH
|
||||
let i = hh.double().double();
|
||||
@ -496,8 +480,7 @@ macro_rules! curve_impl {
|
||||
v.mul_assign(&i);
|
||||
|
||||
// X3 = r^2 - J - 2*V
|
||||
self.x = r;
|
||||
self.x.square();
|
||||
self.x = r.square();
|
||||
self.x.sub_assign(&j);
|
||||
self.x.sub_assign(&v);
|
||||
self.x.sub_assign(&v);
|
||||
@ -512,7 +495,7 @@ macro_rules! curve_impl {
|
||||
|
||||
// Z3 = (Z1+H)^2-Z1Z1-HH
|
||||
self.z.add_assign(&h);
|
||||
self.z.square();
|
||||
self.z = self.z.square();
|
||||
self.z.sub_assign(&z1z1);
|
||||
self.z.sub_assign(&hh);
|
||||
}
|
||||
@ -589,8 +572,7 @@ macro_rules! curve_impl {
|
||||
} else {
|
||||
// Z is nonzero, so it must have an inverse in a field.
|
||||
let zinv = p.z.inverse().unwrap();
|
||||
let mut zinv_powered = zinv;
|
||||
zinv_powered.square();
|
||||
let mut zinv_powered = zinv.square();
|
||||
|
||||
// X/Z^2
|
||||
let mut x = p.x;
|
||||
@ -933,8 +915,7 @@ pub mod g1 {
|
||||
let mut i = 0;
|
||||
loop {
|
||||
// y^2 = x^3 + b
|
||||
let mut rhs = x;
|
||||
rhs.square();
|
||||
let mut rhs = x.square();
|
||||
rhs.mul_assign(&x);
|
||||
rhs.add_assign(&G1Affine::get_coeff_b());
|
||||
|
||||
@ -1638,8 +1619,7 @@ pub mod g2 {
|
||||
let mut i = 0;
|
||||
loop {
|
||||
// y^2 = x^3 + b
|
||||
let mut rhs = x;
|
||||
rhs.square();
|
||||
let mut rhs = x.square();
|
||||
rhs.mul_assign(&x);
|
||||
rhs.add_assign(&G2Affine::get_coeff_b());
|
||||
|
||||
|
@ -1930,7 +1930,7 @@ fn test_fq_mul_assign() {
|
||||
|
||||
#[test]
|
||||
fn test_fq_squaring() {
|
||||
let mut a = Fq(FqRepr([
|
||||
let a = Fq(FqRepr([
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
@ -1939,9 +1939,8 @@ fn test_fq_squaring() {
|
||||
0x19ffffffffffffff,
|
||||
]));
|
||||
assert!(a.is_valid());
|
||||
a.square();
|
||||
assert_eq!(
|
||||
a,
|
||||
a.square(),
|
||||
Fq::from_repr(FqRepr([
|
||||
0x1cfb28fe7dfbbb86,
|
||||
0x24cbe1731577a59,
|
||||
@ -1961,14 +1960,7 @@ fn test_fq_squaring() {
|
||||
for _ in 0..1000000 {
|
||||
// Ensure that (a * a) = a^2
|
||||
let a = Fq::random(&mut rng);
|
||||
|
||||
let mut tmp = a;
|
||||
tmp.square();
|
||||
|
||||
let mut tmp2 = a;
|
||||
tmp2.mul_assign(&a);
|
||||
|
||||
assert_eq!(tmp, tmp2);
|
||||
assert_eq!(a.square(), a * a);
|
||||
}
|
||||
}
|
||||
|
||||
@ -2071,8 +2063,7 @@ fn test_fq_sqrt() {
|
||||
// Ensure sqrt(a^2) = a or -a
|
||||
let a = Fq::random(&mut rng);
|
||||
let nega = a.neg();
|
||||
let mut b = a;
|
||||
b.square();
|
||||
let b = a.square();
|
||||
|
||||
let b = b.sqrt().unwrap();
|
||||
|
||||
@ -2083,10 +2074,8 @@ fn test_fq_sqrt() {
|
||||
// Ensure sqrt(a)^2 = a for random a
|
||||
let a = Fq::random(&mut rng);
|
||||
|
||||
if let Some(mut tmp) = a.sqrt() {
|
||||
tmp.square();
|
||||
|
||||
assert_eq!(a, tmp);
|
||||
if let Some(tmp) = a.sqrt() {
|
||||
assert_eq!(a, tmp.square());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -199,7 +199,7 @@ impl Field for Fq12 {
|
||||
self.c1.c2.mul_assign(&FROBENIUS_COEFF_FQ12_C1[power % 12]);
|
||||
}
|
||||
|
||||
fn square(&mut self) {
|
||||
fn square(&self) -> Self {
|
||||
let mut ab = self.c0;
|
||||
ab.mul_assign(&self.c1);
|
||||
let mut c0c1 = self.c0;
|
||||
@ -209,18 +209,16 @@ impl Field for Fq12 {
|
||||
c0.add_assign(&self.c0);
|
||||
c0.mul_assign(&c0c1);
|
||||
c0.sub_assign(&ab);
|
||||
self.c1 = ab;
|
||||
self.c1.add_assign(&ab);
|
||||
let mut c1 = ab;
|
||||
c1.add_assign(&ab);
|
||||
ab.mul_by_nonresidue();
|
||||
c0.sub_assign(&ab);
|
||||
self.c0 = c0;
|
||||
Fq12 { c0, c1 }
|
||||
}
|
||||
|
||||
fn inverse(&self) -> Option<Self> {
|
||||
let mut c0s = self.c0;
|
||||
c0s.square();
|
||||
let mut c1s = self.c1;
|
||||
c1s.square();
|
||||
let mut c0s = self.c0.square();
|
||||
let mut c1s = self.c1.square();
|
||||
c1s.mul_by_nonresidue();
|
||||
c0s.sub_assign(&c1s);
|
||||
|
||||
|
@ -46,10 +46,8 @@ impl Fq2 {
|
||||
|
||||
/// Norm of Fq2 as extension field in i over Fq
|
||||
pub fn norm(&self) -> Fq {
|
||||
let mut t0 = self.c0;
|
||||
let mut t1 = self.c1;
|
||||
t0.square();
|
||||
t1.square();
|
||||
let t0 = self.c0.square();
|
||||
let mut t1 = self.c1.square();
|
||||
t1.add_assign(&t0);
|
||||
|
||||
t1
|
||||
@ -198,7 +196,7 @@ impl Field for Fq2 {
|
||||
self.c0.is_zero() && self.c1.is_zero()
|
||||
}
|
||||
|
||||
fn square(&mut self) {
|
||||
fn square(&self) -> Self {
|
||||
let mut ab = self.c0;
|
||||
ab.mul_assign(&self.c1);
|
||||
let mut c0c1 = self.c0;
|
||||
@ -207,10 +205,10 @@ impl Field for Fq2 {
|
||||
c0.add_assign(&self.c0);
|
||||
c0.mul_assign(&c0c1);
|
||||
c0.sub_assign(&ab);
|
||||
self.c1 = ab;
|
||||
self.c1.add_assign(&ab);
|
||||
let mut c1 = ab;
|
||||
c1.add_assign(&ab);
|
||||
c0.add_assign(&ab);
|
||||
self.c0 = c0;
|
||||
Fq2 { c0, c1 }
|
||||
}
|
||||
|
||||
fn double(&self) -> Self {
|
||||
@ -221,10 +219,8 @@ impl Field for Fq2 {
|
||||
}
|
||||
|
||||
fn inverse(&self) -> Option<Self> {
|
||||
let mut t1 = self.c1;
|
||||
t1.square();
|
||||
let mut t0 = self.c0;
|
||||
t0.square();
|
||||
let t1 = self.c1.square();
|
||||
let mut t0 = self.c0.square();
|
||||
t0.add_assign(&t1);
|
||||
t0.inverse().map(|t| Fq2 {
|
||||
c0: self.c0.mul(&t),
|
||||
@ -257,8 +253,7 @@ impl SqrtField for Fq2 {
|
||||
0x92c6e9ed90d2eb35,
|
||||
0x680447a8e5ff9a6,
|
||||
]);
|
||||
let mut alpha = a1;
|
||||
alpha.square();
|
||||
let mut alpha = a1.square();
|
||||
alpha.mul_assign(self);
|
||||
let mut a0 = alpha;
|
||||
a0.frobenius_map(1);
|
||||
@ -353,32 +348,30 @@ fn test_fq2_squaring() {
|
||||
use super::fq::FqRepr;
|
||||
use ff::PrimeField;
|
||||
|
||||
let mut a = Fq2 {
|
||||
let a = Fq2 {
|
||||
c0: Fq::one(),
|
||||
c1: Fq::one(),
|
||||
}; // u + 1
|
||||
a.square();
|
||||
assert_eq!(
|
||||
a,
|
||||
a.square(),
|
||||
Fq2 {
|
||||
c0: Fq::zero(),
|
||||
c1: Fq::from_repr(FqRepr::from(2)).unwrap(),
|
||||
}
|
||||
); // 2u
|
||||
|
||||
let mut a = Fq2 {
|
||||
let a = Fq2 {
|
||||
c0: Fq::zero(),
|
||||
c1: Fq::one(),
|
||||
}; // u
|
||||
a.square();
|
||||
assert_eq!(a, {
|
||||
assert_eq!(a.square(), {
|
||||
Fq2 {
|
||||
c0: Fq::one().neg(),
|
||||
c1: Fq::zero(),
|
||||
}
|
||||
}); // -1
|
||||
|
||||
let mut a = Fq2 {
|
||||
let a = Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x9c2c6309bbf8b598,
|
||||
0x4eef5c946536f602,
|
||||
@ -398,9 +391,8 @@ fn test_fq2_squaring() {
|
||||
]))
|
||||
.unwrap(),
|
||||
};
|
||||
a.square();
|
||||
assert_eq!(
|
||||
a,
|
||||
a.square(),
|
||||
Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0xf262c28c538bcf68,
|
||||
|
@ -303,35 +303,35 @@ impl Field for Fq6 {
|
||||
self.c2.mul_assign(&FROBENIUS_COEFF_FQ6_C2[power % 6]);
|
||||
}
|
||||
|
||||
fn square(&mut self) {
|
||||
let mut s0 = self.c0;
|
||||
s0.square();
|
||||
fn square(&self) -> Self {
|
||||
let s0 = self.c0.square();
|
||||
let mut ab = self.c0;
|
||||
ab.mul_assign(&self.c1);
|
||||
let s1 = ab.double();
|
||||
let mut s2 = self.c0;
|
||||
s2.sub_assign(&self.c1);
|
||||
s2.add_assign(&self.c2);
|
||||
s2.square();
|
||||
s2 = s2.square();
|
||||
let mut bc = self.c1;
|
||||
bc.mul_assign(&self.c2);
|
||||
let s3 = bc.double();
|
||||
let mut s4 = self.c2;
|
||||
s4.square();
|
||||
let s4 = self.c2.square();
|
||||
|
||||
self.c0 = s3;
|
||||
self.c0.mul_by_nonresidue();
|
||||
self.c0.add_assign(&s0);
|
||||
let mut c0 = s3;
|
||||
c0.mul_by_nonresidue();
|
||||
c0.add_assign(&s0);
|
||||
|
||||
self.c1 = s4;
|
||||
self.c1.mul_by_nonresidue();
|
||||
self.c1.add_assign(&s1);
|
||||
let mut c1 = s4;
|
||||
c1.mul_by_nonresidue();
|
||||
c1.add_assign(&s1);
|
||||
|
||||
self.c2 = s1;
|
||||
self.c2.add_assign(&s2);
|
||||
self.c2.add_assign(&s3);
|
||||
self.c2.sub_assign(&s0);
|
||||
self.c2.sub_assign(&s4);
|
||||
let mut c2 = s1;
|
||||
c2.add_assign(&s2);
|
||||
c2.add_assign(&s3);
|
||||
c2.sub_assign(&s0);
|
||||
c2.sub_assign(&s4);
|
||||
|
||||
Fq6 { c0, c1, c2 }
|
||||
}
|
||||
|
||||
fn inverse(&self) -> Option<Self> {
|
||||
@ -340,20 +340,17 @@ impl Field for Fq6 {
|
||||
c0.mul_assign(&self.c1);
|
||||
c0 = c0.neg();
|
||||
{
|
||||
let mut c0s = self.c0;
|
||||
c0s.square();
|
||||
let c0s = self.c0.square();
|
||||
c0.add_assign(&c0s);
|
||||
}
|
||||
let mut c1 = self.c2;
|
||||
c1.square();
|
||||
let mut c1 = self.c2.square();
|
||||
c1.mul_by_nonresidue();
|
||||
{
|
||||
let mut c01 = self.c0;
|
||||
c01.mul_assign(&self.c1);
|
||||
c1.sub_assign(&c01);
|
||||
}
|
||||
let mut c2 = self.c1;
|
||||
c2.square();
|
||||
let mut c2 = self.c1.square();
|
||||
{
|
||||
let mut c02 = self.c0;
|
||||
c02.mul_assign(&self.c2);
|
||||
|
@ -693,16 +693,15 @@ fn test_fr_mul_assign() {
|
||||
|
||||
#[test]
|
||||
fn test_fr_squaring() {
|
||||
let mut a = Fr(FrRepr([
|
||||
let a = Fr(FrRepr([
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0x73eda753299d7d47,
|
||||
]));
|
||||
assert!(a.is_valid());
|
||||
a.square();
|
||||
assert_eq!(
|
||||
a,
|
||||
a.square(),
|
||||
Fr::from_repr(FrRepr([
|
||||
0xc0d698e7bde077b8,
|
||||
0xb79a310579e76ec2,
|
||||
@ -720,14 +719,7 @@ fn test_fr_squaring() {
|
||||
for _ in 0..1000000 {
|
||||
// Ensure that (a * a) = a^2
|
||||
let a = Fr::random(&mut rng);
|
||||
|
||||
let mut tmp = a;
|
||||
tmp.square();
|
||||
|
||||
let mut tmp2 = a;
|
||||
tmp2.mul_assign(&a);
|
||||
|
||||
assert_eq!(tmp, tmp2);
|
||||
assert_eq!(a.square(), a * a);
|
||||
}
|
||||
}
|
||||
|
||||
@ -830,8 +822,7 @@ fn test_fr_sqrt() {
|
||||
// Ensure sqrt(a^2) = a or -a
|
||||
let a = Fr::random(&mut rng);
|
||||
let nega = a.neg();
|
||||
let mut b = a;
|
||||
b.square();
|
||||
let b = a.square();
|
||||
|
||||
let b = b.sqrt().unwrap();
|
||||
|
||||
@ -842,10 +833,8 @@ fn test_fr_sqrt() {
|
||||
// Ensure sqrt(a)^2 = a for random a
|
||||
let a = Fr::random(&mut rng);
|
||||
|
||||
if let Some(mut tmp) = a.sqrt() {
|
||||
tmp.square();
|
||||
|
||||
assert_eq!(a, tmp);
|
||||
if let Some(tmp) = a.sqrt() {
|
||||
assert_eq!(a, tmp.square());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -97,7 +97,7 @@ impl Engine for Bls12 {
|
||||
}
|
||||
}
|
||||
|
||||
f.square();
|
||||
f = f.square();
|
||||
}
|
||||
|
||||
for &mut (p, ref mut coeffs) in &mut pairs {
|
||||
@ -131,8 +131,7 @@ impl Engine for Bls12 {
|
||||
}
|
||||
|
||||
let mut x = BLS_X;
|
||||
let mut y0 = r;
|
||||
y0.square();
|
||||
let y0 = r.square();
|
||||
let mut y1 = y0;
|
||||
exp_by_x(&mut y1, x);
|
||||
x >>= 1;
|
||||
@ -185,18 +184,15 @@ impl G2Prepared {
|
||||
|
||||
fn doubling_step(r: &mut G2) -> (Fq2, Fq2, Fq2) {
|
||||
// Adaptation of Algorithm 26, https://eprint.iacr.org/2010/354.pdf
|
||||
let mut tmp0 = r.x;
|
||||
tmp0.square();
|
||||
let mut tmp0 = r.x.square();
|
||||
|
||||
let mut tmp1 = r.y;
|
||||
tmp1.square();
|
||||
let mut tmp1 = r.y.square();
|
||||
|
||||
let mut tmp2 = tmp1;
|
||||
tmp2.square();
|
||||
let mut tmp2 = tmp1.square();
|
||||
|
||||
let mut tmp3 = tmp1;
|
||||
tmp3.add_assign(&r.x);
|
||||
tmp3.square();
|
||||
tmp3 = tmp3.square();
|
||||
tmp3.sub_assign(&tmp0);
|
||||
tmp3.sub_assign(&tmp2);
|
||||
tmp3 = tmp3.double();
|
||||
@ -207,18 +203,16 @@ impl G2Prepared {
|
||||
let mut tmp6 = r.x;
|
||||
tmp6.add_assign(&tmp4);
|
||||
|
||||
let mut tmp5 = tmp4;
|
||||
tmp5.square();
|
||||
let tmp5 = tmp4.square();
|
||||
|
||||
let mut zsquared = r.z;
|
||||
zsquared.square();
|
||||
let zsquared = r.z.square();
|
||||
|
||||
r.x = tmp5;
|
||||
r.x.sub_assign(&tmp3);
|
||||
r.x.sub_assign(&tmp3);
|
||||
|
||||
r.z.add_assign(&r.y);
|
||||
r.z.square();
|
||||
r.z = r.z.square();
|
||||
r.z.sub_assign(&tmp1);
|
||||
r.z.sub_assign(&zsquared);
|
||||
|
||||
@ -234,7 +228,7 @@ impl G2Prepared {
|
||||
tmp3.mul_assign(&zsquared);
|
||||
tmp3 = tmp3.double().neg();
|
||||
|
||||
tmp6.square();
|
||||
tmp6 = tmp6.square();
|
||||
tmp6.sub_assign(&tmp0);
|
||||
tmp6.sub_assign(&tmp5);
|
||||
|
||||
@ -251,18 +245,16 @@ impl G2Prepared {
|
||||
|
||||
fn addition_step(r: &mut G2, q: &G2Affine) -> (Fq2, Fq2, Fq2) {
|
||||
// Adaptation of Algorithm 27, https://eprint.iacr.org/2010/354.pdf
|
||||
let mut zsquared = r.z;
|
||||
zsquared.square();
|
||||
let zsquared = r.z.square();
|
||||
|
||||
let mut ysquared = q.y;
|
||||
ysquared.square();
|
||||
let ysquared = q.y.square();
|
||||
|
||||
let mut t0 = zsquared;
|
||||
t0.mul_assign(&q.x);
|
||||
|
||||
let mut t1 = q.y;
|
||||
t1.add_assign(&r.z);
|
||||
t1.square();
|
||||
t1 = t1.square();
|
||||
t1.sub_assign(&ysquared);
|
||||
t1.sub_assign(&zsquared);
|
||||
t1.mul_assign(&zsquared);
|
||||
@ -270,8 +262,7 @@ impl G2Prepared {
|
||||
let mut t2 = t0;
|
||||
t2.sub_assign(&r.x);
|
||||
|
||||
let mut t3 = t2;
|
||||
t3.square();
|
||||
let t3 = t2.square();
|
||||
|
||||
let t4 = t3.double().double();
|
||||
|
||||
@ -288,14 +279,13 @@ impl G2Prepared {
|
||||
let mut t7 = t4;
|
||||
t7.mul_assign(&r.x);
|
||||
|
||||
r.x = t6;
|
||||
r.x.square();
|
||||
r.x = t6.square();
|
||||
r.x.sub_assign(&t5);
|
||||
r.x.sub_assign(&t7);
|
||||
r.x.sub_assign(&t7);
|
||||
|
||||
r.z.add_assign(&t2);
|
||||
r.z.square();
|
||||
r.z = r.z.square();
|
||||
r.z.sub_assign(&zsquared);
|
||||
r.z.sub_assign(&t3);
|
||||
|
||||
@ -313,11 +303,10 @@ impl G2Prepared {
|
||||
r.y = t8;
|
||||
r.y.sub_assign(&t0);
|
||||
|
||||
t10.square();
|
||||
t10 = t10.square();
|
||||
t10.sub_assign(&ysquared);
|
||||
|
||||
let mut ztsquared = r.z;
|
||||
ztsquared.square();
|
||||
let ztsquared = r.z.square();
|
||||
|
||||
t10.sub_assign(&ztsquared);
|
||||
|
||||
|
@ -189,8 +189,7 @@ fn test_g1_uncompressed_invalid_vectors() {
|
||||
let mut x = Fq::one();
|
||||
|
||||
loop {
|
||||
let mut x3b = x;
|
||||
x3b.square();
|
||||
let mut x3b = x.square();
|
||||
x3b.mul_assign(&x);
|
||||
x3b.add_assign(&Fq::from_repr(FqRepr::from(4)).unwrap()); // TODO: perhaps expose coeff_b through API?
|
||||
|
||||
@ -326,8 +325,7 @@ fn test_g2_uncompressed_invalid_vectors() {
|
||||
let mut x = Fq2::one();
|
||||
|
||||
loop {
|
||||
let mut x3b = x;
|
||||
x3b.square();
|
||||
let mut x3b = x.square();
|
||||
x3b.mul_assign(&x);
|
||||
x3b.add_assign(&Fq2 {
|
||||
c0: Fq::from_repr(FqRepr::from(4)).unwrap(),
|
||||
@ -422,8 +420,7 @@ fn test_g1_compressed_invalid_vectors() {
|
||||
let mut x = Fq::one();
|
||||
|
||||
loop {
|
||||
let mut x3b = x;
|
||||
x3b.square();
|
||||
let mut x3b = x.square();
|
||||
x3b.mul_assign(&x);
|
||||
x3b.add_assign(&Fq::from_repr(FqRepr::from(4)).unwrap()); // TODO: perhaps expose coeff_b through API?
|
||||
|
||||
@ -447,8 +444,7 @@ fn test_g1_compressed_invalid_vectors() {
|
||||
let mut x = Fq::one();
|
||||
|
||||
loop {
|
||||
let mut x3b = x;
|
||||
x3b.square();
|
||||
let mut x3b = x.square();
|
||||
x3b.mul_assign(&x);
|
||||
x3b.add_assign(&Fq::from_repr(FqRepr::from(4)).unwrap()); // TODO: perhaps expose coeff_b through API?
|
||||
|
||||
@ -553,8 +549,7 @@ fn test_g2_compressed_invalid_vectors() {
|
||||
};
|
||||
|
||||
loop {
|
||||
let mut x3b = x;
|
||||
x3b.square();
|
||||
let mut x3b = x.square();
|
||||
x3b.mul_assign(&x);
|
||||
x3b.add_assign(&Fq2 {
|
||||
c0: Fq::from_repr(FqRepr::from(4)).unwrap(),
|
||||
@ -585,8 +580,7 @@ fn test_g2_compressed_invalid_vectors() {
|
||||
};
|
||||
|
||||
loop {
|
||||
let mut x3b = x;
|
||||
x3b.square();
|
||||
let mut x3b = x.square();
|
||||
x3b.mul_assign(&x);
|
||||
x3b.add_assign(&Fq2 {
|
||||
c0: Fq::from_repr(FqRepr::from(4)).unwrap(),
|
||||
|
@ -31,8 +31,7 @@ pub fn random_sqrt_tests<F: SqrtField>() {
|
||||
|
||||
for _ in 0..10000 {
|
||||
let a = F::random(&mut rng);
|
||||
let mut b = a;
|
||||
b.square();
|
||||
let b = a.square();
|
||||
assert_eq!(b.legendre(), LegendreSymbol::QuadraticResidue);
|
||||
|
||||
let b = b.sqrt().unwrap();
|
||||
@ -43,8 +42,7 @@ pub fn random_sqrt_tests<F: SqrtField>() {
|
||||
|
||||
let mut c = F::one();
|
||||
for _ in 0..10000 {
|
||||
let mut b = c;
|
||||
b.square();
|
||||
let mut b = c.square();
|
||||
assert_eq!(b.legendre(), LegendreSymbol::QuadraticResidue);
|
||||
|
||||
b = b.sqrt().unwrap();
|
||||
@ -218,12 +216,8 @@ fn random_doubling_tests<F: Field, R: RngCore>(rng: &mut R) {
|
||||
|
||||
fn random_squaring_tests<F: Field, R: RngCore>(rng: &mut R) {
|
||||
for _ in 0..10000 {
|
||||
let mut a = F::random(rng);
|
||||
let mut b = a;
|
||||
a.mul_assign(&b);
|
||||
b.square();
|
||||
|
||||
assert_eq!(a, b);
|
||||
let a = F::random(rng);
|
||||
assert_eq!(a * a, a.square());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -107,8 +107,7 @@ impl<E: JubjubEngine> Point<E, Unknown> {
|
||||
// as dy^2 + 1 = 0 has no solution in Fr.
|
||||
|
||||
// tmp1 = y^2
|
||||
let mut tmp1 = y;
|
||||
tmp1.square();
|
||||
let mut tmp1 = y.square();
|
||||
|
||||
// tmp2 = (y^2 * d) + 1
|
||||
let mut tmp2 = tmp1;
|
||||
@ -335,17 +334,13 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
// http://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#doubling-dbl-2008-hwcd
|
||||
|
||||
// A = X1^2
|
||||
let mut a = self.x;
|
||||
a.square();
|
||||
let a = self.x.square();
|
||||
|
||||
// B = Y1^2
|
||||
let mut b = self.y;
|
||||
b.square();
|
||||
let b = self.y.square();
|
||||
|
||||
// C = 2*Z1^2
|
||||
let mut c = self.z;
|
||||
c.square();
|
||||
c = c.double();
|
||||
let c = self.z.square().double();
|
||||
|
||||
// D = a*A
|
||||
// = -A
|
||||
@ -354,7 +349,7 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
// E = (X1+Y1)^2 - A - B
|
||||
let mut e = self.x;
|
||||
e.add_assign(&self.y);
|
||||
e.square();
|
||||
e = e.square();
|
||||
e.add_assign(&d); // -A = D
|
||||
e.sub_assign(&b);
|
||||
|
||||
|
@ -575,7 +575,7 @@ impl Field for Fs {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn square(&mut self) {
|
||||
fn square(&self) -> Self {
|
||||
let mut carry = 0;
|
||||
let r1 = mac_with_carry(0, (self.0).0[0], (self.0).0[1], &mut carry);
|
||||
let r2 = mac_with_carry(0, (self.0).0[0], (self.0).0[2], &mut carry);
|
||||
@ -606,7 +606,10 @@ impl Field for Fs {
|
||||
let r5 = adc(r5, 0, &mut carry);
|
||||
let r6 = mac_with_carry(r6, (self.0).0[3], (self.0).0[3], &mut carry);
|
||||
let r7 = adc(r7, 0, &mut carry);
|
||||
self.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7);
|
||||
|
||||
let mut ret = *self;
|
||||
ret.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7);
|
||||
ret
|
||||
}
|
||||
}
|
||||
|
||||
@ -736,8 +739,7 @@ impl SqrtField for Fs {
|
||||
0x4199cec0404d0ec0,
|
||||
0x39f6d3a994cebea,
|
||||
]);
|
||||
let mut a0 = a1;
|
||||
a0.square();
|
||||
let mut a0 = a1.square();
|
||||
a0.mul_assign(self);
|
||||
|
||||
if a0 == NEGATIVE_ONE {
|
||||
@ -1403,16 +1405,15 @@ fn test_fs_mul_assign() {
|
||||
|
||||
#[test]
|
||||
fn test_fr_squaring() {
|
||||
let mut a = Fs(FsRepr([
|
||||
let a = Fs(FsRepr([
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xe7db4ea6533afa8,
|
||||
]));
|
||||
assert!(a.is_valid());
|
||||
a.square();
|
||||
assert_eq!(
|
||||
a,
|
||||
a.square(),
|
||||
Fs::from_repr(FsRepr([
|
||||
0x12c7f55cbc52fbaa,
|
||||
0xdedc98a0b5e6ce9e,
|
||||
@ -1431,8 +1432,7 @@ fn test_fr_squaring() {
|
||||
// Ensure that (a * a) = a^2
|
||||
let a = Fs::random(&mut rng);
|
||||
|
||||
let mut tmp = a;
|
||||
tmp.square();
|
||||
let tmp = a.square();
|
||||
|
||||
let mut tmp2 = a;
|
||||
tmp2.mul_assign(&a);
|
||||
@ -1538,8 +1538,7 @@ fn test_fs_sqrt() {
|
||||
// Ensure sqrt(a^2) = a or -a
|
||||
let a = Fs::random(&mut rng);
|
||||
let nega = a.neg();
|
||||
let mut b = a;
|
||||
b.square();
|
||||
let b = a.square();
|
||||
|
||||
let b = b.sqrt().unwrap();
|
||||
|
||||
@ -1550,10 +1549,8 @@ fn test_fs_sqrt() {
|
||||
// Ensure sqrt(a)^2 = a for random a
|
||||
let a = Fs::random(&mut rng);
|
||||
|
||||
if let Some(mut tmp) = a.sqrt() {
|
||||
tmp.square();
|
||||
|
||||
assert_eq!(a, tmp);
|
||||
if let Some(tmp) = a.sqrt() {
|
||||
assert_eq!(a, tmp.square());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -50,8 +50,7 @@ impl<E: JubjubEngine> Point<E, Unknown> {
|
||||
pub fn get_for_x(x: E::Fr, sign: bool, params: &E::Params) -> Option<Self> {
|
||||
// Given an x on the curve, y = sqrt(x^3 + A*x^2 + x)
|
||||
|
||||
let mut x2 = x;
|
||||
x2.square();
|
||||
let mut x2 = x.square();
|
||||
|
||||
let mut rhs = x2;
|
||||
rhs.mul_assign(params.montgomery_a());
|
||||
@ -220,8 +219,7 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
delta.add_assign(&tmp);
|
||||
}
|
||||
{
|
||||
let mut tmp = self.x;
|
||||
tmp.square();
|
||||
let mut tmp = self.x.square();
|
||||
delta.add_assign(&tmp);
|
||||
tmp = tmp.double();
|
||||
delta.add_assign(&tmp);
|
||||
@ -231,8 +229,7 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
delta.mul_assign(&tmp.inverse().expect("y is nonzero so this must be nonzero"));
|
||||
}
|
||||
|
||||
let mut x3 = delta;
|
||||
x3.square();
|
||||
let mut x3 = delta.square();
|
||||
x3.sub_assign(params.montgomery_a());
|
||||
x3.sub_assign(&self.x);
|
||||
x3.sub_assign(&self.x);
|
||||
@ -281,8 +278,7 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
);
|
||||
}
|
||||
|
||||
let mut x3 = delta;
|
||||
x3.square();
|
||||
let mut x3 = delta.square();
|
||||
x3.sub_assign(params.montgomery_a());
|
||||
x3.sub_assign(&self.x);
|
||||
x3.sub_assign(&other.x);
|
||||
|
@ -20,11 +20,9 @@ pub fn test_suite<E: JubjubEngine>(params: &E::Params) {
|
||||
}
|
||||
|
||||
fn is_on_mont_curve<E: JubjubEngine, P: JubjubParams<E>>(x: E::Fr, y: E::Fr, params: &P) -> bool {
|
||||
let mut lhs = y;
|
||||
lhs.square();
|
||||
let lhs = y.square();
|
||||
|
||||
let mut x2 = x;
|
||||
x2.square();
|
||||
let x2 = x.square();
|
||||
|
||||
let mut x3 = x2;
|
||||
x3.mul_assign(&x);
|
||||
@ -42,11 +40,9 @@ fn is_on_twisted_edwards_curve<E: JubjubEngine, P: JubjubParams<E>>(
|
||||
y: E::Fr,
|
||||
params: &P,
|
||||
) -> bool {
|
||||
let mut x2 = x;
|
||||
x2.square();
|
||||
let x2 = x.square();
|
||||
|
||||
let mut y2 = y;
|
||||
y2.square();
|
||||
let y2 = y.square();
|
||||
|
||||
// -x^2 + y^2
|
||||
let mut lhs = y2;
|
||||
@ -346,8 +342,7 @@ fn test_jubjub_params<E: JubjubEngine>(params: &E::Params) {
|
||||
|
||||
{
|
||||
// Check that A^2 - 4 is nonsquare:
|
||||
let mut tmp = params.montgomery_a().clone();
|
||||
tmp.square();
|
||||
let mut tmp = params.montgomery_a().square();
|
||||
tmp.sub_assign(&E::Fr::from_str("4").unwrap());
|
||||
assert!(tmp.legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
}
|
||||
|
@ -323,8 +323,7 @@ impl<E: JubjubEngine> EdwardsPoint<E> {
|
||||
|
||||
// Compute C = d*A*A
|
||||
let c = AllocatedNum::alloc(cs.namespace(|| "C"), || {
|
||||
let mut t0 = *a.get_value().get()?;
|
||||
t0.square();
|
||||
let mut t0 = a.get_value().get()?.square();
|
||||
t0.mul_assign(params.edwards_d());
|
||||
|
||||
Ok(t0)
|
||||
@ -612,8 +611,7 @@ impl<E: JubjubEngine> MontgomeryPoint<E> {
|
||||
|
||||
// Compute x'' = lambda^2 - A - x - x'
|
||||
let xprime = AllocatedNum::alloc(cs.namespace(|| "xprime"), || {
|
||||
let mut t0 = *lambda.get_value().get()?;
|
||||
t0.square();
|
||||
let mut t0 = lambda.get_value().get()?.square();
|
||||
t0.sub_assign(params.montgomery_a());
|
||||
t0.sub_assign(self.x.get_value().get()?);
|
||||
t0.sub_assign(other.x.get_value().get()?);
|
||||
|
Loading…
Reference in New Issue
Block a user