mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-02-11 17:55:46 +00:00
Merge pull request #32 from str4d/cargo-workspace
Convert the repo into a Cargo workspace
This commit is contained in:
commit
e1c6232dd7
618
Cargo.lock
generated
618
Cargo.lock
generated
@ -1,3 +1,49 @@
|
||||
[[package]]
|
||||
name = "aes"
|
||||
version = "0.2.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"aes-soft 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"aesni 0.4.1 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"block-cipher-trait 0.5.3 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "aes-soft"
|
||||
version = "0.2.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"block-cipher-trait 0.5.3 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"byte-tools 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"opaque-debug 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "aesni"
|
||||
version = "0.4.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"block-cipher-trait 0.5.3 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"opaque-debug 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"stream-cipher 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "aho-corasick"
|
||||
version = "0.6.8"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"memchr 2.0.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "ansi_term"
|
||||
version = "0.11.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"winapi 0.3.4 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "arrayvec"
|
||||
version = "0.4.7"
|
||||
@ -6,10 +52,30 @@ dependencies = [
|
||||
"nodrop 0.1.12 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "backtrace"
|
||||
version = "0.3.9"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"backtrace-sys 0.1.24 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"cfg-if 0.1.5 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"libc 0.2.40 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"rustc-demangle 0.1.9 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"winapi 0.3.4 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "backtrace-sys"
|
||||
version = "0.1.24"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"cc 1.0.22 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"libc 0.2.40 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "bellman"
|
||||
version = "0.1.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"bit-vec 0.4.4 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"byteorder 1.2.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
@ -17,7 +83,7 @@ dependencies = [
|
||||
"futures 0.1.21 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"futures-cpupool 0.1.8 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"num_cpus 1.8.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"pairing 0.14.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"pairing 0.14.2",
|
||||
"rand 0.4.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
@ -26,6 +92,11 @@ name = "bit-vec"
|
||||
version = "0.4.4"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "bitflags"
|
||||
version = "0.9.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "bitflags"
|
||||
version = "1.0.1"
|
||||
@ -41,11 +112,79 @@ dependencies = [
|
||||
"constant_time_eq 0.1.3 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "block-cipher-trait"
|
||||
version = "0.5.3"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"generic-array 0.9.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "byte-tools"
|
||||
version = "0.2.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "byteorder"
|
||||
version = "1.2.2"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "cargo_metadata"
|
||||
version = "0.5.8"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"error-chain 0.11.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"semver 0.9.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"serde 1.0.75 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"serde_derive 1.0.75 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"serde_json 1.0.26 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "cc"
|
||||
version = "1.0.22"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "cfg-if"
|
||||
version = "0.1.5"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "clippy"
|
||||
version = "0.0.200"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"ansi_term 0.11.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"clippy_lints 0.0.200 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"regex 1.0.4 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"rustc_version 0.2.3 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"semver 0.9.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "clippy_lints"
|
||||
version = "0.0.200"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"cargo_metadata 0.5.8 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"if_chain 0.1.3 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"itertools 0.7.8 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"lazy_static 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"matches 0.1.8 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"pulldown-cmark 0.1.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"quine-mc_cluskey 0.2.4 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"regex-syntax 0.6.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"semver 0.9.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"serde 1.0.75 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"serde_derive 1.0.75 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"toml 0.4.6 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"unicode-normalization 0.1.7 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"url 1.7.1 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "constant_time_eq"
|
||||
version = "0.1.3"
|
||||
@ -64,6 +203,31 @@ dependencies = [
|
||||
"generic-array 0.9.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "either"
|
||||
version = "1.5.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "error-chain"
|
||||
version = "0.11.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"backtrace 0.3.9 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "fpe"
|
||||
version = "0.1.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"aes 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"byteorder 1.2.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"num-bigint 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"num-integer 0.1.39 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"num-traits 0.2.5 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "fuchsia-zircon"
|
||||
version = "0.3.3"
|
||||
@ -92,6 +256,11 @@ dependencies = [
|
||||
"num_cpus 1.8.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "gcc"
|
||||
version = "0.3.54"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "generic-array"
|
||||
version = "0.9.0"
|
||||
@ -100,6 +269,59 @@ dependencies = [
|
||||
"typenum 1.10.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "getopts"
|
||||
version = "0.2.18"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"unicode-width 0.1.5 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "hex-literal"
|
||||
version = "0.1.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"hex-literal-impl 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"proc-macro-hack 0.4.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "hex-literal-impl"
|
||||
version = "0.1.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"proc-macro-hack 0.4.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "idna"
|
||||
version = "0.1.5"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"matches 0.1.8 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"unicode-bidi 0.3.4 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"unicode-normalization 0.1.7 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "if_chain"
|
||||
version = "0.1.3"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "itertools"
|
||||
version = "0.7.8"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"either 1.5.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "itoa"
|
||||
version = "0.4.2"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "lazy_static"
|
||||
version = "1.0.0"
|
||||
@ -114,14 +336,27 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
name = "librustzcash"
|
||||
version = "0.1.0"
|
||||
dependencies = [
|
||||
"bellman 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"bellman 0.1.0",
|
||||
"blake2-rfc 0.2.18 (git+https://github.com/gtank/blake2-rfc?rev=7a5b5fc99ae483a0043db7547fb79a6fa44b88a9)",
|
||||
"byteorder 1.2.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"lazy_static 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"libc 0.2.40 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"pairing 0.14.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"pairing 0.14.2",
|
||||
"rand 0.4.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"sapling-crypto 0.0.1 (git+https://github.com/zcash-hackworks/sapling-crypto?rev=21084bde2019c04bd34208e63c3560fe2c02fb0e)",
|
||||
"sapling-crypto 0.0.1",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "matches"
|
||||
version = "0.1.8"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "memchr"
|
||||
version = "2.0.2"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"libc 0.2.40 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@ -129,6 +364,28 @@ name = "nodrop"
|
||||
version = "0.1.12"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "num-bigint"
|
||||
version = "0.2.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"num-integer 0.1.39 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"num-traits 0.2.5 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "num-integer"
|
||||
version = "0.1.39"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"num-traits 0.2.5 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "num-traits"
|
||||
version = "0.2.5"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "num_cpus"
|
||||
version = "1.8.0"
|
||||
@ -137,12 +394,75 @@ dependencies = [
|
||||
"libc 0.2.40 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "opaque-debug"
|
||||
version = "0.1.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "pairing"
|
||||
version = "0.14.2"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"byteorder 1.2.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"clippy 0.0.200 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"rand 0.4.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "percent-encoding"
|
||||
version = "1.0.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "proc-macro-hack"
|
||||
version = "0.4.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"proc-macro-hack-impl 0.4.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "proc-macro-hack-impl"
|
||||
version = "0.4.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "proc-macro2"
|
||||
version = "0.4.14"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"unicode-xid 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pulldown-cmark"
|
||||
version = "0.1.2"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"bitflags 0.9.1 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"getopts 0.2.18 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "quine-mc_cluskey"
|
||||
version = "0.2.4"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "quote"
|
||||
version = "0.6.8"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"proc-macro2 0.4.14 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "rand"
|
||||
version = "0.3.22"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"fuchsia-zircon 0.3.3 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"libc 0.2.40 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"rand 0.4.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
@ -156,17 +476,161 @@ dependencies = [
|
||||
"winapi 0.3.4 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "redox_syscall"
|
||||
version = "0.1.40"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "regex"
|
||||
version = "1.0.4"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"aho-corasick 0.6.8 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"memchr 2.0.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"regex-syntax 0.6.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"thread_local 0.3.6 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"utf8-ranges 1.0.1 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "regex-syntax"
|
||||
version = "0.6.2"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"ucd-util 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "rust-crypto"
|
||||
version = "0.2.36"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"gcc 0.3.54 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"libc 0.2.40 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"rand 0.3.22 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"rustc-serialize 0.3.24 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"time 0.1.40 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "rustc-demangle"
|
||||
version = "0.1.9"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "rustc-serialize"
|
||||
version = "0.3.24"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "rustc_version"
|
||||
version = "0.2.3"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"semver 0.9.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "ryu"
|
||||
version = "0.2.6"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "sapling-crypto"
|
||||
version = "0.0.1"
|
||||
source = "git+https://github.com/zcash-hackworks/sapling-crypto?rev=21084bde2019c04bd34208e63c3560fe2c02fb0e#21084bde2019c04bd34208e63c3560fe2c02fb0e"
|
||||
dependencies = [
|
||||
"bellman 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"bellman 0.1.0",
|
||||
"blake2-rfc 0.2.18 (git+https://github.com/gtank/blake2-rfc?rev=7a5b5fc99ae483a0043db7547fb79a6fa44b88a9)",
|
||||
"byteorder 1.2.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"digest 0.7.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"pairing 0.14.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"hex-literal 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"pairing 0.14.2",
|
||||
"rand 0.4.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"rust-crypto 0.2.36 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "semver"
|
||||
version = "0.9.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"semver-parser 0.7.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"serde 1.0.75 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "semver-parser"
|
||||
version = "0.7.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "serde"
|
||||
version = "1.0.75"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "serde_derive"
|
||||
version = "1.0.75"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"proc-macro2 0.4.14 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"quote 0.6.8 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"syn 0.14.9 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "serde_json"
|
||||
version = "1.0.26"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"itoa 0.4.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"ryu 0.2.6 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"serde 1.0.75 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "stream-cipher"
|
||||
version = "0.1.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"generic-array 0.9.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "syn"
|
||||
version = "0.14.9"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"proc-macro2 0.4.14 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"quote 0.6.8 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"unicode-xid 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "thread_local"
|
||||
version = "0.3.6"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"lazy_static 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "time"
|
||||
version = "0.1.40"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"libc 0.2.40 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"redox_syscall 0.1.40 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"winapi 0.3.4 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "toml"
|
||||
version = "0.4.6"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"serde 1.0.75 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@ -174,6 +638,49 @@ name = "typenum"
|
||||
version = "1.10.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "ucd-util"
|
||||
version = "0.1.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "unicode-bidi"
|
||||
version = "0.3.4"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"matches 0.1.8 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "unicode-normalization"
|
||||
version = "0.1.7"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "unicode-width"
|
||||
version = "0.1.5"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "unicode-xid"
|
||||
version = "0.1.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "url"
|
||||
version = "1.7.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
dependencies = [
|
||||
"idna 0.1.5 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"matches 0.1.8 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"percent-encoding 1.0.1 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "utf8-ranges"
|
||||
version = "1.0.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "winapi"
|
||||
version = "0.3.4"
|
||||
@ -193,29 +700,116 @@ name = "winapi-x86_64-pc-windows-gnu"
|
||||
version = "0.4.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
|
||||
[[package]]
|
||||
name = "zcash_primitives"
|
||||
version = "0.0.0"
|
||||
|
||||
[[package]]
|
||||
name = "zcash_proofs"
|
||||
version = "0.0.0"
|
||||
|
||||
[[package]]
|
||||
name = "zcash_wallet"
|
||||
version = "0.0.0"
|
||||
|
||||
[[package]]
|
||||
name = "zip32"
|
||||
version = "0.0.0"
|
||||
dependencies = [
|
||||
"aes 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"blake2-rfc 0.2.18 (git+https://github.com/gtank/blake2-rfc?rev=7a5b5fc99ae483a0043db7547fb79a6fa44b88a9)",
|
||||
"byteorder 1.2.2 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"fpe 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"lazy_static 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"pairing 0.14.2",
|
||||
"sapling-crypto 0.0.1",
|
||||
]
|
||||
|
||||
[metadata]
|
||||
"checksum aes 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)" = "e6fb1737cdc8da3db76e90ca817a194249a38fcb500c2e6ecec39b29448aa873"
|
||||
"checksum aes-soft 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)" = "67cc03b0a090a05cb01e96998a01905d7ceedce1bc23b756c0bb7faa0682ccb1"
|
||||
"checksum aesni 0.4.1 (registry+https://github.com/rust-lang/crates.io-index)" = "6810b7fb9f2bb4f76f05ac1c170b8dde285b6308955dc3afd89710268c958d9e"
|
||||
"checksum aho-corasick 0.6.8 (registry+https://github.com/rust-lang/crates.io-index)" = "68f56c7353e5a9547cbd76ed90f7bb5ffc3ba09d4ea9bd1d8c06c8b1142eeb5a"
|
||||
"checksum ansi_term 0.11.0 (registry+https://github.com/rust-lang/crates.io-index)" = "ee49baf6cb617b853aa8d93bf420db2383fab46d314482ca2803b40d5fde979b"
|
||||
"checksum arrayvec 0.4.7 (registry+https://github.com/rust-lang/crates.io-index)" = "a1e964f9e24d588183fcb43503abda40d288c8657dfc27311516ce2f05675aef"
|
||||
"checksum bellman 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)" = "eae372472c7ea8f7c8fc6a62f7d5535db8302de7f1aafda2e13a97c4830d3bcf"
|
||||
"checksum backtrace 0.3.9 (registry+https://github.com/rust-lang/crates.io-index)" = "89a47830402e9981c5c41223151efcced65a0510c13097c769cede7efb34782a"
|
||||
"checksum backtrace-sys 0.1.24 (registry+https://github.com/rust-lang/crates.io-index)" = "c66d56ac8dabd07f6aacdaf633f4b8262f5b3601a810a0dcddffd5c22c69daa0"
|
||||
"checksum bit-vec 0.4.4 (registry+https://github.com/rust-lang/crates.io-index)" = "02b4ff8b16e6076c3e14220b39fbc1fabb6737522281a388998046859400895f"
|
||||
"checksum bitflags 0.9.1 (registry+https://github.com/rust-lang/crates.io-index)" = "4efd02e230a02e18f92fc2735f44597385ed02ad8f831e7c1c1156ee5e1ab3a5"
|
||||
"checksum bitflags 1.0.1 (registry+https://github.com/rust-lang/crates.io-index)" = "b3c30d3802dfb7281680d6285f2ccdaa8c2d8fee41f93805dba5c4cf50dc23cf"
|
||||
"checksum blake2-rfc 0.2.18 (git+https://github.com/gtank/blake2-rfc?rev=7a5b5fc99ae483a0043db7547fb79a6fa44b88a9)" = "<none>"
|
||||
"checksum block-cipher-trait 0.5.3 (registry+https://github.com/rust-lang/crates.io-index)" = "370424437b9459f3dfd68428ed9376ddfe03d8b70ede29cc533b3557df186ab4"
|
||||
"checksum byte-tools 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)" = "560c32574a12a89ecd91f5e742165893f86e3ab98d21f8ea548658eb9eef5f40"
|
||||
"checksum byteorder 1.2.2 (registry+https://github.com/rust-lang/crates.io-index)" = "73b5bdfe7ee3ad0b99c9801d58807a9dbc9e09196365b0203853b99889ab3c87"
|
||||
"checksum cargo_metadata 0.5.8 (registry+https://github.com/rust-lang/crates.io-index)" = "1efca0b863ca03ed4c109fb1c55e0bc4bbeb221d3e103d86251046b06a526bd0"
|
||||
"checksum cc 1.0.22 (registry+https://github.com/rust-lang/crates.io-index)" = "4a6007c146fdd28d4512a794b07ffe9d8e89e6bf86e2e0c4ddff2e1fb54a0007"
|
||||
"checksum cfg-if 0.1.5 (registry+https://github.com/rust-lang/crates.io-index)" = "0c4e7bb64a8ebb0d856483e1e682ea3422f883c5f5615a90d51a2c82fe87fdd3"
|
||||
"checksum clippy 0.0.200 (registry+https://github.com/rust-lang/crates.io-index)" = "927a1f79af10deb103df108347f23c6b7fa1731c953d6fb24d68be1748a0993f"
|
||||
"checksum clippy_lints 0.0.200 (registry+https://github.com/rust-lang/crates.io-index)" = "d2432663f6bdb90255dcf9df5ca504f99b575bb471281591138f62f9d31f863b"
|
||||
"checksum constant_time_eq 0.1.3 (registry+https://github.com/rust-lang/crates.io-index)" = "8ff012e225ce166d4422e0e78419d901719760f62ae2b7969ca6b564d1b54a9e"
|
||||
"checksum crossbeam 0.3.2 (registry+https://github.com/rust-lang/crates.io-index)" = "24ce9782d4d5c53674646a6a4c1863a21a8fc0cb649b3c94dfc16e45071dea19"
|
||||
"checksum digest 0.7.2 (registry+https://github.com/rust-lang/crates.io-index)" = "00a49051fef47a72c9623101b19bd71924a45cca838826caae3eaa4d00772603"
|
||||
"checksum either 1.5.0 (registry+https://github.com/rust-lang/crates.io-index)" = "3be565ca5c557d7f59e7cfcf1844f9e3033650c929c6566f511e8005f205c1d0"
|
||||
"checksum error-chain 0.11.0 (registry+https://github.com/rust-lang/crates.io-index)" = "ff511d5dc435d703f4971bc399647c9bc38e20cb41452e3b9feb4765419ed3f3"
|
||||
"checksum fpe 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)" = "ce3371c82bfbd984f624cab093f55e7336f5a6e589f8518e1258f54f011b89ad"
|
||||
"checksum fuchsia-zircon 0.3.3 (registry+https://github.com/rust-lang/crates.io-index)" = "2e9763c69ebaae630ba35f74888db465e49e259ba1bc0eda7d06f4a067615d82"
|
||||
"checksum fuchsia-zircon-sys 0.3.3 (registry+https://github.com/rust-lang/crates.io-index)" = "3dcaa9ae7725d12cdb85b3ad99a434db70b468c09ded17e012d86b5c1010f7a7"
|
||||
"checksum futures 0.1.21 (registry+https://github.com/rust-lang/crates.io-index)" = "1a70b146671de62ec8c8ed572219ca5d594d9b06c0b364d5e67b722fc559b48c"
|
||||
"checksum futures-cpupool 0.1.8 (registry+https://github.com/rust-lang/crates.io-index)" = "ab90cde24b3319636588d0c35fe03b1333857621051837ed769faefb4c2162e4"
|
||||
"checksum gcc 0.3.54 (registry+https://github.com/rust-lang/crates.io-index)" = "5e33ec290da0d127825013597dbdfc28bee4964690c7ce1166cbc2a7bd08b1bb"
|
||||
"checksum generic-array 0.9.0 (registry+https://github.com/rust-lang/crates.io-index)" = "ef25c5683767570c2bbd7deba372926a55eaae9982d7726ee2a1050239d45b9d"
|
||||
"checksum getopts 0.2.18 (registry+https://github.com/rust-lang/crates.io-index)" = "0a7292d30132fb5424b354f5dc02512a86e4c516fe544bb7a25e7f266951b797"
|
||||
"checksum hex-literal 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)" = "4da5f0e01bd8a71a224a4eedecaacfcabda388dbb7a80faf04d3514287572d95"
|
||||
"checksum hex-literal-impl 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)" = "1d340b6514f232f6db1bd16db65302a5278a04fef9ce867cb932e7e5fa21130a"
|
||||
"checksum idna 0.1.5 (registry+https://github.com/rust-lang/crates.io-index)" = "38f09e0f0b1fb55fdee1f17470ad800da77af5186a1a76c026b679358b7e844e"
|
||||
"checksum if_chain 0.1.3 (registry+https://github.com/rust-lang/crates.io-index)" = "4bac95d9aa0624e7b78187d6fb8ab012b41d9f6f54b1bcb61e61c4845f8357ec"
|
||||
"checksum itertools 0.7.8 (registry+https://github.com/rust-lang/crates.io-index)" = "f58856976b776fedd95533137617a02fb25719f40e7d9b01c7043cd65474f450"
|
||||
"checksum itoa 0.4.2 (registry+https://github.com/rust-lang/crates.io-index)" = "5adb58558dcd1d786b5f0bd15f3226ee23486e24b7b58304b60f64dc68e62606"
|
||||
"checksum lazy_static 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)" = "c8f31047daa365f19be14b47c29df4f7c3b581832407daabe6ae77397619237d"
|
||||
"checksum libc 0.2.40 (registry+https://github.com/rust-lang/crates.io-index)" = "6fd41f331ac7c5b8ac259b8bf82c75c0fb2e469bbf37d2becbba9a6a2221965b"
|
||||
"checksum matches 0.1.8 (registry+https://github.com/rust-lang/crates.io-index)" = "7ffc5c5338469d4d3ea17d269fa8ea3512ad247247c30bd2df69e68309ed0a08"
|
||||
"checksum memchr 2.0.2 (registry+https://github.com/rust-lang/crates.io-index)" = "a3b4142ab8738a78c51896f704f83c11df047ff1bda9a92a661aa6361552d93d"
|
||||
"checksum nodrop 0.1.12 (registry+https://github.com/rust-lang/crates.io-index)" = "9a2228dca57108069a5262f2ed8bd2e82496d2e074a06d1ccc7ce1687b6ae0a2"
|
||||
"checksum num-bigint 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)" = "3eceac7784c5dc97c2d6edf30259b4e153e6e2b42b3c85e9a6e9f45d06caef6e"
|
||||
"checksum num-integer 0.1.39 (registry+https://github.com/rust-lang/crates.io-index)" = "e83d528d2677f0518c570baf2b7abdcf0cd2d248860b68507bdcb3e91d4c0cea"
|
||||
"checksum num-traits 0.2.5 (registry+https://github.com/rust-lang/crates.io-index)" = "630de1ef5cc79d0cdd78b7e33b81f083cbfe90de0f4b2b2f07f905867c70e9fe"
|
||||
"checksum num_cpus 1.8.0 (registry+https://github.com/rust-lang/crates.io-index)" = "c51a3322e4bca9d212ad9a158a02abc6934d005490c054a2778df73a70aa0a30"
|
||||
"checksum pairing 0.14.2 (registry+https://github.com/rust-lang/crates.io-index)" = "ceda21136251c6d5a422d3d798d8ac22515a6e8d3521bb60c59a8349d36d0d57"
|
||||
"checksum opaque-debug 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)" = "d620c9c26834b34f039489ac0dfdb12c7ac15ccaf818350a64c9b5334a452ad7"
|
||||
"checksum percent-encoding 1.0.1 (registry+https://github.com/rust-lang/crates.io-index)" = "31010dd2e1ac33d5b46a5b413495239882813e0369f8ed8a5e266f173602f831"
|
||||
"checksum proc-macro-hack 0.4.0 (registry+https://github.com/rust-lang/crates.io-index)" = "3ba8d4f9257b85eb6cdf13f055cea3190520aab1409ca2ab43493ea4820c25f0"
|
||||
"checksum proc-macro-hack-impl 0.4.0 (registry+https://github.com/rust-lang/crates.io-index)" = "d5cb6f960ad471404618e9817c0e5d10b1ae74cfdf01fab89ea0641fe7fb2892"
|
||||
"checksum proc-macro2 0.4.14 (registry+https://github.com/rust-lang/crates.io-index)" = "b331c6ad3411474cd55540398dc7ad89fc41488e64ec71fdecc9c9b86de96fb0"
|
||||
"checksum pulldown-cmark 0.1.2 (registry+https://github.com/rust-lang/crates.io-index)" = "d6fdf85cda6cadfae5428a54661d431330b312bc767ddbc57adbedc24da66e32"
|
||||
"checksum quine-mc_cluskey 0.2.4 (registry+https://github.com/rust-lang/crates.io-index)" = "07589615d719a60c8dd8a4622e7946465dfef20d1a428f969e3443e7386d5f45"
|
||||
"checksum quote 0.6.8 (registry+https://github.com/rust-lang/crates.io-index)" = "dd636425967c33af890042c483632d33fa7a18f19ad1d7ea72e8998c6ef8dea5"
|
||||
"checksum rand 0.3.22 (registry+https://github.com/rust-lang/crates.io-index)" = "15a732abf9d20f0ad8eeb6f909bf6868722d9a06e1e50802b6a70351f40b4eb1"
|
||||
"checksum rand 0.4.2 (registry+https://github.com/rust-lang/crates.io-index)" = "eba5f8cb59cc50ed56be8880a5c7b496bfd9bd26394e176bc67884094145c2c5"
|
||||
"checksum sapling-crypto 0.0.1 (git+https://github.com/zcash-hackworks/sapling-crypto?rev=21084bde2019c04bd34208e63c3560fe2c02fb0e)" = "<none>"
|
||||
"checksum redox_syscall 0.1.40 (registry+https://github.com/rust-lang/crates.io-index)" = "c214e91d3ecf43e9a4e41e578973adeb14b474f2bee858742d127af75a0112b1"
|
||||
"checksum regex 1.0.4 (registry+https://github.com/rust-lang/crates.io-index)" = "67d0301b0c6804eca7e3c275119d0b01ff3b7ab9258a65709e608a66312a1025"
|
||||
"checksum regex-syntax 0.6.2 (registry+https://github.com/rust-lang/crates.io-index)" = "747ba3b235651f6e2f67dfa8bcdcd073ddb7c243cb21c442fc12395dfcac212d"
|
||||
"checksum rust-crypto 0.2.36 (registry+https://github.com/rust-lang/crates.io-index)" = "f76d05d3993fd5f4af9434e8e436db163a12a9d40e1a58a726f27a01dfd12a2a"
|
||||
"checksum rustc-demangle 0.1.9 (registry+https://github.com/rust-lang/crates.io-index)" = "bcfe5b13211b4d78e5c2cadfebd7769197d95c639c35a50057eb4c05de811395"
|
||||
"checksum rustc-serialize 0.3.24 (registry+https://github.com/rust-lang/crates.io-index)" = "dcf128d1287d2ea9d80910b5f1120d0b8eede3fbf1abe91c40d39ea7d51e6fda"
|
||||
"checksum rustc_version 0.2.3 (registry+https://github.com/rust-lang/crates.io-index)" = "138e3e0acb6c9fb258b19b67cb8abd63c00679d2851805ea151465464fe9030a"
|
||||
"checksum ryu 0.2.6 (registry+https://github.com/rust-lang/crates.io-index)" = "7153dd96dade874ab973e098cb62fcdbb89a03682e46b144fd09550998d4a4a7"
|
||||
"checksum semver 0.9.0 (registry+https://github.com/rust-lang/crates.io-index)" = "1d7eb9ef2c18661902cc47e535f9bc51b78acd254da71d375c2f6720d9a40403"
|
||||
"checksum semver-parser 0.7.0 (registry+https://github.com/rust-lang/crates.io-index)" = "388a1df253eca08550bef6c72392cfe7c30914bf41df5269b68cbd6ff8f570a3"
|
||||
"checksum serde 1.0.75 (registry+https://github.com/rust-lang/crates.io-index)" = "22d340507cea0b7e6632900a176101fea959c7065d93ba555072da90aaaafc87"
|
||||
"checksum serde_derive 1.0.75 (registry+https://github.com/rust-lang/crates.io-index)" = "234fc8b737737b148ccd625175fc6390f5e4dacfdaa543cb93a3430d984a9119"
|
||||
"checksum serde_json 1.0.26 (registry+https://github.com/rust-lang/crates.io-index)" = "44dd2cfde475037451fa99b7e5df77aa3cfd1536575fa8e7a538ab36dcde49ae"
|
||||
"checksum stream-cipher 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)" = "30dc6118470d69ce0fdcf7e6f95e95853f7f4f72f80d835d4519577c323814ab"
|
||||
"checksum syn 0.14.9 (registry+https://github.com/rust-lang/crates.io-index)" = "261ae9ecaa397c42b960649561949d69311f08eeaea86a65696e6e46517cf741"
|
||||
"checksum thread_local 0.3.6 (registry+https://github.com/rust-lang/crates.io-index)" = "c6b53e329000edc2b34dbe8545fd20e55a333362d0a321909685a19bd28c3f1b"
|
||||
"checksum time 0.1.40 (registry+https://github.com/rust-lang/crates.io-index)" = "d825be0eb33fda1a7e68012d51e9c7f451dc1a69391e7fdc197060bb8c56667b"
|
||||
"checksum toml 0.4.6 (registry+https://github.com/rust-lang/crates.io-index)" = "a0263c6c02c4db6c8f7681f9fd35e90de799ebd4cfdeab77a38f4ff6b3d8c0d9"
|
||||
"checksum typenum 1.10.0 (registry+https://github.com/rust-lang/crates.io-index)" = "612d636f949607bdf9b123b4a6f6d966dedf3ff669f7f045890d3a4a73948169"
|
||||
"checksum ucd-util 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)" = "fd2be2d6639d0f8fe6cdda291ad456e23629558d466e2789d2c3e9892bda285d"
|
||||
"checksum unicode-bidi 0.3.4 (registry+https://github.com/rust-lang/crates.io-index)" = "49f2bd0c6468a8230e1db229cff8029217cf623c767ea5d60bfbd42729ea54d5"
|
||||
"checksum unicode-normalization 0.1.7 (registry+https://github.com/rust-lang/crates.io-index)" = "6a0180bc61fc5a987082bfa111f4cc95c4caff7f9799f3e46df09163a937aa25"
|
||||
"checksum unicode-width 0.1.5 (registry+https://github.com/rust-lang/crates.io-index)" = "882386231c45df4700b275c7ff55b6f3698780a650026380e72dabe76fa46526"
|
||||
"checksum unicode-xid 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)" = "fc72304796d0818e357ead4e000d19c9c174ab23dc11093ac919054d20a6a7fc"
|
||||
"checksum url 1.7.1 (registry+https://github.com/rust-lang/crates.io-index)" = "2a321979c09843d272956e73700d12c4e7d3d92b2ee112b31548aef0d4efc5a6"
|
||||
"checksum utf8-ranges 1.0.1 (registry+https://github.com/rust-lang/crates.io-index)" = "fd70f467df6810094968e2fce0ee1bd0e87157aceb026a8c083bcf5e25b9efe4"
|
||||
"checksum winapi 0.3.4 (registry+https://github.com/rust-lang/crates.io-index)" = "04e3bd221fcbe8a271359c04f21a76db7d0c6028862d1bb5512d85e1e2eb5bb3"
|
||||
"checksum winapi-i686-pc-windows-gnu 0.4.0 (registry+https://github.com/rust-lang/crates.io-index)" = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6"
|
||||
"checksum winapi-x86_64-pc-windows-gnu 0.4.0 (registry+https://github.com/rust-lang/crates.io-index)" = "712e227841d057c1ee1cd2fb22fa7e5a5461ae8e48fa2ca79ec42cfc1931183f"
|
||||
|
41
Cargo.toml
41
Cargo.toml
@ -1,33 +1,14 @@
|
||||
[package]
|
||||
name = "librustzcash"
|
||||
version = "0.1.0"
|
||||
authors = [
|
||||
"Sean Bowe <ewillbefull@gmail.com>",
|
||||
"Jack Grigg <jack@z.cash>",
|
||||
"Jay Graber <jay@z.cash>",
|
||||
"Simon Liu <simon@z.cash>"
|
||||
]
|
||||
|
||||
[lib]
|
||||
name = "rustzcash"
|
||||
path = "src/rustzcash.rs"
|
||||
crate-type = ["staticlib"]
|
||||
|
||||
[dependencies]
|
||||
libc = "0.2"
|
||||
pairing = "0.14.2"
|
||||
lazy_static = "1"
|
||||
bellman = "0.1"
|
||||
byteorder = "1"
|
||||
rand = "0.4"
|
||||
|
||||
[dependencies.blake2-rfc]
|
||||
git = "https://github.com/gtank/blake2-rfc"
|
||||
rev = "7a5b5fc99ae483a0043db7547fb79a6fa44b88a9"
|
||||
|
||||
[dependencies.sapling-crypto]
|
||||
git = "https://github.com/zcash-hackworks/sapling-crypto"
|
||||
rev = "21084bde2019c04bd34208e63c3560fe2c02fb0e"
|
||||
[workspace]
|
||||
members = [
|
||||
"bellman",
|
||||
"librustzcash",
|
||||
"pairing",
|
||||
"sapling-crypto",
|
||||
"zcash_primitives",
|
||||
"zcash_proofs",
|
||||
"zcash_wallet",
|
||||
"zip32",
|
||||
]
|
||||
|
||||
[profile.release]
|
||||
lto = true
|
||||
|
12
README.md
12
README.md
@ -1,10 +1,15 @@
|
||||
# librustzcash
|
||||
# Zcash Rust crates
|
||||
|
||||
This repository contains librustzcash, a static library for Zcash code assets written in Rust.
|
||||
This repository contains a (work-in-progress) set of Rust crates for
|
||||
working with Zcash.
|
||||
|
||||
## Security Warnings
|
||||
|
||||
These libraries are currently under development and have not been fully-reviewed.
|
||||
|
||||
## License
|
||||
|
||||
Licensed under either of
|
||||
All code in this workspace is licensed under either of
|
||||
|
||||
* Apache License, Version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
|
||||
* MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
|
||||
@ -17,4 +22,3 @@ Unless you explicitly state otherwise, any contribution intentionally
|
||||
submitted for inclusion in the work by you, as defined in the Apache-2.0
|
||||
license, shall be dual licensed as above, without any additional terms or
|
||||
conditions.
|
||||
|
||||
|
2
bellman/.gitignore
vendored
Normal file
2
bellman/.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
target
|
||||
Cargo.lock
|
14
bellman/COPYRIGHT
Normal file
14
bellman/COPYRIGHT
Normal file
@ -0,0 +1,14 @@
|
||||
Copyrights in the "bellman" library are retained by their contributors. No
|
||||
copyright assignment is required to contribute to the "bellman" library.
|
||||
|
||||
The "bellman" library is licensed under either of
|
||||
|
||||
* Apache License, Version 2.0, (see ./LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
|
||||
* MIT license (see ./LICENSE-MIT or http://opensource.org/licenses/MIT)
|
||||
|
||||
at your option.
|
||||
|
||||
Unless you explicitly state otherwise, any contribution intentionally
|
||||
submitted for inclusion in the work by you, as defined in the Apache-2.0
|
||||
license, shall be dual licensed as above, without any additional terms or
|
||||
conditions.
|
22
bellman/Cargo.toml
Normal file
22
bellman/Cargo.toml
Normal file
@ -0,0 +1,22 @@
|
||||
[package]
|
||||
authors = ["Sean Bowe <ewillbefull@gmail.com>"]
|
||||
description = "zk-SNARK library"
|
||||
documentation = "https://github.com/ebfull/bellman"
|
||||
homepage = "https://github.com/ebfull/bellman"
|
||||
license = "MIT/Apache-2.0"
|
||||
name = "bellman"
|
||||
repository = "https://github.com/ebfull/bellman"
|
||||
version = "0.1.0"
|
||||
|
||||
[dependencies]
|
||||
rand = "0.4"
|
||||
bit-vec = "0.4.4"
|
||||
futures = "0.1"
|
||||
futures-cpupool = "0.1"
|
||||
num_cpus = "1"
|
||||
crossbeam = "0.3"
|
||||
pairing = { path = "../pairing" }
|
||||
byteorder = "1"
|
||||
|
||||
[features]
|
||||
default = []
|
201
bellman/LICENSE-APACHE
Normal file
201
bellman/LICENSE-APACHE
Normal file
@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
23
bellman/LICENSE-MIT
Normal file
23
bellman/LICENSE-MIT
Normal file
@ -0,0 +1,23 @@
|
||||
Permission is hereby granted, free of charge, to any
|
||||
person obtaining a copy of this software and associated
|
||||
documentation files (the "Software"), to deal in the
|
||||
Software without restriction, including without
|
||||
limitation the rights to use, copy, modify, merge,
|
||||
publish, distribute, sublicense, and/or sell copies of
|
||||
the Software, and to permit persons to whom the Software
|
||||
is furnished to do so, subject to the following
|
||||
conditions:
|
||||
|
||||
The above copyright notice and this permission notice
|
||||
shall be included in all copies or substantial portions
|
||||
of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
|
||||
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
|
||||
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
|
||||
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
|
||||
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
|
||||
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
DEALINGS IN THE SOFTWARE.
|
19
bellman/README.md
Normal file
19
bellman/README.md
Normal file
@ -0,0 +1,19 @@
|
||||
# bellman [![Crates.io](https://img.shields.io/crates/v/bellman.svg)](https://crates.io/crates/bellman) #
|
||||
|
||||
This is a research project being built for [Zcash](https://z.cash/).
|
||||
|
||||
## License
|
||||
|
||||
Licensed under either of
|
||||
|
||||
* Apache License, Version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
|
||||
* MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
|
||||
|
||||
at your option.
|
||||
|
||||
### Contribution
|
||||
|
||||
Unless you explicitly state otherwise, any contribution intentionally
|
||||
submitted for inclusion in the work by you, as defined in the Apache-2.0
|
||||
license, shall be dual licensed as above, without any additional terms or
|
||||
conditions.
|
494
bellman/src/domain.rs
Normal file
494
bellman/src/domain.rs
Normal file
@ -0,0 +1,494 @@
|
||||
//! This module contains an `EvaluationDomain` abstraction for
|
||||
//! performing various kinds of polynomial arithmetic on top of
|
||||
//! the scalar field.
|
||||
//!
|
||||
//! In pairing-based SNARKs like Groth16, we need to calculate
|
||||
//! a quotient polynomial over a target polynomial with roots
|
||||
//! at distinct points associated with each constraint of the
|
||||
//! constraint system. In order to be efficient, we choose these
|
||||
//! roots to be the powers of a 2^n root of unity in the field.
|
||||
//! This allows us to perform polynomial operations in O(n)
|
||||
//! by performing an O(n log n) FFT over such a domain.
|
||||
|
||||
use pairing::{
|
||||
Engine,
|
||||
Field,
|
||||
PrimeField,
|
||||
CurveProjective
|
||||
};
|
||||
|
||||
use super::{
|
||||
SynthesisError
|
||||
};
|
||||
|
||||
use super::multicore::Worker;
|
||||
|
||||
pub struct EvaluationDomain<E: Engine, G: Group<E>> {
|
||||
coeffs: Vec<G>,
|
||||
exp: u32,
|
||||
omega: E::Fr,
|
||||
omegainv: E::Fr,
|
||||
geninv: E::Fr,
|
||||
minv: E::Fr
|
||||
}
|
||||
|
||||
impl<E: Engine, G: Group<E>> EvaluationDomain<E, G> {
|
||||
pub fn as_ref(&self) -> &[G] {
|
||||
&self.coeffs
|
||||
}
|
||||
|
||||
pub fn as_mut(&mut self) -> &mut [G] {
|
||||
&mut self.coeffs
|
||||
}
|
||||
|
||||
pub fn into_coeffs(self) -> Vec<G> {
|
||||
self.coeffs
|
||||
}
|
||||
|
||||
pub fn from_coeffs(mut coeffs: Vec<G>) -> Result<EvaluationDomain<E, G>, SynthesisError>
|
||||
{
|
||||
// Compute the size of our evaluation domain
|
||||
let mut m = 1;
|
||||
let mut exp = 0;
|
||||
while m < coeffs.len() {
|
||||
m *= 2;
|
||||
exp += 1;
|
||||
|
||||
// The pairing-friendly curve may not be able to support
|
||||
// large enough (radix2) evaluation domains.
|
||||
if exp >= E::Fr::S {
|
||||
return Err(SynthesisError::PolynomialDegreeTooLarge)
|
||||
}
|
||||
}
|
||||
|
||||
// Compute omega, the 2^exp primitive root of unity
|
||||
let mut omega = E::Fr::root_of_unity();
|
||||
for _ in exp..E::Fr::S {
|
||||
omega.square();
|
||||
}
|
||||
|
||||
// Extend the coeffs vector with zeroes if necessary
|
||||
coeffs.resize(m, G::group_zero());
|
||||
|
||||
Ok(EvaluationDomain {
|
||||
coeffs: coeffs,
|
||||
exp: exp,
|
||||
omega: omega,
|
||||
omegainv: omega.inverse().unwrap(),
|
||||
geninv: E::Fr::multiplicative_generator().inverse().unwrap(),
|
||||
minv: E::Fr::from_str(&format!("{}", m)).unwrap().inverse().unwrap()
|
||||
})
|
||||
}
|
||||
|
||||
pub fn fft(&mut self, worker: &Worker)
|
||||
{
|
||||
best_fft(&mut self.coeffs, worker, &self.omega, self.exp);
|
||||
}
|
||||
|
||||
pub fn ifft(&mut self, worker: &Worker)
|
||||
{
|
||||
best_fft(&mut self.coeffs, worker, &self.omegainv, self.exp);
|
||||
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
let minv = self.minv;
|
||||
|
||||
for v in self.coeffs.chunks_mut(chunk) {
|
||||
scope.spawn(move || {
|
||||
for v in v {
|
||||
v.group_mul_assign(&minv);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
pub fn distribute_powers(&mut self, worker: &Worker, g: E::Fr)
|
||||
{
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
for (i, v) in self.coeffs.chunks_mut(chunk).enumerate() {
|
||||
scope.spawn(move || {
|
||||
let mut u = g.pow(&[(i * chunk) as u64]);
|
||||
for v in v.iter_mut() {
|
||||
v.group_mul_assign(&u);
|
||||
u.mul_assign(&g);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
pub fn coset_fft(&mut self, worker: &Worker)
|
||||
{
|
||||
self.distribute_powers(worker, E::Fr::multiplicative_generator());
|
||||
self.fft(worker);
|
||||
}
|
||||
|
||||
pub fn icoset_fft(&mut self, worker: &Worker)
|
||||
{
|
||||
let geninv = self.geninv;
|
||||
|
||||
self.ifft(worker);
|
||||
self.distribute_powers(worker, geninv);
|
||||
}
|
||||
|
||||
/// This evaluates t(tau) for this domain, which is
|
||||
/// tau^m - 1 for these radix-2 domains.
|
||||
pub fn z(&self, tau: &E::Fr) -> E::Fr {
|
||||
let mut tmp = tau.pow(&[self.coeffs.len() as u64]);
|
||||
tmp.sub_assign(&E::Fr::one());
|
||||
|
||||
tmp
|
||||
}
|
||||
|
||||
/// The target polynomial is the zero polynomial in our
|
||||
/// evaluation domain, so we must perform division over
|
||||
/// a coset.
|
||||
pub fn divide_by_z_on_coset(&mut self, worker: &Worker)
|
||||
{
|
||||
let i = self.z(&E::Fr::multiplicative_generator()).inverse().unwrap();
|
||||
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
for v in self.coeffs.chunks_mut(chunk) {
|
||||
scope.spawn(move || {
|
||||
for v in v {
|
||||
v.group_mul_assign(&i);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/// Perform O(n) multiplication of two polynomials in the domain.
|
||||
pub fn mul_assign(&mut self, worker: &Worker, other: &EvaluationDomain<E, Scalar<E>>) {
|
||||
assert_eq!(self.coeffs.len(), other.coeffs.len());
|
||||
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
for (a, b) in self.coeffs.chunks_mut(chunk).zip(other.coeffs.chunks(chunk)) {
|
||||
scope.spawn(move || {
|
||||
for (a, b) in a.iter_mut().zip(b.iter()) {
|
||||
a.group_mul_assign(&b.0);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/// Perform O(n) subtraction of one polynomial from another in the domain.
|
||||
pub fn sub_assign(&mut self, worker: &Worker, other: &EvaluationDomain<E, G>) {
|
||||
assert_eq!(self.coeffs.len(), other.coeffs.len());
|
||||
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
for (a, b) in self.coeffs.chunks_mut(chunk).zip(other.coeffs.chunks(chunk)) {
|
||||
scope.spawn(move || {
|
||||
for (a, b) in a.iter_mut().zip(b.iter()) {
|
||||
a.group_sub_assign(&b);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Group<E: Engine>: Sized + Copy + Clone + Send + Sync {
|
||||
fn group_zero() -> Self;
|
||||
fn group_mul_assign(&mut self, by: &E::Fr);
|
||||
fn group_add_assign(&mut self, other: &Self);
|
||||
fn group_sub_assign(&mut self, other: &Self);
|
||||
}
|
||||
|
||||
pub struct Point<G: CurveProjective>(pub G);
|
||||
|
||||
impl<G: CurveProjective> PartialEq for Point<G> {
|
||||
fn eq(&self, other: &Point<G>) -> bool {
|
||||
self.0 == other.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<G: CurveProjective> Copy for Point<G> { }
|
||||
|
||||
impl<G: CurveProjective> Clone for Point<G> {
|
||||
fn clone(&self) -> Point<G> {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
impl<G: CurveProjective> Group<G::Engine> for Point<G> {
|
||||
fn group_zero() -> Self {
|
||||
Point(G::zero())
|
||||
}
|
||||
fn group_mul_assign(&mut self, by: &G::Scalar) {
|
||||
self.0.mul_assign(by.into_repr());
|
||||
}
|
||||
fn group_add_assign(&mut self, other: &Self) {
|
||||
self.0.add_assign(&other.0);
|
||||
}
|
||||
fn group_sub_assign(&mut self, other: &Self) {
|
||||
self.0.sub_assign(&other.0);
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Scalar<E: Engine>(pub E::Fr);
|
||||
|
||||
impl<E: Engine> PartialEq for Scalar<E> {
|
||||
fn eq(&self, other: &Scalar<E>) -> bool {
|
||||
self.0 == other.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Copy for Scalar<E> { }
|
||||
|
||||
impl<E: Engine> Clone for Scalar<E> {
|
||||
fn clone(&self) -> Scalar<E> {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Group<E> for Scalar<E> {
|
||||
fn group_zero() -> Self {
|
||||
Scalar(E::Fr::zero())
|
||||
}
|
||||
fn group_mul_assign(&mut self, by: &E::Fr) {
|
||||
self.0.mul_assign(by);
|
||||
}
|
||||
fn group_add_assign(&mut self, other: &Self) {
|
||||
self.0.add_assign(&other.0);
|
||||
}
|
||||
fn group_sub_assign(&mut self, other: &Self) {
|
||||
self.0.sub_assign(&other.0);
|
||||
}
|
||||
}
|
||||
|
||||
fn best_fft<E: Engine, T: Group<E>>(a: &mut [T], worker: &Worker, omega: &E::Fr, log_n: u32)
|
||||
{
|
||||
let log_cpus = worker.log_num_cpus();
|
||||
|
||||
if log_n <= log_cpus {
|
||||
serial_fft(a, omega, log_n);
|
||||
} else {
|
||||
parallel_fft(a, worker, omega, log_n, log_cpus);
|
||||
}
|
||||
}
|
||||
|
||||
fn serial_fft<E: Engine, T: Group<E>>(a: &mut [T], omega: &E::Fr, log_n: u32)
|
||||
{
|
||||
fn bitreverse(mut n: u32, l: u32) -> u32 {
|
||||
let mut r = 0;
|
||||
for _ in 0..l {
|
||||
r = (r << 1) | (n & 1);
|
||||
n >>= 1;
|
||||
}
|
||||
r
|
||||
}
|
||||
|
||||
let n = a.len() as u32;
|
||||
assert_eq!(n, 1 << log_n);
|
||||
|
||||
for k in 0..n {
|
||||
let rk = bitreverse(k, log_n);
|
||||
if k < rk {
|
||||
a.swap(rk as usize, k as usize);
|
||||
}
|
||||
}
|
||||
|
||||
let mut m = 1;
|
||||
for _ in 0..log_n {
|
||||
let w_m = omega.pow(&[(n / (2*m)) as u64]);
|
||||
|
||||
let mut k = 0;
|
||||
while k < n {
|
||||
let mut w = E::Fr::one();
|
||||
for j in 0..m {
|
||||
let mut t = a[(k+j+m) as usize];
|
||||
t.group_mul_assign(&w);
|
||||
let mut tmp = a[(k+j) as usize];
|
||||
tmp.group_sub_assign(&t);
|
||||
a[(k+j+m) as usize] = tmp;
|
||||
a[(k+j) as usize].group_add_assign(&t);
|
||||
w.mul_assign(&w_m);
|
||||
}
|
||||
|
||||
k += 2*m;
|
||||
}
|
||||
|
||||
m *= 2;
|
||||
}
|
||||
}
|
||||
|
||||
fn parallel_fft<E: Engine, T: Group<E>>(
|
||||
a: &mut [T],
|
||||
worker: &Worker,
|
||||
omega: &E::Fr,
|
||||
log_n: u32,
|
||||
log_cpus: u32
|
||||
)
|
||||
{
|
||||
assert!(log_n >= log_cpus);
|
||||
|
||||
let num_cpus = 1 << log_cpus;
|
||||
let log_new_n = log_n - log_cpus;
|
||||
let mut tmp = vec![vec![T::group_zero(); 1 << log_new_n]; num_cpus];
|
||||
let new_omega = omega.pow(&[num_cpus as u64]);
|
||||
|
||||
worker.scope(0, |scope, _| {
|
||||
let a = &*a;
|
||||
|
||||
for (j, tmp) in tmp.iter_mut().enumerate() {
|
||||
scope.spawn(move || {
|
||||
// Shuffle into a sub-FFT
|
||||
let omega_j = omega.pow(&[j as u64]);
|
||||
let omega_step = omega.pow(&[(j as u64) << log_new_n]);
|
||||
|
||||
let mut elt = E::Fr::one();
|
||||
for i in 0..(1 << log_new_n) {
|
||||
for s in 0..num_cpus {
|
||||
let idx = (i + (s << log_new_n)) % (1 << log_n);
|
||||
let mut t = a[idx];
|
||||
t.group_mul_assign(&elt);
|
||||
tmp[i].group_add_assign(&t);
|
||||
elt.mul_assign(&omega_step);
|
||||
}
|
||||
elt.mul_assign(&omega_j);
|
||||
}
|
||||
|
||||
// Perform sub-FFT
|
||||
serial_fft(tmp, &new_omega, log_new_n);
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
// TODO: does this hurt or help?
|
||||
worker.scope(a.len(), |scope, chunk| {
|
||||
let tmp = &tmp;
|
||||
|
||||
for (idx, a) in a.chunks_mut(chunk).enumerate() {
|
||||
scope.spawn(move || {
|
||||
let mut idx = idx * chunk;
|
||||
let mask = (1 << log_cpus) - 1;
|
||||
for a in a {
|
||||
*a = tmp[idx & mask][idx >> log_cpus];
|
||||
idx += 1;
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Test multiplying various (low degree) polynomials together and
|
||||
// comparing with naive evaluations.
|
||||
#[test]
|
||||
fn polynomial_arith() {
|
||||
use pairing::bls12_381::Bls12;
|
||||
use rand::{self, Rand};
|
||||
|
||||
fn test_mul<E: Engine, R: rand::Rng>(rng: &mut R)
|
||||
{
|
||||
let worker = Worker::new();
|
||||
|
||||
for coeffs_a in 0..70 {
|
||||
for coeffs_b in 0..70 {
|
||||
let mut a: Vec<_> = (0..coeffs_a).map(|_| Scalar::<E>(E::Fr::rand(rng))).collect();
|
||||
let mut b: Vec<_> = (0..coeffs_b).map(|_| Scalar::<E>(E::Fr::rand(rng))).collect();
|
||||
|
||||
// naive evaluation
|
||||
let mut naive = vec![Scalar(E::Fr::zero()); coeffs_a + coeffs_b];
|
||||
for (i1, a) in a.iter().enumerate() {
|
||||
for (i2, b) in b.iter().enumerate() {
|
||||
let mut prod = *a;
|
||||
prod.group_mul_assign(&b.0);
|
||||
naive[i1 + i2].group_add_assign(&prod);
|
||||
}
|
||||
}
|
||||
|
||||
a.resize(coeffs_a + coeffs_b, Scalar(E::Fr::zero()));
|
||||
b.resize(coeffs_a + coeffs_b, Scalar(E::Fr::zero()));
|
||||
|
||||
let mut a = EvaluationDomain::from_coeffs(a).unwrap();
|
||||
let mut b = EvaluationDomain::from_coeffs(b).unwrap();
|
||||
|
||||
a.fft(&worker);
|
||||
b.fft(&worker);
|
||||
a.mul_assign(&worker, &b);
|
||||
a.ifft(&worker);
|
||||
|
||||
for (naive, fft) in naive.iter().zip(a.coeffs.iter()) {
|
||||
assert!(naive == fft);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
test_mul::<Bls12, _>(rng);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn fft_composition() {
|
||||
use pairing::bls12_381::Bls12;
|
||||
use rand;
|
||||
|
||||
fn test_comp<E: Engine, R: rand::Rng>(rng: &mut R)
|
||||
{
|
||||
let worker = Worker::new();
|
||||
|
||||
for coeffs in 0..10 {
|
||||
let coeffs = 1 << coeffs;
|
||||
|
||||
let mut v = vec![];
|
||||
for _ in 0..coeffs {
|
||||
v.push(Scalar::<E>(rng.gen()));
|
||||
}
|
||||
|
||||
let mut domain = EvaluationDomain::from_coeffs(v.clone()).unwrap();
|
||||
domain.ifft(&worker);
|
||||
domain.fft(&worker);
|
||||
assert!(v == domain.coeffs);
|
||||
domain.fft(&worker);
|
||||
domain.ifft(&worker);
|
||||
assert!(v == domain.coeffs);
|
||||
domain.icoset_fft(&worker);
|
||||
domain.coset_fft(&worker);
|
||||
assert!(v == domain.coeffs);
|
||||
domain.coset_fft(&worker);
|
||||
domain.icoset_fft(&worker);
|
||||
assert!(v == domain.coeffs);
|
||||
}
|
||||
}
|
||||
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
test_comp::<Bls12, _>(rng);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn parallel_fft_consistency() {
|
||||
use pairing::bls12_381::Bls12;
|
||||
use rand::{self, Rand};
|
||||
use std::cmp::min;
|
||||
|
||||
fn test_consistency<E: Engine, R: rand::Rng>(rng: &mut R)
|
||||
{
|
||||
let worker = Worker::new();
|
||||
|
||||
for _ in 0..5 {
|
||||
for log_d in 0..10 {
|
||||
let d = 1 << log_d;
|
||||
|
||||
let v1 = (0..d).map(|_| Scalar::<E>(E::Fr::rand(rng))).collect::<Vec<_>>();
|
||||
let mut v1 = EvaluationDomain::from_coeffs(v1).unwrap();
|
||||
let mut v2 = EvaluationDomain::from_coeffs(v1.coeffs.clone()).unwrap();
|
||||
|
||||
for log_cpus in log_d..min(log_d+1, 3) {
|
||||
parallel_fft(&mut v1.coeffs, &worker, &v1.omega, log_d, log_cpus);
|
||||
serial_fft(&mut v2.coeffs, &v2.omega, log_d);
|
||||
|
||||
assert!(v1.coeffs == v2.coeffs);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
test_consistency::<Bls12, _>(rng);
|
||||
}
|
482
bellman/src/groth16/generator.rs
Normal file
482
bellman/src/groth16/generator.rs
Normal file
@ -0,0 +1,482 @@
|
||||
use rand::Rng;
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use pairing::{
|
||||
Engine,
|
||||
PrimeField,
|
||||
Field,
|
||||
Wnaf,
|
||||
CurveProjective,
|
||||
CurveAffine
|
||||
};
|
||||
|
||||
use super::{
|
||||
Parameters,
|
||||
VerifyingKey
|
||||
};
|
||||
|
||||
use ::{
|
||||
SynthesisError,
|
||||
Circuit,
|
||||
ConstraintSystem,
|
||||
LinearCombination,
|
||||
Variable,
|
||||
Index
|
||||
};
|
||||
|
||||
use ::domain::{
|
||||
EvaluationDomain,
|
||||
Scalar
|
||||
};
|
||||
|
||||
use ::multicore::{
|
||||
Worker
|
||||
};
|
||||
|
||||
/// Generates a random common reference string for
|
||||
/// a circuit.
|
||||
pub fn generate_random_parameters<E, C, R>(
|
||||
circuit: C,
|
||||
rng: &mut R
|
||||
) -> Result<Parameters<E>, SynthesisError>
|
||||
where E: Engine, C: Circuit<E>, R: Rng
|
||||
{
|
||||
let g1 = rng.gen();
|
||||
let g2 = rng.gen();
|
||||
let alpha = rng.gen();
|
||||
let beta = rng.gen();
|
||||
let gamma = rng.gen();
|
||||
let delta = rng.gen();
|
||||
let tau = rng.gen();
|
||||
|
||||
generate_parameters::<E, C>(
|
||||
circuit,
|
||||
g1,
|
||||
g2,
|
||||
alpha,
|
||||
beta,
|
||||
gamma,
|
||||
delta,
|
||||
tau
|
||||
)
|
||||
}
|
||||
|
||||
/// This is our assembly structure that we'll use to synthesize the
|
||||
/// circuit into a QAP.
|
||||
struct KeypairAssembly<E: Engine> {
|
||||
num_inputs: usize,
|
||||
num_aux: usize,
|
||||
num_constraints: usize,
|
||||
at_inputs: Vec<Vec<(E::Fr, usize)>>,
|
||||
bt_inputs: Vec<Vec<(E::Fr, usize)>>,
|
||||
ct_inputs: Vec<Vec<(E::Fr, usize)>>,
|
||||
at_aux: Vec<Vec<(E::Fr, usize)>>,
|
||||
bt_aux: Vec<Vec<(E::Fr, usize)>>,
|
||||
ct_aux: Vec<Vec<(E::Fr, usize)>>
|
||||
}
|
||||
|
||||
impl<E: Engine> ConstraintSystem<E> for KeypairAssembly<E> {
|
||||
type Root = Self;
|
||||
|
||||
fn alloc<F, A, AR>(
|
||||
&mut self,
|
||||
_: A,
|
||||
_: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
// There is no assignment, so we don't even invoke the
|
||||
// function for obtaining one.
|
||||
|
||||
let index = self.num_aux;
|
||||
self.num_aux += 1;
|
||||
|
||||
self.at_aux.push(vec![]);
|
||||
self.bt_aux.push(vec![]);
|
||||
self.ct_aux.push(vec![]);
|
||||
|
||||
Ok(Variable(Index::Aux(index)))
|
||||
}
|
||||
|
||||
fn alloc_input<F, A, AR>(
|
||||
&mut self,
|
||||
_: A,
|
||||
_: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
// There is no assignment, so we don't even invoke the
|
||||
// function for obtaining one.
|
||||
|
||||
let index = self.num_inputs;
|
||||
self.num_inputs += 1;
|
||||
|
||||
self.at_inputs.push(vec![]);
|
||||
self.bt_inputs.push(vec![]);
|
||||
self.ct_inputs.push(vec![]);
|
||||
|
||||
Ok(Variable(Index::Input(index)))
|
||||
}
|
||||
|
||||
fn enforce<A, AR, LA, LB, LC>(
|
||||
&mut self,
|
||||
_: A,
|
||||
a: LA,
|
||||
b: LB,
|
||||
c: LC
|
||||
)
|
||||
where A: FnOnce() -> AR, AR: Into<String>,
|
||||
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
|
||||
{
|
||||
fn eval<E: Engine>(
|
||||
l: LinearCombination<E>,
|
||||
inputs: &mut [Vec<(E::Fr, usize)>],
|
||||
aux: &mut [Vec<(E::Fr, usize)>],
|
||||
this_constraint: usize
|
||||
)
|
||||
{
|
||||
for (index, coeff) in l.0 {
|
||||
match index {
|
||||
Variable(Index::Input(id)) => inputs[id].push((coeff, this_constraint)),
|
||||
Variable(Index::Aux(id)) => aux[id].push((coeff, this_constraint))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
eval(a(LinearCombination::zero()), &mut self.at_inputs, &mut self.at_aux, self.num_constraints);
|
||||
eval(b(LinearCombination::zero()), &mut self.bt_inputs, &mut self.bt_aux, self.num_constraints);
|
||||
eval(c(LinearCombination::zero()), &mut self.ct_inputs, &mut self.ct_aux, self.num_constraints);
|
||||
|
||||
self.num_constraints += 1;
|
||||
}
|
||||
|
||||
fn push_namespace<NR, N>(&mut self, _: N)
|
||||
where NR: Into<String>, N: FnOnce() -> NR
|
||||
{
|
||||
// Do nothing; we don't care about namespaces in this context.
|
||||
}
|
||||
|
||||
fn pop_namespace(&mut self)
|
||||
{
|
||||
// Do nothing; we don't care about namespaces in this context.
|
||||
}
|
||||
|
||||
fn get_root(&mut self) -> &mut Self::Root {
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
/// Create parameters for a circuit, given some toxic waste.
|
||||
pub fn generate_parameters<E, C>(
|
||||
circuit: C,
|
||||
g1: E::G1,
|
||||
g2: E::G2,
|
||||
alpha: E::Fr,
|
||||
beta: E::Fr,
|
||||
gamma: E::Fr,
|
||||
delta: E::Fr,
|
||||
tau: E::Fr
|
||||
) -> Result<Parameters<E>, SynthesisError>
|
||||
where E: Engine, C: Circuit<E>
|
||||
{
|
||||
let mut assembly = KeypairAssembly {
|
||||
num_inputs: 0,
|
||||
num_aux: 0,
|
||||
num_constraints: 0,
|
||||
at_inputs: vec![],
|
||||
bt_inputs: vec![],
|
||||
ct_inputs: vec![],
|
||||
at_aux: vec![],
|
||||
bt_aux: vec![],
|
||||
ct_aux: vec![]
|
||||
};
|
||||
|
||||
// Allocate the "one" input variable
|
||||
assembly.alloc_input(|| "", || Ok(E::Fr::one()))?;
|
||||
|
||||
// Synthesize the circuit.
|
||||
circuit.synthesize(&mut assembly)?;
|
||||
|
||||
// Input constraints to ensure full density of IC query
|
||||
// x * 0 = 0
|
||||
for i in 0..assembly.num_inputs {
|
||||
assembly.enforce(|| "",
|
||||
|lc| lc + Variable(Index::Input(i)),
|
||||
|lc| lc,
|
||||
|lc| lc,
|
||||
);
|
||||
}
|
||||
|
||||
// Create bases for blind evaluation of polynomials at tau
|
||||
let powers_of_tau = vec![Scalar::<E>(E::Fr::zero()); assembly.num_constraints];
|
||||
let mut powers_of_tau = EvaluationDomain::from_coeffs(powers_of_tau)?;
|
||||
|
||||
// Compute G1 window table
|
||||
let mut g1_wnaf = Wnaf::new();
|
||||
let g1_wnaf = g1_wnaf.base(g1, {
|
||||
// H query
|
||||
(powers_of_tau.as_ref().len() - 1)
|
||||
// IC/L queries
|
||||
+ assembly.num_inputs + assembly.num_aux
|
||||
// A query
|
||||
+ assembly.num_inputs + assembly.num_aux
|
||||
// B query
|
||||
+ assembly.num_inputs + assembly.num_aux
|
||||
});
|
||||
|
||||
// Compute G2 window table
|
||||
let mut g2_wnaf = Wnaf::new();
|
||||
let g2_wnaf = g2_wnaf.base(g2, {
|
||||
// B query
|
||||
assembly.num_inputs + assembly.num_aux
|
||||
});
|
||||
|
||||
let gamma_inverse = gamma.inverse().ok_or(SynthesisError::UnexpectedIdentity)?;
|
||||
let delta_inverse = delta.inverse().ok_or(SynthesisError::UnexpectedIdentity)?;
|
||||
|
||||
let worker = Worker::new();
|
||||
|
||||
let mut h = vec![E::G1::zero(); powers_of_tau.as_ref().len() - 1];
|
||||
{
|
||||
// Compute powers of tau
|
||||
{
|
||||
let powers_of_tau = powers_of_tau.as_mut();
|
||||
worker.scope(powers_of_tau.len(), |scope, chunk| {
|
||||
for (i, powers_of_tau) in powers_of_tau.chunks_mut(chunk).enumerate()
|
||||
{
|
||||
scope.spawn(move || {
|
||||
let mut current_tau_power = tau.pow(&[(i*chunk) as u64]);
|
||||
|
||||
for p in powers_of_tau {
|
||||
p.0 = current_tau_power;
|
||||
current_tau_power.mul_assign(&tau);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// coeff = t(x) / delta
|
||||
let mut coeff = powers_of_tau.z(&tau);
|
||||
coeff.mul_assign(&delta_inverse);
|
||||
|
||||
// Compute the H query with multiple threads
|
||||
worker.scope(h.len(), |scope, chunk| {
|
||||
for (h, p) in h.chunks_mut(chunk).zip(powers_of_tau.as_ref().chunks(chunk))
|
||||
{
|
||||
let mut g1_wnaf = g1_wnaf.shared();
|
||||
|
||||
scope.spawn(move || {
|
||||
// Set values of the H query to g1^{(tau^i * t(tau)) / delta}
|
||||
for (h, p) in h.iter_mut().zip(p.iter())
|
||||
{
|
||||
// Compute final exponent
|
||||
let mut exp = p.0;
|
||||
exp.mul_assign(&coeff);
|
||||
|
||||
// Exponentiate
|
||||
*h = g1_wnaf.scalar(exp.into_repr());
|
||||
}
|
||||
|
||||
// Batch normalize
|
||||
E::G1::batch_normalization(h);
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Use inverse FFT to convert powers of tau to Lagrange coefficients
|
||||
powers_of_tau.ifft(&worker);
|
||||
let powers_of_tau = powers_of_tau.into_coeffs();
|
||||
|
||||
let mut a = vec![E::G1::zero(); assembly.num_inputs + assembly.num_aux];
|
||||
let mut b_g1 = vec![E::G1::zero(); assembly.num_inputs + assembly.num_aux];
|
||||
let mut b_g2 = vec![E::G2::zero(); assembly.num_inputs + assembly.num_aux];
|
||||
let mut ic = vec![E::G1::zero(); assembly.num_inputs];
|
||||
let mut l = vec![E::G1::zero(); assembly.num_aux];
|
||||
|
||||
fn eval<E: Engine>(
|
||||
// wNAF window tables
|
||||
g1_wnaf: &Wnaf<usize, &[E::G1], &mut Vec<i64>>,
|
||||
g2_wnaf: &Wnaf<usize, &[E::G2], &mut Vec<i64>>,
|
||||
|
||||
// Lagrange coefficients for tau
|
||||
powers_of_tau: &[Scalar<E>],
|
||||
|
||||
// QAP polynomials
|
||||
at: &[Vec<(E::Fr, usize)>],
|
||||
bt: &[Vec<(E::Fr, usize)>],
|
||||
ct: &[Vec<(E::Fr, usize)>],
|
||||
|
||||
// Resulting evaluated QAP polynomials
|
||||
a: &mut [E::G1],
|
||||
b_g1: &mut [E::G1],
|
||||
b_g2: &mut [E::G2],
|
||||
ext: &mut [E::G1],
|
||||
|
||||
// Inverse coefficient for ext elements
|
||||
inv: &E::Fr,
|
||||
|
||||
// Trapdoors
|
||||
alpha: &E::Fr,
|
||||
beta: &E::Fr,
|
||||
|
||||
// Worker
|
||||
worker: &Worker
|
||||
)
|
||||
{
|
||||
// Sanity check
|
||||
assert_eq!(a.len(), at.len());
|
||||
assert_eq!(a.len(), bt.len());
|
||||
assert_eq!(a.len(), ct.len());
|
||||
assert_eq!(a.len(), b_g1.len());
|
||||
assert_eq!(a.len(), b_g2.len());
|
||||
assert_eq!(a.len(), ext.len());
|
||||
|
||||
// Evaluate polynomials in multiple threads
|
||||
worker.scope(a.len(), |scope, chunk| {
|
||||
for ((((((a, b_g1), b_g2), ext), at), bt), ct) in a.chunks_mut(chunk)
|
||||
.zip(b_g1.chunks_mut(chunk))
|
||||
.zip(b_g2.chunks_mut(chunk))
|
||||
.zip(ext.chunks_mut(chunk))
|
||||
.zip(at.chunks(chunk))
|
||||
.zip(bt.chunks(chunk))
|
||||
.zip(ct.chunks(chunk))
|
||||
{
|
||||
let mut g1_wnaf = g1_wnaf.shared();
|
||||
let mut g2_wnaf = g2_wnaf.shared();
|
||||
|
||||
scope.spawn(move || {
|
||||
for ((((((a, b_g1), b_g2), ext), at), bt), ct) in a.iter_mut()
|
||||
.zip(b_g1.iter_mut())
|
||||
.zip(b_g2.iter_mut())
|
||||
.zip(ext.iter_mut())
|
||||
.zip(at.iter())
|
||||
.zip(bt.iter())
|
||||
.zip(ct.iter())
|
||||
{
|
||||
fn eval_at_tau<E: Engine>(
|
||||
powers_of_tau: &[Scalar<E>],
|
||||
p: &[(E::Fr, usize)]
|
||||
) -> E::Fr
|
||||
{
|
||||
let mut acc = E::Fr::zero();
|
||||
|
||||
for &(ref coeff, index) in p {
|
||||
let mut n = powers_of_tau[index].0;
|
||||
n.mul_assign(coeff);
|
||||
acc.add_assign(&n);
|
||||
}
|
||||
|
||||
acc
|
||||
}
|
||||
|
||||
// Evaluate QAP polynomials at tau
|
||||
let mut at = eval_at_tau(powers_of_tau, at);
|
||||
let mut bt = eval_at_tau(powers_of_tau, bt);
|
||||
let ct = eval_at_tau(powers_of_tau, ct);
|
||||
|
||||
// Compute A query (in G1)
|
||||
if !at.is_zero() {
|
||||
*a = g1_wnaf.scalar(at.into_repr());
|
||||
}
|
||||
|
||||
// Compute B query (in G1/G2)
|
||||
if !bt.is_zero() {
|
||||
let bt_repr = bt.into_repr();
|
||||
*b_g1 = g1_wnaf.scalar(bt_repr);
|
||||
*b_g2 = g2_wnaf.scalar(bt_repr);
|
||||
}
|
||||
|
||||
at.mul_assign(&beta);
|
||||
bt.mul_assign(&alpha);
|
||||
|
||||
let mut e = at;
|
||||
e.add_assign(&bt);
|
||||
e.add_assign(&ct);
|
||||
e.mul_assign(inv);
|
||||
|
||||
*ext = g1_wnaf.scalar(e.into_repr());
|
||||
}
|
||||
|
||||
// Batch normalize
|
||||
E::G1::batch_normalization(a);
|
||||
E::G1::batch_normalization(b_g1);
|
||||
E::G2::batch_normalization(b_g2);
|
||||
E::G1::batch_normalization(ext);
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Evaluate for inputs.
|
||||
eval(
|
||||
&g1_wnaf,
|
||||
&g2_wnaf,
|
||||
&powers_of_tau,
|
||||
&assembly.at_inputs,
|
||||
&assembly.bt_inputs,
|
||||
&assembly.ct_inputs,
|
||||
&mut a[0..assembly.num_inputs],
|
||||
&mut b_g1[0..assembly.num_inputs],
|
||||
&mut b_g2[0..assembly.num_inputs],
|
||||
&mut ic,
|
||||
&gamma_inverse,
|
||||
&alpha,
|
||||
&beta,
|
||||
&worker
|
||||
);
|
||||
|
||||
// Evaluate for auxillary variables.
|
||||
eval(
|
||||
&g1_wnaf,
|
||||
&g2_wnaf,
|
||||
&powers_of_tau,
|
||||
&assembly.at_aux,
|
||||
&assembly.bt_aux,
|
||||
&assembly.ct_aux,
|
||||
&mut a[assembly.num_inputs..],
|
||||
&mut b_g1[assembly.num_inputs..],
|
||||
&mut b_g2[assembly.num_inputs..],
|
||||
&mut l,
|
||||
&delta_inverse,
|
||||
&alpha,
|
||||
&beta,
|
||||
&worker
|
||||
);
|
||||
|
||||
// Don't allow any elements be unconstrained, so that
|
||||
// the L query is always fully dense.
|
||||
for e in l.iter() {
|
||||
if e.is_zero() {
|
||||
return Err(SynthesisError::UnconstrainedVariable);
|
||||
}
|
||||
}
|
||||
|
||||
let g1 = g1.into_affine();
|
||||
let g2 = g2.into_affine();
|
||||
|
||||
let vk = VerifyingKey::<E> {
|
||||
alpha_g1: g1.mul(alpha).into_affine(),
|
||||
beta_g1: g1.mul(beta).into_affine(),
|
||||
beta_g2: g2.mul(beta).into_affine(),
|
||||
gamma_g2: g2.mul(gamma).into_affine(),
|
||||
delta_g1: g1.mul(delta).into_affine(),
|
||||
delta_g2: g2.mul(delta).into_affine(),
|
||||
ic: ic.into_iter().map(|e| e.into_affine()).collect()
|
||||
};
|
||||
|
||||
Ok(Parameters {
|
||||
vk: vk,
|
||||
h: Arc::new(h.into_iter().map(|e| e.into_affine()).collect()),
|
||||
l: Arc::new(l.into_iter().map(|e| e.into_affine()).collect()),
|
||||
|
||||
// Filter points at infinity away from A/B queries
|
||||
a: Arc::new(a.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect()),
|
||||
b_g1: Arc::new(b_g1.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect()),
|
||||
b_g2: Arc::new(b_g2.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect())
|
||||
})
|
||||
}
|
576
bellman/src/groth16/mod.rs
Normal file
576
bellman/src/groth16/mod.rs
Normal file
@ -0,0 +1,576 @@
|
||||
use pairing::{
|
||||
Engine,
|
||||
CurveAffine,
|
||||
EncodedPoint
|
||||
};
|
||||
|
||||
use ::{
|
||||
SynthesisError
|
||||
};
|
||||
|
||||
use multiexp::SourceBuilder;
|
||||
use std::io::{self, Read, Write};
|
||||
use std::sync::Arc;
|
||||
use byteorder::{BigEndian, WriteBytesExt, ReadBytesExt};
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
mod generator;
|
||||
mod prover;
|
||||
mod verifier;
|
||||
|
||||
pub use self::generator::*;
|
||||
pub use self::prover::*;
|
||||
pub use self::verifier::*;
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Proof<E: Engine> {
|
||||
pub a: E::G1Affine,
|
||||
pub b: E::G2Affine,
|
||||
pub c: E::G1Affine
|
||||
}
|
||||
|
||||
impl<E: Engine> PartialEq for Proof<E> {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.a == other.a &&
|
||||
self.b == other.b &&
|
||||
self.c == other.c
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Proof<E> {
|
||||
pub fn write<W: Write>(
|
||||
&self,
|
||||
mut writer: W
|
||||
) -> io::Result<()>
|
||||
{
|
||||
writer.write_all(self.a.into_compressed().as_ref())?;
|
||||
writer.write_all(self.b.into_compressed().as_ref())?;
|
||||
writer.write_all(self.c.into_compressed().as_ref())?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn read<R: Read>(
|
||||
mut reader: R
|
||||
) -> io::Result<Self>
|
||||
{
|
||||
let mut g1_repr = <E::G1Affine as CurveAffine>::Compressed::empty();
|
||||
let mut g2_repr = <E::G2Affine as CurveAffine>::Compressed::empty();
|
||||
|
||||
reader.read_exact(g1_repr.as_mut())?;
|
||||
let a = g1_repr
|
||||
.into_affine()
|
||||
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
|
||||
.and_then(|e| if e.is_zero() {
|
||||
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
|
||||
} else {
|
||||
Ok(e)
|
||||
})?;
|
||||
|
||||
reader.read_exact(g2_repr.as_mut())?;
|
||||
let b = g2_repr
|
||||
.into_affine()
|
||||
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
|
||||
.and_then(|e| if e.is_zero() {
|
||||
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
|
||||
} else {
|
||||
Ok(e)
|
||||
})?;
|
||||
|
||||
reader.read_exact(g1_repr.as_mut())?;
|
||||
let c = g1_repr
|
||||
.into_affine()
|
||||
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
|
||||
.and_then(|e| if e.is_zero() {
|
||||
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
|
||||
} else {
|
||||
Ok(e)
|
||||
})?;
|
||||
|
||||
Ok(Proof {
|
||||
a: a,
|
||||
b: b,
|
||||
c: c
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct VerifyingKey<E: Engine> {
|
||||
// alpha in g1 for verifying and for creating A/C elements of
|
||||
// proof. Never the point at infinity.
|
||||
pub alpha_g1: E::G1Affine,
|
||||
|
||||
// beta in g1 and g2 for verifying and for creating B/C elements
|
||||
// of proof. Never the point at infinity.
|
||||
pub beta_g1: E::G1Affine,
|
||||
pub beta_g2: E::G2Affine,
|
||||
|
||||
// gamma in g2 for verifying. Never the point at infinity.
|
||||
pub gamma_g2: E::G2Affine,
|
||||
|
||||
// delta in g1/g2 for verifying and proving, essentially the magic
|
||||
// trapdoor that forces the prover to evaluate the C element of the
|
||||
// proof with only components from the CRS. Never the point at
|
||||
// infinity.
|
||||
pub delta_g1: E::G1Affine,
|
||||
pub delta_g2: E::G2Affine,
|
||||
|
||||
// Elements of the form (beta * u_i(tau) + alpha v_i(tau) + w_i(tau)) / gamma
|
||||
// for all public inputs. Because all public inputs have a dummy constraint,
|
||||
// this is the same size as the number of inputs, and never contains points
|
||||
// at infinity.
|
||||
pub ic: Vec<E::G1Affine>
|
||||
}
|
||||
|
||||
impl<E: Engine> PartialEq for VerifyingKey<E> {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.alpha_g1 == other.alpha_g1 &&
|
||||
self.beta_g1 == other.beta_g1 &&
|
||||
self.beta_g2 == other.beta_g2 &&
|
||||
self.gamma_g2 == other.gamma_g2 &&
|
||||
self.delta_g1 == other.delta_g1 &&
|
||||
self.delta_g2 == other.delta_g2 &&
|
||||
self.ic == other.ic
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> VerifyingKey<E> {
|
||||
pub fn write<W: Write>(
|
||||
&self,
|
||||
mut writer: W
|
||||
) -> io::Result<()>
|
||||
{
|
||||
writer.write_all(self.alpha_g1.into_uncompressed().as_ref())?;
|
||||
writer.write_all(self.beta_g1.into_uncompressed().as_ref())?;
|
||||
writer.write_all(self.beta_g2.into_uncompressed().as_ref())?;
|
||||
writer.write_all(self.gamma_g2.into_uncompressed().as_ref())?;
|
||||
writer.write_all(self.delta_g1.into_uncompressed().as_ref())?;
|
||||
writer.write_all(self.delta_g2.into_uncompressed().as_ref())?;
|
||||
writer.write_u32::<BigEndian>(self.ic.len() as u32)?;
|
||||
for ic in &self.ic {
|
||||
writer.write_all(ic.into_uncompressed().as_ref())?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn read<R: Read>(
|
||||
mut reader: R
|
||||
) -> io::Result<Self>
|
||||
{
|
||||
let mut g1_repr = <E::G1Affine as CurveAffine>::Uncompressed::empty();
|
||||
let mut g2_repr = <E::G2Affine as CurveAffine>::Uncompressed::empty();
|
||||
|
||||
reader.read_exact(g1_repr.as_mut())?;
|
||||
let alpha_g1 = g1_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
|
||||
|
||||
reader.read_exact(g1_repr.as_mut())?;
|
||||
let beta_g1 = g1_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
|
||||
|
||||
reader.read_exact(g2_repr.as_mut())?;
|
||||
let beta_g2 = g2_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
|
||||
|
||||
reader.read_exact(g2_repr.as_mut())?;
|
||||
let gamma_g2 = g2_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
|
||||
|
||||
reader.read_exact(g1_repr.as_mut())?;
|
||||
let delta_g1 = g1_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
|
||||
|
||||
reader.read_exact(g2_repr.as_mut())?;
|
||||
let delta_g2 = g2_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
|
||||
|
||||
let ic_len = reader.read_u32::<BigEndian>()? as usize;
|
||||
|
||||
let mut ic = vec![];
|
||||
|
||||
for _ in 0..ic_len {
|
||||
reader.read_exact(g1_repr.as_mut())?;
|
||||
let g1 = g1_repr
|
||||
.into_affine()
|
||||
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
|
||||
.and_then(|e| if e.is_zero() {
|
||||
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
|
||||
} else {
|
||||
Ok(e)
|
||||
})?;
|
||||
|
||||
ic.push(g1);
|
||||
}
|
||||
|
||||
Ok(VerifyingKey {
|
||||
alpha_g1: alpha_g1,
|
||||
beta_g1: beta_g1,
|
||||
beta_g2: beta_g2,
|
||||
gamma_g2: gamma_g2,
|
||||
delta_g1: delta_g1,
|
||||
delta_g2: delta_g2,
|
||||
ic: ic
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Parameters<E: Engine> {
|
||||
pub vk: VerifyingKey<E>,
|
||||
|
||||
// Elements of the form ((tau^i * t(tau)) / delta) for i between 0 and
|
||||
// m-2 inclusive. Never contains points at infinity.
|
||||
pub h: Arc<Vec<E::G1Affine>>,
|
||||
|
||||
// Elements of the form (beta * u_i(tau) + alpha v_i(tau) + w_i(tau)) / delta
|
||||
// for all auxillary inputs. Variables can never be unconstrained, so this
|
||||
// never contains points at infinity.
|
||||
pub l: Arc<Vec<E::G1Affine>>,
|
||||
|
||||
// QAP "A" polynomials evaluated at tau in the Lagrange basis. Never contains
|
||||
// points at infinity: polynomials that evaluate to zero are omitted from
|
||||
// the CRS and the prover can deterministically skip their evaluation.
|
||||
pub a: Arc<Vec<E::G1Affine>>,
|
||||
|
||||
// QAP "B" polynomials evaluated at tau in the Lagrange basis. Needed in
|
||||
// G1 and G2 for C/B queries, respectively. Never contains points at
|
||||
// infinity for the same reason as the "A" polynomials.
|
||||
pub b_g1: Arc<Vec<E::G1Affine>>,
|
||||
pub b_g2: Arc<Vec<E::G2Affine>>
|
||||
}
|
||||
|
||||
impl<E: Engine> PartialEq for Parameters<E> {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.vk == other.vk &&
|
||||
self.h == other.h &&
|
||||
self.l == other.l &&
|
||||
self.a == other.a &&
|
||||
self.b_g1 == other.b_g1 &&
|
||||
self.b_g2 == other.b_g2
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Parameters<E> {
|
||||
pub fn write<W: Write>(
|
||||
&self,
|
||||
mut writer: W
|
||||
) -> io::Result<()>
|
||||
{
|
||||
self.vk.write(&mut writer)?;
|
||||
|
||||
writer.write_u32::<BigEndian>(self.h.len() as u32)?;
|
||||
for g in &self.h[..] {
|
||||
writer.write_all(g.into_uncompressed().as_ref())?;
|
||||
}
|
||||
|
||||
writer.write_u32::<BigEndian>(self.l.len() as u32)?;
|
||||
for g in &self.l[..] {
|
||||
writer.write_all(g.into_uncompressed().as_ref())?;
|
||||
}
|
||||
|
||||
writer.write_u32::<BigEndian>(self.a.len() as u32)?;
|
||||
for g in &self.a[..] {
|
||||
writer.write_all(g.into_uncompressed().as_ref())?;
|
||||
}
|
||||
|
||||
writer.write_u32::<BigEndian>(self.b_g1.len() as u32)?;
|
||||
for g in &self.b_g1[..] {
|
||||
writer.write_all(g.into_uncompressed().as_ref())?;
|
||||
}
|
||||
|
||||
writer.write_u32::<BigEndian>(self.b_g2.len() as u32)?;
|
||||
for g in &self.b_g2[..] {
|
||||
writer.write_all(g.into_uncompressed().as_ref())?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn read<R: Read>(
|
||||
mut reader: R,
|
||||
checked: bool
|
||||
) -> io::Result<Self>
|
||||
{
|
||||
let read_g1 = |reader: &mut R| -> io::Result<E::G1Affine> {
|
||||
let mut repr = <E::G1Affine as CurveAffine>::Uncompressed::empty();
|
||||
reader.read_exact(repr.as_mut())?;
|
||||
|
||||
if checked {
|
||||
repr
|
||||
.into_affine()
|
||||
} else {
|
||||
repr
|
||||
.into_affine_unchecked()
|
||||
}
|
||||
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
|
||||
.and_then(|e| if e.is_zero() {
|
||||
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
|
||||
} else {
|
||||
Ok(e)
|
||||
})
|
||||
};
|
||||
|
||||
let read_g2 = |reader: &mut R| -> io::Result<E::G2Affine> {
|
||||
let mut repr = <E::G2Affine as CurveAffine>::Uncompressed::empty();
|
||||
reader.read_exact(repr.as_mut())?;
|
||||
|
||||
if checked {
|
||||
repr
|
||||
.into_affine()
|
||||
} else {
|
||||
repr
|
||||
.into_affine_unchecked()
|
||||
}
|
||||
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
|
||||
.and_then(|e| if e.is_zero() {
|
||||
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
|
||||
} else {
|
||||
Ok(e)
|
||||
})
|
||||
};
|
||||
|
||||
let vk = VerifyingKey::<E>::read(&mut reader)?;
|
||||
|
||||
let mut h = vec![];
|
||||
let mut l = vec![];
|
||||
let mut a = vec![];
|
||||
let mut b_g1 = vec![];
|
||||
let mut b_g2 = vec![];
|
||||
|
||||
{
|
||||
let len = reader.read_u32::<BigEndian>()? as usize;
|
||||
for _ in 0..len {
|
||||
h.push(read_g1(&mut reader)?);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let len = reader.read_u32::<BigEndian>()? as usize;
|
||||
for _ in 0..len {
|
||||
l.push(read_g1(&mut reader)?);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let len = reader.read_u32::<BigEndian>()? as usize;
|
||||
for _ in 0..len {
|
||||
a.push(read_g1(&mut reader)?);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let len = reader.read_u32::<BigEndian>()? as usize;
|
||||
for _ in 0..len {
|
||||
b_g1.push(read_g1(&mut reader)?);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let len = reader.read_u32::<BigEndian>()? as usize;
|
||||
for _ in 0..len {
|
||||
b_g2.push(read_g2(&mut reader)?);
|
||||
}
|
||||
}
|
||||
|
||||
Ok(Parameters {
|
||||
vk: vk,
|
||||
h: Arc::new(h),
|
||||
l: Arc::new(l),
|
||||
a: Arc::new(a),
|
||||
b_g1: Arc::new(b_g1),
|
||||
b_g2: Arc::new(b_g2)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub struct PreparedVerifyingKey<E: Engine> {
|
||||
/// Pairing result of alpha*beta
|
||||
alpha_g1_beta_g2: E::Fqk,
|
||||
/// -gamma in G2
|
||||
neg_gamma_g2: <E::G2Affine as CurveAffine>::Prepared,
|
||||
/// -delta in G2
|
||||
neg_delta_g2: <E::G2Affine as CurveAffine>::Prepared,
|
||||
/// Copy of IC from `VerifiyingKey`.
|
||||
ic: Vec<E::G1Affine>
|
||||
}
|
||||
|
||||
pub trait ParameterSource<E: Engine> {
|
||||
type G1Builder: SourceBuilder<E::G1Affine>;
|
||||
type G2Builder: SourceBuilder<E::G2Affine>;
|
||||
|
||||
fn get_vk(
|
||||
&mut self,
|
||||
num_ic: usize
|
||||
) -> Result<VerifyingKey<E>, SynthesisError>;
|
||||
fn get_h(
|
||||
&mut self,
|
||||
num_h: usize
|
||||
) -> Result<Self::G1Builder, SynthesisError>;
|
||||
fn get_l(
|
||||
&mut self,
|
||||
num_l: usize
|
||||
) -> Result<Self::G1Builder, SynthesisError>;
|
||||
fn get_a(
|
||||
&mut self,
|
||||
num_inputs: usize,
|
||||
num_aux: usize
|
||||
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>;
|
||||
fn get_b_g1(
|
||||
&mut self,
|
||||
num_inputs: usize,
|
||||
num_aux: usize
|
||||
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>;
|
||||
fn get_b_g2(
|
||||
&mut self,
|
||||
num_inputs: usize,
|
||||
num_aux: usize
|
||||
) -> Result<(Self::G2Builder, Self::G2Builder), SynthesisError>;
|
||||
}
|
||||
|
||||
impl<'a, E: Engine> ParameterSource<E> for &'a Parameters<E> {
|
||||
type G1Builder = (Arc<Vec<E::G1Affine>>, usize);
|
||||
type G2Builder = (Arc<Vec<E::G2Affine>>, usize);
|
||||
|
||||
fn get_vk(
|
||||
&mut self,
|
||||
_: usize
|
||||
) -> Result<VerifyingKey<E>, SynthesisError>
|
||||
{
|
||||
Ok(self.vk.clone())
|
||||
}
|
||||
|
||||
fn get_h(
|
||||
&mut self,
|
||||
_: usize
|
||||
) -> Result<Self::G1Builder, SynthesisError>
|
||||
{
|
||||
Ok((self.h.clone(), 0))
|
||||
}
|
||||
|
||||
fn get_l(
|
||||
&mut self,
|
||||
_: usize
|
||||
) -> Result<Self::G1Builder, SynthesisError>
|
||||
{
|
||||
Ok((self.l.clone(), 0))
|
||||
}
|
||||
|
||||
fn get_a(
|
||||
&mut self,
|
||||
num_inputs: usize,
|
||||
_: usize
|
||||
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>
|
||||
{
|
||||
Ok(((self.a.clone(), 0), (self.a.clone(), num_inputs)))
|
||||
}
|
||||
|
||||
fn get_b_g1(
|
||||
&mut self,
|
||||
num_inputs: usize,
|
||||
_: usize
|
||||
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>
|
||||
{
|
||||
Ok(((self.b_g1.clone(), 0), (self.b_g1.clone(), num_inputs)))
|
||||
}
|
||||
|
||||
fn get_b_g2(
|
||||
&mut self,
|
||||
num_inputs: usize,
|
||||
_: usize
|
||||
) -> Result<(Self::G2Builder, Self::G2Builder), SynthesisError>
|
||||
{
|
||||
Ok(((self.b_g2.clone(), 0), (self.b_g2.clone(), num_inputs)))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test_with_bls12_381 {
|
||||
use super::*;
|
||||
use {Circuit, SynthesisError, ConstraintSystem};
|
||||
|
||||
use rand::{Rand, thread_rng};
|
||||
use pairing::{Field};
|
||||
use pairing::bls12_381::{Bls12, Fr};
|
||||
|
||||
#[test]
|
||||
fn serialization() {
|
||||
struct MySillyCircuit<E: Engine> {
|
||||
a: Option<E::Fr>,
|
||||
b: Option<E::Fr>
|
||||
}
|
||||
|
||||
impl<E: Engine> Circuit<E> for MySillyCircuit<E> {
|
||||
fn synthesize<CS: ConstraintSystem<E>>(
|
||||
self,
|
||||
cs: &mut CS
|
||||
) -> Result<(), SynthesisError>
|
||||
{
|
||||
let a = cs.alloc(|| "a", || self.a.ok_or(SynthesisError::AssignmentMissing))?;
|
||||
let b = cs.alloc(|| "b", || self.b.ok_or(SynthesisError::AssignmentMissing))?;
|
||||
let c = cs.alloc_input(|| "c", || {
|
||||
let mut a = self.a.ok_or(SynthesisError::AssignmentMissing)?;
|
||||
let b = self.b.ok_or(SynthesisError::AssignmentMissing)?;
|
||||
|
||||
a.mul_assign(&b);
|
||||
Ok(a)
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "a*b=c",
|
||||
|lc| lc + a,
|
||||
|lc| lc + b,
|
||||
|lc| lc + c
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
let rng = &mut thread_rng();
|
||||
|
||||
let params = generate_random_parameters::<Bls12, _, _>(
|
||||
MySillyCircuit { a: None, b: None },
|
||||
rng
|
||||
).unwrap();
|
||||
|
||||
{
|
||||
let mut v = vec![];
|
||||
|
||||
params.write(&mut v).unwrap();
|
||||
assert_eq!(v.len(), 2136);
|
||||
|
||||
let de_params = Parameters::read(&v[..], true).unwrap();
|
||||
assert!(params == de_params);
|
||||
|
||||
let de_params = Parameters::read(&v[..], false).unwrap();
|
||||
assert!(params == de_params);
|
||||
}
|
||||
|
||||
let pvk = prepare_verifying_key::<Bls12>(¶ms.vk);
|
||||
|
||||
for _ in 0..100 {
|
||||
let a = Fr::rand(rng);
|
||||
let b = Fr::rand(rng);
|
||||
let mut c = a;
|
||||
c.mul_assign(&b);
|
||||
|
||||
let proof = create_random_proof(
|
||||
MySillyCircuit {
|
||||
a: Some(a),
|
||||
b: Some(b)
|
||||
},
|
||||
¶ms,
|
||||
rng
|
||||
).unwrap();
|
||||
|
||||
let mut v = vec![];
|
||||
proof.write(&mut v).unwrap();
|
||||
|
||||
assert_eq!(v.len(), 192);
|
||||
|
||||
let de_proof = Proof::read(&v[..]).unwrap();
|
||||
assert!(proof == de_proof);
|
||||
|
||||
assert!(verify_proof(&pvk, &proof, &[c]).unwrap());
|
||||
assert!(!verify_proof(&pvk, &proof, &[a]).unwrap());
|
||||
}
|
||||
}
|
||||
}
|
334
bellman/src/groth16/prover.rs
Normal file
334
bellman/src/groth16/prover.rs
Normal file
@ -0,0 +1,334 @@
|
||||
use rand::Rng;
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use futures::Future;
|
||||
|
||||
use pairing::{
|
||||
Engine,
|
||||
PrimeField,
|
||||
Field,
|
||||
CurveProjective,
|
||||
CurveAffine
|
||||
};
|
||||
|
||||
use super::{
|
||||
ParameterSource,
|
||||
Proof
|
||||
};
|
||||
|
||||
use ::{
|
||||
SynthesisError,
|
||||
Circuit,
|
||||
ConstraintSystem,
|
||||
LinearCombination,
|
||||
Variable,
|
||||
Index
|
||||
};
|
||||
|
||||
use ::domain::{
|
||||
EvaluationDomain,
|
||||
Scalar
|
||||
};
|
||||
|
||||
use ::multiexp::{
|
||||
DensityTracker,
|
||||
FullDensity,
|
||||
multiexp
|
||||
};
|
||||
|
||||
use ::multicore::{
|
||||
Worker
|
||||
};
|
||||
|
||||
fn eval<E: Engine>(
|
||||
lc: &LinearCombination<E>,
|
||||
mut input_density: Option<&mut DensityTracker>,
|
||||
mut aux_density: Option<&mut DensityTracker>,
|
||||
input_assignment: &[E::Fr],
|
||||
aux_assignment: &[E::Fr]
|
||||
) -> E::Fr
|
||||
{
|
||||
let mut acc = E::Fr::zero();
|
||||
|
||||
for &(index, coeff) in lc.0.iter() {
|
||||
let mut tmp;
|
||||
|
||||
match index {
|
||||
Variable(Index::Input(i)) => {
|
||||
tmp = input_assignment[i];
|
||||
if let Some(ref mut v) = input_density {
|
||||
v.inc(i);
|
||||
}
|
||||
},
|
||||
Variable(Index::Aux(i)) => {
|
||||
tmp = aux_assignment[i];
|
||||
if let Some(ref mut v) = aux_density {
|
||||
v.inc(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if coeff == E::Fr::one() {
|
||||
acc.add_assign(&tmp);
|
||||
} else {
|
||||
tmp.mul_assign(&coeff);
|
||||
acc.add_assign(&tmp);
|
||||
}
|
||||
}
|
||||
|
||||
acc
|
||||
}
|
||||
|
||||
struct ProvingAssignment<E: Engine> {
|
||||
// Density of queries
|
||||
a_aux_density: DensityTracker,
|
||||
b_input_density: DensityTracker,
|
||||
b_aux_density: DensityTracker,
|
||||
|
||||
// Evaluations of A, B, C polynomials
|
||||
a: Vec<Scalar<E>>,
|
||||
b: Vec<Scalar<E>>,
|
||||
c: Vec<Scalar<E>>,
|
||||
|
||||
// Assignments of variables
|
||||
input_assignment: Vec<E::Fr>,
|
||||
aux_assignment: Vec<E::Fr>
|
||||
}
|
||||
|
||||
impl<E: Engine> ConstraintSystem<E> for ProvingAssignment<E> {
|
||||
type Root = Self;
|
||||
|
||||
fn alloc<F, A, AR>(
|
||||
&mut self,
|
||||
_: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
self.aux_assignment.push(f()?);
|
||||
self.a_aux_density.add_element();
|
||||
self.b_aux_density.add_element();
|
||||
|
||||
Ok(Variable(Index::Aux(self.aux_assignment.len() - 1)))
|
||||
}
|
||||
|
||||
fn alloc_input<F, A, AR>(
|
||||
&mut self,
|
||||
_: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
self.input_assignment.push(f()?);
|
||||
self.b_input_density.add_element();
|
||||
|
||||
Ok(Variable(Index::Input(self.input_assignment.len() - 1)))
|
||||
}
|
||||
|
||||
fn enforce<A, AR, LA, LB, LC>(
|
||||
&mut self,
|
||||
_: A,
|
||||
a: LA,
|
||||
b: LB,
|
||||
c: LC
|
||||
)
|
||||
where A: FnOnce() -> AR, AR: Into<String>,
|
||||
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
|
||||
{
|
||||
let a = a(LinearCombination::zero());
|
||||
let b = b(LinearCombination::zero());
|
||||
let c = c(LinearCombination::zero());
|
||||
|
||||
self.a.push(Scalar(eval(
|
||||
&a,
|
||||
// Inputs have full density in the A query
|
||||
// because there are constraints of the
|
||||
// form x * 0 = 0 for each input.
|
||||
None,
|
||||
Some(&mut self.a_aux_density),
|
||||
&self.input_assignment,
|
||||
&self.aux_assignment
|
||||
)));
|
||||
self.b.push(Scalar(eval(
|
||||
&b,
|
||||
Some(&mut self.b_input_density),
|
||||
Some(&mut self.b_aux_density),
|
||||
&self.input_assignment,
|
||||
&self.aux_assignment
|
||||
)));
|
||||
self.c.push(Scalar(eval(
|
||||
&c,
|
||||
// There is no C polynomial query,
|
||||
// though there is an (beta)A + (alpha)B + C
|
||||
// query for all aux variables.
|
||||
// However, that query has full density.
|
||||
None,
|
||||
None,
|
||||
&self.input_assignment,
|
||||
&self.aux_assignment
|
||||
)));
|
||||
}
|
||||
|
||||
fn push_namespace<NR, N>(&mut self, _: N)
|
||||
where NR: Into<String>, N: FnOnce() -> NR
|
||||
{
|
||||
// Do nothing; we don't care about namespaces in this context.
|
||||
}
|
||||
|
||||
fn pop_namespace(&mut self)
|
||||
{
|
||||
// Do nothing; we don't care about namespaces in this context.
|
||||
}
|
||||
|
||||
fn get_root(&mut self) -> &mut Self::Root {
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
pub fn create_random_proof<E, C, R, P: ParameterSource<E>>(
|
||||
circuit: C,
|
||||
params: P,
|
||||
rng: &mut R
|
||||
) -> Result<Proof<E>, SynthesisError>
|
||||
where E: Engine, C: Circuit<E>, R: Rng
|
||||
{
|
||||
let r = rng.gen();
|
||||
let s = rng.gen();
|
||||
|
||||
create_proof::<E, C, P>(circuit, params, r, s)
|
||||
}
|
||||
|
||||
pub fn create_proof<E, C, P: ParameterSource<E>>(
|
||||
circuit: C,
|
||||
mut params: P,
|
||||
r: E::Fr,
|
||||
s: E::Fr
|
||||
) -> Result<Proof<E>, SynthesisError>
|
||||
where E: Engine, C: Circuit<E>
|
||||
{
|
||||
let mut prover = ProvingAssignment {
|
||||
a_aux_density: DensityTracker::new(),
|
||||
b_input_density: DensityTracker::new(),
|
||||
b_aux_density: DensityTracker::new(),
|
||||
a: vec![],
|
||||
b: vec![],
|
||||
c: vec![],
|
||||
input_assignment: vec![],
|
||||
aux_assignment: vec![]
|
||||
};
|
||||
|
||||
prover.alloc_input(|| "", || Ok(E::Fr::one()))?;
|
||||
|
||||
circuit.synthesize(&mut prover)?;
|
||||
|
||||
for i in 0..prover.input_assignment.len() {
|
||||
prover.enforce(|| "",
|
||||
|lc| lc + Variable(Index::Input(i)),
|
||||
|lc| lc,
|
||||
|lc| lc,
|
||||
);
|
||||
}
|
||||
|
||||
let worker = Worker::new();
|
||||
|
||||
let vk = params.get_vk(prover.input_assignment.len())?;
|
||||
|
||||
let h = {
|
||||
let mut a = EvaluationDomain::from_coeffs(prover.a)?;
|
||||
let mut b = EvaluationDomain::from_coeffs(prover.b)?;
|
||||
let mut c = EvaluationDomain::from_coeffs(prover.c)?;
|
||||
a.ifft(&worker);
|
||||
a.coset_fft(&worker);
|
||||
b.ifft(&worker);
|
||||
b.coset_fft(&worker);
|
||||
c.ifft(&worker);
|
||||
c.coset_fft(&worker);
|
||||
|
||||
a.mul_assign(&worker, &b);
|
||||
drop(b);
|
||||
a.sub_assign(&worker, &c);
|
||||
drop(c);
|
||||
a.divide_by_z_on_coset(&worker);
|
||||
a.icoset_fft(&worker);
|
||||
let mut a = a.into_coeffs();
|
||||
let a_len = a.len() - 1;
|
||||
a.truncate(a_len);
|
||||
// TODO: parallelize if it's even helpful
|
||||
let a = Arc::new(a.into_iter().map(|s| s.0.into_repr()).collect::<Vec<_>>());
|
||||
|
||||
multiexp(&worker, params.get_h(a.len())?, FullDensity, a)
|
||||
};
|
||||
|
||||
// TODO: parallelize if it's even helpful
|
||||
let input_assignment = Arc::new(prover.input_assignment.into_iter().map(|s| s.into_repr()).collect::<Vec<_>>());
|
||||
let aux_assignment = Arc::new(prover.aux_assignment.into_iter().map(|s| s.into_repr()).collect::<Vec<_>>());
|
||||
|
||||
let l = multiexp(&worker, params.get_l(aux_assignment.len())?, FullDensity, aux_assignment.clone());
|
||||
|
||||
let a_aux_density_total = prover.a_aux_density.get_total_density();
|
||||
|
||||
let (a_inputs_source, a_aux_source) = params.get_a(input_assignment.len(), a_aux_density_total)?;
|
||||
|
||||
let a_inputs = multiexp(&worker, a_inputs_source, FullDensity, input_assignment.clone());
|
||||
let a_aux = multiexp(&worker, a_aux_source, Arc::new(prover.a_aux_density), aux_assignment.clone());
|
||||
|
||||
let b_input_density = Arc::new(prover.b_input_density);
|
||||
let b_input_density_total = b_input_density.get_total_density();
|
||||
let b_aux_density = Arc::new(prover.b_aux_density);
|
||||
let b_aux_density_total = b_aux_density.get_total_density();
|
||||
|
||||
let (b_g1_inputs_source, b_g1_aux_source) = params.get_b_g1(b_input_density_total, b_aux_density_total)?;
|
||||
|
||||
let b_g1_inputs = multiexp(&worker, b_g1_inputs_source, b_input_density.clone(), input_assignment.clone());
|
||||
let b_g1_aux = multiexp(&worker, b_g1_aux_source, b_aux_density.clone(), aux_assignment.clone());
|
||||
|
||||
let (b_g2_inputs_source, b_g2_aux_source) = params.get_b_g2(b_input_density_total, b_aux_density_total)?;
|
||||
|
||||
let b_g2_inputs = multiexp(&worker, b_g2_inputs_source, b_input_density, input_assignment);
|
||||
let b_g2_aux = multiexp(&worker, b_g2_aux_source, b_aux_density, aux_assignment);
|
||||
|
||||
if vk.delta_g1.is_zero() || vk.delta_g2.is_zero() {
|
||||
// If this element is zero, someone is trying to perform a
|
||||
// subversion-CRS attack.
|
||||
return Err(SynthesisError::UnexpectedIdentity);
|
||||
}
|
||||
|
||||
let mut g_a = vk.delta_g1.mul(r);
|
||||
g_a.add_assign_mixed(&vk.alpha_g1);
|
||||
let mut g_b = vk.delta_g2.mul(s);
|
||||
g_b.add_assign_mixed(&vk.beta_g2);
|
||||
let mut g_c;
|
||||
{
|
||||
let mut rs = r;
|
||||
rs.mul_assign(&s);
|
||||
|
||||
g_c = vk.delta_g1.mul(rs);
|
||||
g_c.add_assign(&vk.alpha_g1.mul(s));
|
||||
g_c.add_assign(&vk.beta_g1.mul(r));
|
||||
}
|
||||
let mut a_answer = a_inputs.wait()?;
|
||||
a_answer.add_assign(&a_aux.wait()?);
|
||||
g_a.add_assign(&a_answer);
|
||||
a_answer.mul_assign(s);
|
||||
g_c.add_assign(&a_answer);
|
||||
|
||||
let mut b1_answer = b_g1_inputs.wait()?;
|
||||
b1_answer.add_assign(&b_g1_aux.wait()?);
|
||||
let mut b2_answer = b_g2_inputs.wait()?;
|
||||
b2_answer.add_assign(&b_g2_aux.wait()?);
|
||||
|
||||
g_b.add_assign(&b2_answer);
|
||||
b1_answer.mul_assign(r);
|
||||
g_c.add_assign(&b1_answer);
|
||||
g_c.add_assign(&h.wait()?);
|
||||
g_c.add_assign(&l.wait()?);
|
||||
|
||||
Ok(Proof {
|
||||
a: g_a.into_affine(),
|
||||
b: g_b.into_affine(),
|
||||
c: g_c.into_affine()
|
||||
})
|
||||
}
|
451
bellman/src/groth16/tests/dummy_engine.rs
Normal file
451
bellman/src/groth16/tests/dummy_engine.rs
Normal file
@ -0,0 +1,451 @@
|
||||
use pairing::{
|
||||
Engine,
|
||||
PrimeField,
|
||||
PrimeFieldRepr,
|
||||
Field,
|
||||
SqrtField,
|
||||
LegendreSymbol,
|
||||
CurveProjective,
|
||||
CurveAffine,
|
||||
PrimeFieldDecodingError,
|
||||
GroupDecodingError,
|
||||
EncodedPoint
|
||||
};
|
||||
|
||||
use std::cmp::Ordering;
|
||||
use std::fmt;
|
||||
use rand::{Rand, Rng};
|
||||
use std::num::Wrapping;
|
||||
|
||||
const MODULUS_R: Wrapping<u32> = Wrapping(64513);
|
||||
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
||||
pub struct Fr(Wrapping<u32>);
|
||||
|
||||
impl fmt::Display for Fr {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
||||
write!(f, "{}", (self.0).0)
|
||||
}
|
||||
}
|
||||
|
||||
impl Rand for Fr {
|
||||
fn rand<R: Rng>(rng: &mut R) -> Self {
|
||||
Fr(Wrapping(rng.gen()) % MODULUS_R)
|
||||
}
|
||||
}
|
||||
|
||||
impl Field for Fr {
|
||||
fn zero() -> Self {
|
||||
Fr(Wrapping(0))
|
||||
}
|
||||
|
||||
fn one() -> Self {
|
||||
Fr(Wrapping(1))
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
(self.0).0 == 0
|
||||
}
|
||||
|
||||
fn square(&mut self) {
|
||||
self.0 = (self.0 * self.0) % MODULUS_R;
|
||||
}
|
||||
|
||||
fn double(&mut self) {
|
||||
self.0 = (self.0 << 1) % MODULUS_R;
|
||||
}
|
||||
|
||||
fn negate(&mut self) {
|
||||
if !<Fr as Field>::is_zero(self) {
|
||||
self.0 = MODULUS_R - self.0;
|
||||
}
|
||||
}
|
||||
|
||||
fn add_assign(&mut self, other: &Self) {
|
||||
self.0 = (self.0 + other.0) % MODULUS_R;
|
||||
}
|
||||
|
||||
fn sub_assign(&mut self, other: &Self) {
|
||||
self.0 = ((MODULUS_R + self.0) - other.0) % MODULUS_R;
|
||||
}
|
||||
|
||||
fn mul_assign(&mut self, other: &Self) {
|
||||
self.0 = (self.0 * other.0) % MODULUS_R;
|
||||
}
|
||||
|
||||
fn inverse(&self) -> Option<Self> {
|
||||
if <Fr as Field>::is_zero(self) {
|
||||
None
|
||||
} else {
|
||||
Some(self.pow(&[(MODULUS_R.0 as u64) - 2]))
|
||||
}
|
||||
}
|
||||
|
||||
fn frobenius_map(&mut self, _: usize) {
|
||||
// identity
|
||||
}
|
||||
}
|
||||
|
||||
impl SqrtField for Fr {
|
||||
fn legendre(&self) -> LegendreSymbol {
|
||||
// s = self^((r - 1) // 2)
|
||||
let s = self.pow([32256]);
|
||||
if s == <Fr as Field>::zero() { LegendreSymbol::Zero }
|
||||
else if s == <Fr as Field>::one() { LegendreSymbol::QuadraticResidue }
|
||||
else { LegendreSymbol::QuadraticNonResidue }
|
||||
}
|
||||
|
||||
fn sqrt(&self) -> Option<Self> {
|
||||
// Tonelli-Shank's algorithm for q mod 16 = 1
|
||||
// https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
|
||||
match self.legendre() {
|
||||
LegendreSymbol::Zero => Some(*self),
|
||||
LegendreSymbol::QuadraticNonResidue => None,
|
||||
LegendreSymbol::QuadraticResidue => {
|
||||
let mut c = Fr::root_of_unity();
|
||||
// r = self^((t + 1) // 2)
|
||||
let mut r = self.pow([32]);
|
||||
// t = self^t
|
||||
let mut t = self.pow([63]);
|
||||
let mut m = Fr::S;
|
||||
|
||||
while t != <Fr as Field>::one() {
|
||||
let mut i = 1;
|
||||
{
|
||||
let mut t2i = t;
|
||||
t2i.square();
|
||||
loop {
|
||||
if t2i == <Fr as Field>::one() {
|
||||
break;
|
||||
}
|
||||
t2i.square();
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
|
||||
for _ in 0..(m - i - 1) {
|
||||
c.square();
|
||||
}
|
||||
<Fr as Field>::mul_assign(&mut r, &c);
|
||||
c.square();
|
||||
<Fr as Field>::mul_assign(&mut t, &c);
|
||||
m = i;
|
||||
}
|
||||
|
||||
Some(r)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
pub struct FrRepr([u64; 1]);
|
||||
|
||||
impl Ord for FrRepr {
|
||||
fn cmp(&self, other: &FrRepr) -> Ordering {
|
||||
(self.0)[0].cmp(&(other.0)[0])
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for FrRepr {
|
||||
fn partial_cmp(&self, other: &FrRepr) -> Option<Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
|
||||
impl Rand for FrRepr {
|
||||
fn rand<R: Rng>(rng: &mut R) -> Self {
|
||||
FrRepr([rng.gen()])
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for FrRepr {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
||||
write!(f, "{}", (self.0)[0])
|
||||
}
|
||||
}
|
||||
|
||||
impl From<u64> for FrRepr {
|
||||
fn from(v: u64) -> FrRepr {
|
||||
FrRepr([v])
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Fr> for FrRepr {
|
||||
fn from(v: Fr) -> FrRepr {
|
||||
FrRepr([(v.0).0 as u64])
|
||||
}
|
||||
}
|
||||
|
||||
impl AsMut<[u64]> for FrRepr {
|
||||
fn as_mut(&mut self) -> &mut [u64] {
|
||||
&mut self.0[..]
|
||||
}
|
||||
}
|
||||
|
||||
impl AsRef<[u64]> for FrRepr {
|
||||
fn as_ref(&self) -> &[u64] {
|
||||
&self.0[..]
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for FrRepr {
|
||||
fn default() -> FrRepr {
|
||||
FrRepr::from(0u64)
|
||||
}
|
||||
}
|
||||
|
||||
impl PrimeFieldRepr for FrRepr {
|
||||
fn sub_noborrow(&mut self, other: &Self) {
|
||||
self.0[0] = self.0[0].wrapping_sub(other.0[0]);
|
||||
}
|
||||
fn add_nocarry(&mut self, other: &Self) {
|
||||
self.0[0] = self.0[0].wrapping_add(other.0[0]);
|
||||
}
|
||||
fn num_bits(&self) -> u32 {
|
||||
64 - self.0[0].leading_zeros()
|
||||
}
|
||||
fn is_zero(&self) -> bool {
|
||||
self.0[0] == 0
|
||||
}
|
||||
fn is_odd(&self) -> bool {
|
||||
!self.is_even()
|
||||
}
|
||||
fn is_even(&self) -> bool {
|
||||
self.0[0] % 2 == 0
|
||||
}
|
||||
fn div2(&mut self) {
|
||||
self.shr(1)
|
||||
}
|
||||
fn shr(&mut self, amt: u32) {
|
||||
self.0[0] >>= amt;
|
||||
}
|
||||
fn mul2(&mut self) {
|
||||
self.shl(1)
|
||||
}
|
||||
fn shl(&mut self, amt: u32) {
|
||||
self.0[0] <<= amt;
|
||||
}
|
||||
}
|
||||
|
||||
impl PrimeField for Fr {
|
||||
type Repr = FrRepr;
|
||||
|
||||
const NUM_BITS: u32 = 16;
|
||||
const CAPACITY: u32 = 15;
|
||||
const S: u32 = 10;
|
||||
|
||||
fn from_repr(repr: FrRepr) -> Result<Self, PrimeFieldDecodingError> {
|
||||
if repr.0[0] >= (MODULUS_R.0 as u64) {
|
||||
Err(PrimeFieldDecodingError::NotInField(format!("{}", repr)))
|
||||
} else {
|
||||
Ok(Fr(Wrapping(repr.0[0] as u32)))
|
||||
}
|
||||
}
|
||||
|
||||
fn into_repr(&self) -> FrRepr {
|
||||
FrRepr::from(*self)
|
||||
}
|
||||
|
||||
fn char() -> FrRepr {
|
||||
Fr(MODULUS_R).into()
|
||||
}
|
||||
|
||||
fn multiplicative_generator() -> Fr {
|
||||
Fr(Wrapping(5))
|
||||
}
|
||||
|
||||
fn root_of_unity() -> Fr {
|
||||
Fr(Wrapping(57751))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct DummyEngine;
|
||||
|
||||
impl Engine for DummyEngine {
|
||||
type Fr = Fr;
|
||||
type G1 = Fr;
|
||||
type G1Affine = Fr;
|
||||
type G2 = Fr;
|
||||
type G2Affine = Fr;
|
||||
type Fq = Fr;
|
||||
type Fqe = Fr;
|
||||
|
||||
// TODO: This should be F_645131 or something. Doesn't matter for now.
|
||||
type Fqk = Fr;
|
||||
|
||||
fn miller_loop<'a, I>(i: I) -> Self::Fqk
|
||||
where I: IntoIterator<Item=&'a (
|
||||
&'a <Self::G1Affine as CurveAffine>::Prepared,
|
||||
&'a <Self::G2Affine as CurveAffine>::Prepared
|
||||
)>
|
||||
{
|
||||
let mut acc = <Fr as Field>::zero();
|
||||
|
||||
for &(a, b) in i {
|
||||
let mut tmp = *a;
|
||||
<Fr as Field>::mul_assign(&mut tmp, b);
|
||||
<Fr as Field>::add_assign(&mut acc, &tmp);
|
||||
}
|
||||
|
||||
acc
|
||||
}
|
||||
|
||||
/// Perform final exponentiation of the result of a miller loop.
|
||||
fn final_exponentiation(this: &Self::Fqk) -> Option<Self::Fqk>
|
||||
{
|
||||
Some(*this)
|
||||
}
|
||||
}
|
||||
|
||||
impl CurveProjective for Fr {
|
||||
type Affine = Fr;
|
||||
type Base = Fr;
|
||||
type Scalar = Fr;
|
||||
type Engine = DummyEngine;
|
||||
|
||||
fn zero() -> Self {
|
||||
<Fr as Field>::zero()
|
||||
}
|
||||
|
||||
fn one() -> Self {
|
||||
<Fr as Field>::one()
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
<Fr as Field>::is_zero(self)
|
||||
}
|
||||
|
||||
fn batch_normalization(_: &mut [Self]) {
|
||||
|
||||
}
|
||||
|
||||
fn is_normalized(&self) -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
fn double(&mut self) {
|
||||
<Fr as Field>::double(self);
|
||||
}
|
||||
|
||||
fn add_assign(&mut self, other: &Self) {
|
||||
<Fr as Field>::add_assign(self, other);
|
||||
}
|
||||
|
||||
fn add_assign_mixed(&mut self, other: &Self) {
|
||||
<Fr as Field>::add_assign(self, other);
|
||||
}
|
||||
|
||||
fn negate(&mut self) {
|
||||
<Fr as Field>::negate(self);
|
||||
}
|
||||
|
||||
fn mul_assign<S: Into<<Self::Scalar as PrimeField>::Repr>>(&mut self, other: S)
|
||||
{
|
||||
let tmp = Fr::from_repr(other.into()).unwrap();
|
||||
|
||||
<Fr as Field>::mul_assign(self, &tmp);
|
||||
}
|
||||
|
||||
fn into_affine(&self) -> Fr {
|
||||
*self
|
||||
}
|
||||
|
||||
fn recommended_wnaf_for_scalar(_: <Self::Scalar as PrimeField>::Repr) -> usize {
|
||||
3
|
||||
}
|
||||
|
||||
fn recommended_wnaf_for_num_scalars(_: usize) -> usize {
|
||||
3
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct FakePoint;
|
||||
|
||||
impl AsMut<[u8]> for FakePoint {
|
||||
fn as_mut(&mut self) -> &mut [u8] {
|
||||
unimplemented!()
|
||||
}
|
||||
}
|
||||
|
||||
impl AsRef<[u8]> for FakePoint {
|
||||
fn as_ref(&self) -> &[u8] {
|
||||
unimplemented!()
|
||||
}
|
||||
}
|
||||
|
||||
impl EncodedPoint for FakePoint {
|
||||
type Affine = Fr;
|
||||
|
||||
fn empty() -> Self {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn size() -> usize {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn into_affine(&self) -> Result<Self::Affine, GroupDecodingError> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn into_affine_unchecked(&self) -> Result<Self::Affine, GroupDecodingError> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn from_affine(_: Self::Affine) -> Self {
|
||||
unimplemented!()
|
||||
}
|
||||
}
|
||||
|
||||
impl CurveAffine for Fr {
|
||||
type Pair = Fr;
|
||||
type PairingResult = Fr;
|
||||
type Compressed = FakePoint;
|
||||
type Uncompressed = FakePoint;
|
||||
type Prepared = Fr;
|
||||
type Projective = Fr;
|
||||
type Base = Fr;
|
||||
type Scalar = Fr;
|
||||
type Engine = DummyEngine;
|
||||
|
||||
fn zero() -> Self {
|
||||
<Fr as Field>::zero()
|
||||
}
|
||||
|
||||
fn one() -> Self {
|
||||
<Fr as Field>::one()
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
<Fr as Field>::is_zero(self)
|
||||
}
|
||||
|
||||
fn negate(&mut self) {
|
||||
<Fr as Field>::negate(self);
|
||||
}
|
||||
|
||||
fn mul<S: Into<<Self::Scalar as PrimeField>::Repr>>(&self, other: S) -> Self::Projective
|
||||
{
|
||||
let mut res = *self;
|
||||
let tmp = Fr::from_repr(other.into()).unwrap();
|
||||
|
||||
<Fr as Field>::mul_assign(&mut res, &tmp);
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
fn prepare(&self) -> Self::Prepared {
|
||||
*self
|
||||
}
|
||||
|
||||
fn pairing_with(&self, other: &Self::Pair) -> Self::PairingResult {
|
||||
self.mul(*other)
|
||||
}
|
||||
|
||||
fn into_projective(&self) -> Self::Projective {
|
||||
*self
|
||||
}
|
||||
}
|
400
bellman/src/groth16/tests/mod.rs
Normal file
400
bellman/src/groth16/tests/mod.rs
Normal file
@ -0,0 +1,400 @@
|
||||
use pairing::{
|
||||
Engine,
|
||||
Field,
|
||||
PrimeField
|
||||
};
|
||||
|
||||
mod dummy_engine;
|
||||
use self::dummy_engine::*;
|
||||
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use ::{
|
||||
Circuit,
|
||||
ConstraintSystem,
|
||||
SynthesisError
|
||||
};
|
||||
|
||||
use super::{
|
||||
generate_parameters,
|
||||
prepare_verifying_key,
|
||||
create_proof,
|
||||
verify_proof
|
||||
};
|
||||
|
||||
struct XORDemo<E: Engine> {
|
||||
a: Option<bool>,
|
||||
b: Option<bool>,
|
||||
_marker: PhantomData<E>
|
||||
}
|
||||
|
||||
impl<E: Engine> Circuit<E> for XORDemo<E> {
|
||||
fn synthesize<CS: ConstraintSystem<E>>(
|
||||
self,
|
||||
cs: &mut CS
|
||||
) -> Result<(), SynthesisError>
|
||||
{
|
||||
let a_var = cs.alloc(|| "a", || {
|
||||
if self.a.is_some() {
|
||||
if self.a.unwrap() {
|
||||
Ok(E::Fr::one())
|
||||
} else {
|
||||
Ok(E::Fr::zero())
|
||||
}
|
||||
} else {
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
}
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "a_boolean_constraint",
|
||||
|lc| lc + CS::one() - a_var,
|
||||
|lc| lc + a_var,
|
||||
|lc| lc
|
||||
);
|
||||
|
||||
let b_var = cs.alloc(|| "b", || {
|
||||
if self.b.is_some() {
|
||||
if self.b.unwrap() {
|
||||
Ok(E::Fr::one())
|
||||
} else {
|
||||
Ok(E::Fr::zero())
|
||||
}
|
||||
} else {
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
}
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "b_boolean_constraint",
|
||||
|lc| lc + CS::one() - b_var,
|
||||
|lc| lc + b_var,
|
||||
|lc| lc
|
||||
);
|
||||
|
||||
let c_var = cs.alloc_input(|| "c", || {
|
||||
if self.a.is_some() && self.b.is_some() {
|
||||
if self.a.unwrap() ^ self.b.unwrap() {
|
||||
Ok(E::Fr::one())
|
||||
} else {
|
||||
Ok(E::Fr::zero())
|
||||
}
|
||||
} else {
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
}
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "c_xor_constraint",
|
||||
|lc| lc + a_var + a_var,
|
||||
|lc| lc + b_var,
|
||||
|lc| lc + a_var + b_var - c_var
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_xordemo() {
|
||||
let g1 = Fr::one();
|
||||
let g2 = Fr::one();
|
||||
let alpha = Fr::from_str("48577").unwrap();
|
||||
let beta = Fr::from_str("22580").unwrap();
|
||||
let gamma = Fr::from_str("53332").unwrap();
|
||||
let delta = Fr::from_str("5481").unwrap();
|
||||
let tau = Fr::from_str("3673").unwrap();
|
||||
|
||||
let params = {
|
||||
let c = XORDemo::<DummyEngine> {
|
||||
a: None,
|
||||
b: None,
|
||||
_marker: PhantomData
|
||||
};
|
||||
|
||||
generate_parameters(
|
||||
c,
|
||||
g1,
|
||||
g2,
|
||||
alpha,
|
||||
beta,
|
||||
gamma,
|
||||
delta,
|
||||
tau
|
||||
).unwrap()
|
||||
};
|
||||
|
||||
// This will synthesize the constraint system:
|
||||
//
|
||||
// public inputs: a_0 = 1, a_1 = c
|
||||
// aux inputs: a_2 = a, a_3 = b
|
||||
// constraints:
|
||||
// (a_0 - a_2) * (a_2) = 0
|
||||
// (a_0 - a_3) * (a_3) = 0
|
||||
// (a_2 + a_2) * (a_3) = (a_2 + a_3 - a_1)
|
||||
// (a_0) * 0 = 0
|
||||
// (a_1) * 0 = 0
|
||||
|
||||
// The evaluation domain is 8. The H query should
|
||||
// have 7 elements (it's a quotient polynomial)
|
||||
assert_eq!(7, params.h.len());
|
||||
|
||||
let mut root_of_unity = Fr::root_of_unity();
|
||||
|
||||
// We expect this to be a 2^10 root of unity
|
||||
assert_eq!(Fr::one(), root_of_unity.pow(&[1 << 10]));
|
||||
|
||||
// Let's turn it into a 2^3 root of unity.
|
||||
root_of_unity = root_of_unity.pow(&[1 << 7]);
|
||||
assert_eq!(Fr::one(), root_of_unity.pow(&[1 << 3]));
|
||||
assert_eq!(Fr::from_str("20201").unwrap(), root_of_unity);
|
||||
|
||||
// Let's compute all the points in our evaluation domain.
|
||||
let mut points = Vec::with_capacity(8);
|
||||
for i in 0..8 {
|
||||
points.push(root_of_unity.pow(&[i]));
|
||||
}
|
||||
|
||||
// Let's compute t(tau) = (tau - p_0)(tau - p_1)...
|
||||
// = tau^8 - 1
|
||||
let mut t_at_tau = tau.pow(&[8]);
|
||||
t_at_tau.sub_assign(&Fr::one());
|
||||
{
|
||||
let mut tmp = Fr::one();
|
||||
for p in &points {
|
||||
let mut term = tau;
|
||||
term.sub_assign(p);
|
||||
tmp.mul_assign(&term);
|
||||
}
|
||||
assert_eq!(tmp, t_at_tau);
|
||||
}
|
||||
|
||||
// We expect our H query to be 7 elements of the form...
|
||||
// {tau^i t(tau) / delta}
|
||||
let delta_inverse = delta.inverse().unwrap();
|
||||
let gamma_inverse = gamma.inverse().unwrap();
|
||||
{
|
||||
let mut coeff = delta_inverse;
|
||||
coeff.mul_assign(&t_at_tau);
|
||||
|
||||
let mut cur = Fr::one();
|
||||
for h in params.h.iter() {
|
||||
let mut tmp = cur;
|
||||
tmp.mul_assign(&coeff);
|
||||
|
||||
assert_eq!(*h, tmp);
|
||||
|
||||
cur.mul_assign(&tau);
|
||||
}
|
||||
}
|
||||
|
||||
// The density of the IC query is 2 (2 inputs)
|
||||
assert_eq!(2, params.vk.ic.len());
|
||||
|
||||
// The density of the L query is 2 (2 aux variables)
|
||||
assert_eq!(2, params.l.len());
|
||||
|
||||
// The density of the A query is 4 (each variable is in at least one A term)
|
||||
assert_eq!(4, params.a.len());
|
||||
|
||||
// The density of the B query is 2 (two variables are in at least one B term)
|
||||
assert_eq!(2, params.b_g1.len());
|
||||
assert_eq!(2, params.b_g2.len());
|
||||
|
||||
/*
|
||||
Lagrange interpolation polynomials in our evaluation domain:
|
||||
|
||||
,-------------------------------. ,-------------------------------. ,-------------------------------.
|
||||
| A TERM | | B TERM | | C TERM |
|
||||
`-------------------------------. `-------------------------------' `-------------------------------'
|
||||
| a_0 | a_1 | a_2 | a_3 | | a_0 | a_1 | a_2 | a_3 | | a_0 | a_1 | a_2 | a_3 |
|
||||
| 1 | 0 | 64512 | 0 | | 0 | 0 | 1 | 0 | | 0 | 0 | 0 | 0 |
|
||||
| 1 | 0 | 0 | 64512 | | 0 | 0 | 0 | 1 | | 0 | 0 | 0 | 0 |
|
||||
| 0 | 0 | 2 | 0 | | 0 | 0 | 0 | 1 | | 0 | 64512 | 1 | 1 |
|
||||
| 1 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 |
|
||||
| 0 | 1 | 0 | 0 | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 |
|
||||
`-------'-------'-------'-------' `-------'-------'-------'-------' `-------'-------'-------'-------'
|
||||
|
||||
Example for u_0:
|
||||
|
||||
sage: r = 64513
|
||||
sage: Fr = GF(r)
|
||||
sage: omega = (Fr(5)^63)^(2^7)
|
||||
sage: tau = Fr(3673)
|
||||
sage: R.<x> = PolynomialRing(Fr, 'x')
|
||||
sage: def eval(tau, c0, c1, c2, c3, c4):
|
||||
....: p = R.lagrange_polynomial([(omega^0, c0), (omega^1, c1), (omega^2, c2), (omega^3, c3), (omega^4, c4), (omega^5, 0), (omega^6, 0), (omega^7, 0)])
|
||||
....: return p.substitute(tau)
|
||||
sage: eval(tau, 1, 1, 0, 1, 0)
|
||||
59158
|
||||
*/
|
||||
|
||||
let u_i = [59158, 48317, 21767, 10402].iter().map(|e| {
|
||||
Fr::from_str(&format!("{}", e)).unwrap()
|
||||
}).collect::<Vec<Fr>>();
|
||||
let v_i = [0, 0, 60619, 30791].iter().map(|e| {
|
||||
Fr::from_str(&format!("{}", e)).unwrap()
|
||||
}).collect::<Vec<Fr>>();
|
||||
let w_i = [0, 23320, 41193, 41193].iter().map(|e| {
|
||||
Fr::from_str(&format!("{}", e)).unwrap()
|
||||
}).collect::<Vec<Fr>>();
|
||||
|
||||
for (u, a) in u_i.iter()
|
||||
.zip(¶ms.a[..])
|
||||
{
|
||||
assert_eq!(u, a);
|
||||
}
|
||||
|
||||
for (v, b) in v_i.iter()
|
||||
.filter(|&&e| e != Fr::zero())
|
||||
.zip(¶ms.b_g1[..])
|
||||
{
|
||||
assert_eq!(v, b);
|
||||
}
|
||||
|
||||
for (v, b) in v_i.iter()
|
||||
.filter(|&&e| e != Fr::zero())
|
||||
.zip(¶ms.b_g2[..])
|
||||
{
|
||||
assert_eq!(v, b);
|
||||
}
|
||||
|
||||
for i in 0..4 {
|
||||
let mut tmp1 = beta;
|
||||
tmp1.mul_assign(&u_i[i]);
|
||||
|
||||
let mut tmp2 = alpha;
|
||||
tmp2.mul_assign(&v_i[i]);
|
||||
|
||||
tmp1.add_assign(&tmp2);
|
||||
tmp1.add_assign(&w_i[i]);
|
||||
|
||||
if i < 2 {
|
||||
// Check the correctness of the IC query elements
|
||||
tmp1.mul_assign(&gamma_inverse);
|
||||
|
||||
assert_eq!(tmp1, params.vk.ic[i]);
|
||||
} else {
|
||||
// Check the correctness of the L query elements
|
||||
tmp1.mul_assign(&delta_inverse);
|
||||
|
||||
assert_eq!(tmp1, params.l[i - 2]);
|
||||
}
|
||||
}
|
||||
|
||||
// Check consistency of the other elements
|
||||
assert_eq!(alpha, params.vk.alpha_g1);
|
||||
assert_eq!(beta, params.vk.beta_g1);
|
||||
assert_eq!(beta, params.vk.beta_g2);
|
||||
assert_eq!(gamma, params.vk.gamma_g2);
|
||||
assert_eq!(delta, params.vk.delta_g1);
|
||||
assert_eq!(delta, params.vk.delta_g2);
|
||||
|
||||
let pvk = prepare_verifying_key(¶ms.vk);
|
||||
|
||||
let r = Fr::from_str("27134").unwrap();
|
||||
let s = Fr::from_str("17146").unwrap();
|
||||
|
||||
let proof = {
|
||||
let c = XORDemo {
|
||||
a: Some(true),
|
||||
b: Some(false),
|
||||
_marker: PhantomData
|
||||
};
|
||||
|
||||
create_proof(
|
||||
c,
|
||||
¶ms,
|
||||
r,
|
||||
s
|
||||
).unwrap()
|
||||
};
|
||||
|
||||
// A(x) =
|
||||
// a_0 * (44865*x^7 + 56449*x^6 + 44865*x^5 + 8064*x^4 + 3520*x^3 + 56449*x^2 + 3520*x + 40321) +
|
||||
// a_1 * (8064*x^7 + 56449*x^6 + 8064*x^5 + 56449*x^4 + 8064*x^3 + 56449*x^2 + 8064*x + 56449) +
|
||||
// a_2 * (16983*x^7 + 24192*x^6 + 63658*x^5 + 56449*x^4 + 16983*x^3 + 24192*x^2 + 63658*x + 56449) +
|
||||
// a_3 * (5539*x^7 + 27797*x^6 + 6045*x^5 + 56449*x^4 + 58974*x^3 + 36716*x^2 + 58468*x + 8064) +
|
||||
{
|
||||
// proof A = alpha + A(tau) + delta * r
|
||||
let mut expected_a = delta;
|
||||
expected_a.mul_assign(&r);
|
||||
expected_a.add_assign(&alpha);
|
||||
expected_a.add_assign(&u_i[0]); // a_0 = 1
|
||||
expected_a.add_assign(&u_i[1]); // a_1 = 1
|
||||
expected_a.add_assign(&u_i[2]); // a_2 = 1
|
||||
// a_3 = 0
|
||||
assert_eq!(proof.a, expected_a);
|
||||
}
|
||||
|
||||
// B(x) =
|
||||
// a_0 * (0) +
|
||||
// a_1 * (0) +
|
||||
// a_2 * (56449*x^7 + 56449*x^6 + 56449*x^5 + 56449*x^4 + 56449*x^3 + 56449*x^2 + 56449*x + 56449) +
|
||||
// a_3 * (31177*x^7 + 44780*x^6 + 21752*x^5 + 42255*x^3 + 35861*x^2 + 33842*x + 48385)
|
||||
{
|
||||
// proof B = beta + B(tau) + delta * s
|
||||
let mut expected_b = delta;
|
||||
expected_b.mul_assign(&s);
|
||||
expected_b.add_assign(&beta);
|
||||
expected_b.add_assign(&v_i[0]); // a_0 = 1
|
||||
expected_b.add_assign(&v_i[1]); // a_1 = 1
|
||||
expected_b.add_assign(&v_i[2]); // a_2 = 1
|
||||
// a_3 = 0
|
||||
assert_eq!(proof.b, expected_b);
|
||||
}
|
||||
|
||||
// C(x) =
|
||||
// a_0 * (0) +
|
||||
// a_1 * (27797*x^7 + 56449*x^6 + 36716*x^5 + 8064*x^4 + 27797*x^3 + 56449*x^2 + 36716*x + 8064) +
|
||||
// a_2 * (36716*x^7 + 8064*x^6 + 27797*x^5 + 56449*x^4 + 36716*x^3 + 8064*x^2 + 27797*x + 56449) +
|
||||
// a_3 * (36716*x^7 + 8064*x^6 + 27797*x^5 + 56449*x^4 + 36716*x^3 + 8064*x^2 + 27797*x + 56449)
|
||||
//
|
||||
// If A * B = C at each point in the domain, then the following polynomial...
|
||||
// P(x) = A(x) * B(x) - C(x)
|
||||
// = 49752*x^14 + 13914*x^13 + 29243*x^12 + 27227*x^11 + 62362*x^10 + 35703*x^9 + 4032*x^8 + 14761*x^6 + 50599*x^5 + 35270*x^4 + 37286*x^3 + 2151*x^2 + 28810*x + 60481
|
||||
//
|
||||
// ... should be divisible by t(x), producing the quotient polynomial:
|
||||
// h(x) = P(x) / t(x)
|
||||
// = 49752*x^6 + 13914*x^5 + 29243*x^4 + 27227*x^3 + 62362*x^2 + 35703*x + 4032
|
||||
{
|
||||
let mut expected_c = Fr::zero();
|
||||
|
||||
// A * s
|
||||
let mut tmp = proof.a;
|
||||
tmp.mul_assign(&s);
|
||||
expected_c.add_assign(&tmp);
|
||||
|
||||
// B * r
|
||||
let mut tmp = proof.b;
|
||||
tmp.mul_assign(&r);
|
||||
expected_c.add_assign(&tmp);
|
||||
|
||||
// delta * r * s
|
||||
let mut tmp = delta;
|
||||
tmp.mul_assign(&r);
|
||||
tmp.mul_assign(&s);
|
||||
expected_c.sub_assign(&tmp);
|
||||
|
||||
// L query answer
|
||||
// a_2 = 1, a_3 = 0
|
||||
expected_c.add_assign(¶ms.l[0]);
|
||||
|
||||
// H query answer
|
||||
for (i, coeff) in [5040, 11763, 10755, 63633, 128, 9747, 8739].iter().enumerate() {
|
||||
let coeff = Fr::from_str(&format!("{}", coeff)).unwrap();
|
||||
|
||||
let mut tmp = params.h[i];
|
||||
tmp.mul_assign(&coeff);
|
||||
expected_c.add_assign(&tmp);
|
||||
}
|
||||
|
||||
assert_eq!(expected_c, proof.c);
|
||||
}
|
||||
|
||||
assert!(verify_proof(
|
||||
&pvk,
|
||||
&proof,
|
||||
&[Fr::one()]
|
||||
).unwrap());
|
||||
}
|
66
bellman/src/groth16/verifier.rs
Normal file
66
bellman/src/groth16/verifier.rs
Normal file
@ -0,0 +1,66 @@
|
||||
use pairing::{
|
||||
Engine,
|
||||
CurveProjective,
|
||||
CurveAffine,
|
||||
PrimeField
|
||||
};
|
||||
|
||||
use super::{
|
||||
Proof,
|
||||
VerifyingKey,
|
||||
PreparedVerifyingKey
|
||||
};
|
||||
|
||||
use ::{
|
||||
SynthesisError
|
||||
};
|
||||
|
||||
pub fn prepare_verifying_key<E: Engine>(
|
||||
vk: &VerifyingKey<E>
|
||||
) -> PreparedVerifyingKey<E>
|
||||
{
|
||||
let mut gamma = vk.gamma_g2;
|
||||
gamma.negate();
|
||||
let mut delta = vk.delta_g2;
|
||||
delta.negate();
|
||||
|
||||
PreparedVerifyingKey {
|
||||
alpha_g1_beta_g2: E::pairing(vk.alpha_g1, vk.beta_g2),
|
||||
neg_gamma_g2: gamma.prepare(),
|
||||
neg_delta_g2: delta.prepare(),
|
||||
ic: vk.ic.clone()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn verify_proof<'a, E: Engine>(
|
||||
pvk: &'a PreparedVerifyingKey<E>,
|
||||
proof: &Proof<E>,
|
||||
public_inputs: &[E::Fr]
|
||||
) -> Result<bool, SynthesisError>
|
||||
{
|
||||
if (public_inputs.len() + 1) != pvk.ic.len() {
|
||||
return Err(SynthesisError::MalformedVerifyingKey);
|
||||
}
|
||||
|
||||
let mut acc = pvk.ic[0].into_projective();
|
||||
|
||||
for (i, b) in public_inputs.iter().zip(pvk.ic.iter().skip(1)) {
|
||||
acc.add_assign(&b.mul(i.into_repr()));
|
||||
}
|
||||
|
||||
// The original verification equation is:
|
||||
// A * B = alpha * beta + inputs * gamma + C * delta
|
||||
// ... however, we rearrange it so that it is:
|
||||
// A * B - inputs * gamma - C * delta = alpha * beta
|
||||
// or equivalently:
|
||||
// A * B + inputs * (-gamma) + C * (-delta) = alpha * beta
|
||||
// which allows us to do a single final exponentiation.
|
||||
|
||||
Ok(E::final_exponentiation(
|
||||
&E::miller_loop([
|
||||
(&proof.a.prepare(), &proof.b.prepare()),
|
||||
(&acc.into_affine().prepare(), &pvk.neg_gamma_g2),
|
||||
(&proof.c.prepare(), &pvk.neg_delta_g2)
|
||||
].into_iter())
|
||||
).unwrap() == pvk.alpha_g1_beta_g2)
|
||||
}
|
424
bellman/src/lib.rs
Normal file
424
bellman/src/lib.rs
Normal file
@ -0,0 +1,424 @@
|
||||
extern crate pairing;
|
||||
extern crate rand;
|
||||
extern crate num_cpus;
|
||||
extern crate futures;
|
||||
extern crate futures_cpupool;
|
||||
extern crate bit_vec;
|
||||
extern crate crossbeam;
|
||||
extern crate byteorder;
|
||||
|
||||
pub mod multicore;
|
||||
mod multiexp;
|
||||
pub mod domain;
|
||||
pub mod groth16;
|
||||
|
||||
use pairing::{Engine, Field};
|
||||
|
||||
use std::ops::{Add, Sub};
|
||||
use std::fmt;
|
||||
use std::error::Error;
|
||||
use std::io;
|
||||
use std::marker::PhantomData;
|
||||
|
||||
/// Computations are expressed in terms of arithmetic circuits, in particular
|
||||
/// rank-1 quadratic constraint systems. The `Circuit` trait represents a
|
||||
/// circuit that can be synthesized. The `synthesize` method is called during
|
||||
/// CRS generation and during proving.
|
||||
pub trait Circuit<E: Engine> {
|
||||
/// Synthesize the circuit into a rank-1 quadratic constraint system
|
||||
fn synthesize<CS: ConstraintSystem<E>>(
|
||||
self,
|
||||
cs: &mut CS
|
||||
) -> Result<(), SynthesisError>;
|
||||
}
|
||||
|
||||
/// Represents a variable in our constraint system.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct Variable(Index);
|
||||
|
||||
impl Variable {
|
||||
/// This constructs a variable with an arbitrary index.
|
||||
/// Circuit implementations are not recommended to use this.
|
||||
pub fn new_unchecked(idx: Index) -> Variable {
|
||||
Variable(idx)
|
||||
}
|
||||
|
||||
/// This returns the index underlying the variable.
|
||||
/// Circuit implementations are not recommended to use this.
|
||||
pub fn get_unchecked(&self) -> Index {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents the index of either an input variable or
|
||||
/// auxillary variable.
|
||||
#[derive(Copy, Clone, PartialEq, Debug)]
|
||||
pub enum Index {
|
||||
Input(usize),
|
||||
Aux(usize)
|
||||
}
|
||||
|
||||
/// This represents a linear combination of some variables, with coefficients
|
||||
/// in the scalar field of a pairing-friendly elliptic curve group.
|
||||
#[derive(Clone)]
|
||||
pub struct LinearCombination<E: Engine>(Vec<(Variable, E::Fr)>);
|
||||
|
||||
impl<E: Engine> AsRef<[(Variable, E::Fr)]> for LinearCombination<E> {
|
||||
fn as_ref(&self) -> &[(Variable, E::Fr)] {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> LinearCombination<E> {
|
||||
pub fn zero() -> LinearCombination<E> {
|
||||
LinearCombination(vec![])
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Add<(E::Fr, Variable)> for LinearCombination<E> {
|
||||
type Output = LinearCombination<E>;
|
||||
|
||||
fn add(mut self, (coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
|
||||
self.0.push((var, coeff));
|
||||
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Sub<(E::Fr, Variable)> for LinearCombination<E> {
|
||||
type Output = LinearCombination<E>;
|
||||
|
||||
fn sub(self, (mut coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
|
||||
coeff.negate();
|
||||
|
||||
self + (coeff, var)
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Add<Variable> for LinearCombination<E> {
|
||||
type Output = LinearCombination<E>;
|
||||
|
||||
fn add(self, other: Variable) -> LinearCombination<E> {
|
||||
self + (E::Fr::one(), other)
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Sub<Variable> for LinearCombination<E> {
|
||||
type Output = LinearCombination<E>;
|
||||
|
||||
fn sub(self, other: Variable) -> LinearCombination<E> {
|
||||
self - (E::Fr::one(), other)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, E: Engine> Add<&'a LinearCombination<E>> for LinearCombination<E> {
|
||||
type Output = LinearCombination<E>;
|
||||
|
||||
fn add(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
|
||||
for s in &other.0 {
|
||||
self = self + (s.1, s.0);
|
||||
}
|
||||
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, E: Engine> Sub<&'a LinearCombination<E>> for LinearCombination<E> {
|
||||
type Output = LinearCombination<E>;
|
||||
|
||||
fn sub(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
|
||||
for s in &other.0 {
|
||||
self = self - (s.1, s.0);
|
||||
}
|
||||
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, E: Engine> Add<(E::Fr, &'a LinearCombination<E>)> for LinearCombination<E> {
|
||||
type Output = LinearCombination<E>;
|
||||
|
||||
fn add(mut self, (coeff, other): (E::Fr, &'a LinearCombination<E>)) -> LinearCombination<E> {
|
||||
for s in &other.0 {
|
||||
let mut tmp = s.1;
|
||||
tmp.mul_assign(&coeff);
|
||||
self = self + (tmp, s.0);
|
||||
}
|
||||
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, E: Engine> Sub<(E::Fr, &'a LinearCombination<E>)> for LinearCombination<E> {
|
||||
type Output = LinearCombination<E>;
|
||||
|
||||
fn sub(mut self, (coeff, other): (E::Fr, &'a LinearCombination<E>)) -> LinearCombination<E> {
|
||||
for s in &other.0 {
|
||||
let mut tmp = s.1;
|
||||
tmp.mul_assign(&coeff);
|
||||
self = self - (tmp, s.0);
|
||||
}
|
||||
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
/// This is an error that could occur during circuit synthesis contexts,
|
||||
/// such as CRS generation, proving or verification.
|
||||
#[derive(Debug)]
|
||||
pub enum SynthesisError {
|
||||
/// During synthesis, we lacked knowledge of a variable assignment.
|
||||
AssignmentMissing,
|
||||
/// During synthesis, we divided by zero.
|
||||
DivisionByZero,
|
||||
/// During synthesis, we constructed an unsatisfiable constraint system.
|
||||
Unsatisfiable,
|
||||
/// During synthesis, our polynomials ended up being too high of degree
|
||||
PolynomialDegreeTooLarge,
|
||||
/// During proof generation, we encountered an identity in the CRS
|
||||
UnexpectedIdentity,
|
||||
/// During proof generation, we encountered an I/O error with the CRS
|
||||
IoError(io::Error),
|
||||
/// During verification, our verifying key was malformed.
|
||||
MalformedVerifyingKey,
|
||||
/// During CRS generation, we observed an unconstrained auxillary variable
|
||||
UnconstrainedVariable
|
||||
}
|
||||
|
||||
impl From<io::Error> for SynthesisError {
|
||||
fn from(e: io::Error) -> SynthesisError {
|
||||
SynthesisError::IoError(e)
|
||||
}
|
||||
}
|
||||
|
||||
impl Error for SynthesisError {
|
||||
fn description(&self) -> &str {
|
||||
match *self {
|
||||
SynthesisError::AssignmentMissing => "an assignment for a variable could not be computed",
|
||||
SynthesisError::DivisionByZero => "division by zero",
|
||||
SynthesisError::Unsatisfiable => "unsatisfiable constraint system",
|
||||
SynthesisError::PolynomialDegreeTooLarge => "polynomial degree is too large",
|
||||
SynthesisError::UnexpectedIdentity => "encountered an identity element in the CRS",
|
||||
SynthesisError::IoError(_) => "encountered an I/O error",
|
||||
SynthesisError::MalformedVerifyingKey => "malformed verifying key",
|
||||
SynthesisError::UnconstrainedVariable => "auxillary variable was unconstrained"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for SynthesisError {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
||||
if let &SynthesisError::IoError(ref e) = self {
|
||||
write!(f, "I/O error: ")?;
|
||||
e.fmt(f)
|
||||
} else {
|
||||
write!(f, "{}", self.description())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents a constraint system which can have new variables
|
||||
/// allocated and constrains between them formed.
|
||||
pub trait ConstraintSystem<E: Engine>: Sized {
|
||||
/// Represents the type of the "root" of this constraint system
|
||||
/// so that nested namespaces can minimize indirection.
|
||||
type Root: ConstraintSystem<E>;
|
||||
|
||||
/// Return the "one" input variable
|
||||
fn one() -> Variable {
|
||||
Variable::new_unchecked(Index::Input(0))
|
||||
}
|
||||
|
||||
/// Allocate a private variable in the constraint system. The provided function is used to
|
||||
/// determine the assignment of the variable. The given `annotation` function is invoked
|
||||
/// in testing contexts in order to derive a unique name for this variable in the current
|
||||
/// namespace.
|
||||
fn alloc<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>;
|
||||
|
||||
/// Allocate a public variable in the constraint system. The provided function is used to
|
||||
/// determine the assignment of the variable.
|
||||
fn alloc_input<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>;
|
||||
|
||||
/// Enforce that `A` * `B` = `C`. The `annotation` function is invoked in testing contexts
|
||||
/// in order to derive a unique name for the constraint in the current namespace.
|
||||
fn enforce<A, AR, LA, LB, LC>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
a: LA,
|
||||
b: LB,
|
||||
c: LC
|
||||
)
|
||||
where A: FnOnce() -> AR, AR: Into<String>,
|
||||
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>;
|
||||
|
||||
/// Create a new (sub)namespace and enter into it. Not intended
|
||||
/// for downstream use; use `namespace` instead.
|
||||
fn push_namespace<NR, N>(&mut self, name_fn: N)
|
||||
where NR: Into<String>, N: FnOnce() -> NR;
|
||||
|
||||
/// Exit out of the existing namespace. Not intended for
|
||||
/// downstream use; use `namespace` instead.
|
||||
fn pop_namespace(&mut self);
|
||||
|
||||
/// Gets the "root" constraint system, bypassing the namespacing.
|
||||
/// Not intended for downstream use; use `namespace` instead.
|
||||
fn get_root(&mut self) -> &mut Self::Root;
|
||||
|
||||
/// Begin a namespace for this constraint system.
|
||||
fn namespace<'a, NR, N>(
|
||||
&'a mut self,
|
||||
name_fn: N
|
||||
) -> Namespace<'a, E, Self::Root>
|
||||
where NR: Into<String>, N: FnOnce() -> NR
|
||||
{
|
||||
self.get_root().push_namespace(name_fn);
|
||||
|
||||
Namespace(self.get_root(), PhantomData)
|
||||
}
|
||||
}
|
||||
|
||||
/// This is a "namespaced" constraint system which borrows a constraint system (pushing
|
||||
/// a namespace context) and, when dropped, pops out of the namespace context.
|
||||
pub struct Namespace<'a, E: Engine, CS: ConstraintSystem<E> + 'a>(&'a mut CS, PhantomData<E>);
|
||||
|
||||
impl<'cs, E: Engine, CS: ConstraintSystem<E>> ConstraintSystem<E> for Namespace<'cs, E, CS> {
|
||||
type Root = CS::Root;
|
||||
|
||||
fn one() -> Variable {
|
||||
CS::one()
|
||||
}
|
||||
|
||||
fn alloc<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
self.0.alloc(annotation, f)
|
||||
}
|
||||
|
||||
fn alloc_input<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
self.0.alloc_input(annotation, f)
|
||||
}
|
||||
|
||||
fn enforce<A, AR, LA, LB, LC>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
a: LA,
|
||||
b: LB,
|
||||
c: LC
|
||||
)
|
||||
where A: FnOnce() -> AR, AR: Into<String>,
|
||||
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
|
||||
{
|
||||
self.0.enforce(annotation, a, b, c)
|
||||
}
|
||||
|
||||
// Downstream users who use `namespace` will never interact with these
|
||||
// functions and they will never be invoked because the namespace is
|
||||
// never a root constraint system.
|
||||
|
||||
fn push_namespace<NR, N>(&mut self, _: N)
|
||||
where NR: Into<String>, N: FnOnce() -> NR
|
||||
{
|
||||
panic!("only the root's push_namespace should be called");
|
||||
}
|
||||
|
||||
fn pop_namespace(&mut self)
|
||||
{
|
||||
panic!("only the root's pop_namespace should be called");
|
||||
}
|
||||
|
||||
fn get_root(&mut self) -> &mut Self::Root
|
||||
{
|
||||
self.0.get_root()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, E: Engine, CS: ConstraintSystem<E>> Drop for Namespace<'a, E, CS> {
|
||||
fn drop(&mut self) {
|
||||
self.get_root().pop_namespace()
|
||||
}
|
||||
}
|
||||
|
||||
/// Convenience implementation of ConstraintSystem<E> for mutable references to
|
||||
/// constraint systems.
|
||||
impl<'cs, E: Engine, CS: ConstraintSystem<E>> ConstraintSystem<E> for &'cs mut CS {
|
||||
type Root = CS::Root;
|
||||
|
||||
fn one() -> Variable {
|
||||
CS::one()
|
||||
}
|
||||
|
||||
fn alloc<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
(**self).alloc(annotation, f)
|
||||
}
|
||||
|
||||
fn alloc_input<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
(**self).alloc_input(annotation, f)
|
||||
}
|
||||
|
||||
fn enforce<A, AR, LA, LB, LC>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
a: LA,
|
||||
b: LB,
|
||||
c: LC
|
||||
)
|
||||
where A: FnOnce() -> AR, AR: Into<String>,
|
||||
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
|
||||
{
|
||||
(**self).enforce(annotation, a, b, c)
|
||||
}
|
||||
|
||||
fn push_namespace<NR, N>(&mut self, name_fn: N)
|
||||
where NR: Into<String>, N: FnOnce() -> NR
|
||||
{
|
||||
(**self).push_namespace(name_fn)
|
||||
}
|
||||
|
||||
fn pop_namespace(&mut self)
|
||||
{
|
||||
(**self).pop_namespace()
|
||||
}
|
||||
|
||||
fn get_root(&mut self) -> &mut Self::Root
|
||||
{
|
||||
(**self).get_root()
|
||||
}
|
||||
}
|
106
bellman/src/multicore.rs
Normal file
106
bellman/src/multicore.rs
Normal file
@ -0,0 +1,106 @@
|
||||
//! This is an interface for dealing with the kinds of
|
||||
//! parallel computations involved in bellman. It's
|
||||
//! currently just a thin wrapper around CpuPool and
|
||||
//! crossbeam but may be extended in the future to
|
||||
//! allow for various parallelism strategies.
|
||||
|
||||
use num_cpus;
|
||||
use futures::{Future, IntoFuture, Poll};
|
||||
use futures_cpupool::{CpuPool, CpuFuture};
|
||||
use crossbeam::{self, Scope};
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Worker {
|
||||
cpus: usize,
|
||||
pool: CpuPool
|
||||
}
|
||||
|
||||
impl Worker {
|
||||
// We don't expose this outside the library so that
|
||||
// all `Worker` instances have the same number of
|
||||
// CPUs configured.
|
||||
pub(crate) fn new_with_cpus(cpus: usize) -> Worker {
|
||||
Worker {
|
||||
cpus: cpus,
|
||||
pool: CpuPool::new(cpus)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn new() -> Worker {
|
||||
Self::new_with_cpus(num_cpus::get())
|
||||
}
|
||||
|
||||
pub fn log_num_cpus(&self) -> u32 {
|
||||
log2_floor(self.cpus)
|
||||
}
|
||||
|
||||
pub fn compute<F, R>(
|
||||
&self, f: F
|
||||
) -> WorkerFuture<R::Item, R::Error>
|
||||
where F: FnOnce() -> R + Send + 'static,
|
||||
R: IntoFuture + 'static,
|
||||
R::Future: Send + 'static,
|
||||
R::Item: Send + 'static,
|
||||
R::Error: Send + 'static
|
||||
{
|
||||
WorkerFuture {
|
||||
future: self.pool.spawn_fn(f)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn scope<'a, F, R>(
|
||||
&self,
|
||||
elements: usize,
|
||||
f: F
|
||||
) -> R
|
||||
where F: FnOnce(&Scope<'a>, usize) -> R
|
||||
{
|
||||
let chunk_size = if elements < self.cpus {
|
||||
1
|
||||
} else {
|
||||
elements / self.cpus
|
||||
};
|
||||
|
||||
crossbeam::scope(|scope| {
|
||||
f(scope, chunk_size)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub struct WorkerFuture<T, E> {
|
||||
future: CpuFuture<T, E>
|
||||
}
|
||||
|
||||
impl<T: Send + 'static, E: Send + 'static> Future for WorkerFuture<T, E> {
|
||||
type Item = T;
|
||||
type Error = E;
|
||||
|
||||
fn poll(&mut self) -> Poll<Self::Item, Self::Error>
|
||||
{
|
||||
self.future.poll()
|
||||
}
|
||||
}
|
||||
|
||||
fn log2_floor(num: usize) -> u32 {
|
||||
assert!(num > 0);
|
||||
|
||||
let mut pow = 0;
|
||||
|
||||
while (1 << (pow+1)) <= num {
|
||||
pow += 1;
|
||||
}
|
||||
|
||||
pow
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_log2_floor() {
|
||||
assert_eq!(log2_floor(1), 0);
|
||||
assert_eq!(log2_floor(2), 1);
|
||||
assert_eq!(log2_floor(3), 1);
|
||||
assert_eq!(log2_floor(4), 2);
|
||||
assert_eq!(log2_floor(5), 2);
|
||||
assert_eq!(log2_floor(6), 2);
|
||||
assert_eq!(log2_floor(7), 2);
|
||||
assert_eq!(log2_floor(8), 3);
|
||||
}
|
303
bellman/src/multiexp.rs
Normal file
303
bellman/src/multiexp.rs
Normal file
@ -0,0 +1,303 @@
|
||||
use pairing::{
|
||||
CurveAffine,
|
||||
CurveProjective,
|
||||
Engine,
|
||||
PrimeField,
|
||||
Field,
|
||||
PrimeFieldRepr
|
||||
};
|
||||
use std::sync::Arc;
|
||||
use std::io;
|
||||
use bit_vec::{self, BitVec};
|
||||
use std::iter;
|
||||
use futures::{Future};
|
||||
use super::multicore::Worker;
|
||||
|
||||
use super::SynthesisError;
|
||||
|
||||
/// An object that builds a source of bases.
|
||||
pub trait SourceBuilder<G: CurveAffine>: Send + Sync + 'static + Clone {
|
||||
type Source: Source<G>;
|
||||
|
||||
fn new(self) -> Self::Source;
|
||||
}
|
||||
|
||||
/// A source of bases, like an iterator.
|
||||
pub trait Source<G: CurveAffine> {
|
||||
/// Parses the element from the source. Fails if the point is at infinity.
|
||||
fn add_assign_mixed(&mut self, to: &mut <G as CurveAffine>::Projective) -> Result<(), SynthesisError>;
|
||||
|
||||
/// Skips `amt` elements from the source, avoiding deserialization.
|
||||
fn skip(&mut self, amt: usize) -> Result<(), SynthesisError>;
|
||||
}
|
||||
|
||||
impl<G: CurveAffine> SourceBuilder<G> for (Arc<Vec<G>>, usize) {
|
||||
type Source = (Arc<Vec<G>>, usize);
|
||||
|
||||
fn new(self) -> (Arc<Vec<G>>, usize) {
|
||||
(self.0.clone(), self.1)
|
||||
}
|
||||
}
|
||||
|
||||
impl<G: CurveAffine> Source<G> for (Arc<Vec<G>>, usize) {
|
||||
fn add_assign_mixed(&mut self, to: &mut <G as CurveAffine>::Projective) -> Result<(), SynthesisError> {
|
||||
if self.0.len() <= self.1 {
|
||||
return Err(io::Error::new(io::ErrorKind::UnexpectedEof, "expected more bases from source").into());
|
||||
}
|
||||
|
||||
if self.0[self.1].is_zero() {
|
||||
return Err(SynthesisError::UnexpectedIdentity)
|
||||
}
|
||||
|
||||
to.add_assign_mixed(&self.0[self.1]);
|
||||
|
||||
self.1 += 1;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn skip(&mut self, amt: usize) -> Result<(), SynthesisError> {
|
||||
if self.0.len() <= self.1 {
|
||||
return Err(io::Error::new(io::ErrorKind::UnexpectedEof, "expected more bases from source").into());
|
||||
}
|
||||
|
||||
self.1 += amt;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
pub trait QueryDensity {
|
||||
/// Returns whether the base exists.
|
||||
type Iter: Iterator<Item=bool>;
|
||||
|
||||
fn iter(self) -> Self::Iter;
|
||||
fn get_query_size(self) -> Option<usize>;
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct FullDensity;
|
||||
|
||||
impl AsRef<FullDensity> for FullDensity {
|
||||
fn as_ref(&self) -> &FullDensity {
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> QueryDensity for &'a FullDensity {
|
||||
type Iter = iter::Repeat<bool>;
|
||||
|
||||
fn iter(self) -> Self::Iter {
|
||||
iter::repeat(true)
|
||||
}
|
||||
|
||||
fn get_query_size(self) -> Option<usize> {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
pub struct DensityTracker {
|
||||
bv: BitVec,
|
||||
total_density: usize
|
||||
}
|
||||
|
||||
impl<'a> QueryDensity for &'a DensityTracker {
|
||||
type Iter = bit_vec::Iter<'a>;
|
||||
|
||||
fn iter(self) -> Self::Iter {
|
||||
self.bv.iter()
|
||||
}
|
||||
|
||||
fn get_query_size(self) -> Option<usize> {
|
||||
Some(self.bv.len())
|
||||
}
|
||||
}
|
||||
|
||||
impl DensityTracker {
|
||||
pub fn new() -> DensityTracker {
|
||||
DensityTracker {
|
||||
bv: BitVec::new(),
|
||||
total_density: 0
|
||||
}
|
||||
}
|
||||
|
||||
pub fn add_element(&mut self) {
|
||||
self.bv.push(false);
|
||||
}
|
||||
|
||||
pub fn inc(&mut self, idx: usize) {
|
||||
if !self.bv.get(idx).unwrap() {
|
||||
self.bv.set(idx, true);
|
||||
self.total_density += 1;
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_total_density(&self) -> usize {
|
||||
self.total_density
|
||||
}
|
||||
}
|
||||
|
||||
fn multiexp_inner<Q, D, G, S>(
|
||||
pool: &Worker,
|
||||
bases: S,
|
||||
density_map: D,
|
||||
exponents: Arc<Vec<<<G::Engine as Engine>::Fr as PrimeField>::Repr>>,
|
||||
mut skip: u32,
|
||||
c: u32,
|
||||
handle_trivial: bool
|
||||
) -> Box<Future<Item=<G as CurveAffine>::Projective, Error=SynthesisError>>
|
||||
where for<'a> &'a Q: QueryDensity,
|
||||
D: Send + Sync + 'static + Clone + AsRef<Q>,
|
||||
G: CurveAffine,
|
||||
S: SourceBuilder<G>
|
||||
{
|
||||
// Perform this region of the multiexp
|
||||
let this = {
|
||||
let bases = bases.clone();
|
||||
let exponents = exponents.clone();
|
||||
let density_map = density_map.clone();
|
||||
|
||||
pool.compute(move || {
|
||||
// Accumulate the result
|
||||
let mut acc = G::Projective::zero();
|
||||
|
||||
// Build a source for the bases
|
||||
let mut bases = bases.new();
|
||||
|
||||
// Create space for the buckets
|
||||
let mut buckets = vec![<G as CurveAffine>::Projective::zero(); (1 << c) - 1];
|
||||
|
||||
let zero = <G::Engine as Engine>::Fr::zero().into_repr();
|
||||
let one = <G::Engine as Engine>::Fr::one().into_repr();
|
||||
|
||||
// Sort the bases into buckets
|
||||
for (&exp, density) in exponents.iter().zip(density_map.as_ref().iter()) {
|
||||
if density {
|
||||
if exp == zero {
|
||||
bases.skip(1)?;
|
||||
} else if exp == one {
|
||||
if handle_trivial {
|
||||
bases.add_assign_mixed(&mut acc)?;
|
||||
} else {
|
||||
bases.skip(1)?;
|
||||
}
|
||||
} else {
|
||||
let mut exp = exp;
|
||||
exp.shr(skip);
|
||||
let exp = exp.as_ref()[0] % (1 << c);
|
||||
|
||||
if exp != 0 {
|
||||
bases.add_assign_mixed(&mut buckets[(exp - 1) as usize])?;
|
||||
} else {
|
||||
bases.skip(1)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Summation by parts
|
||||
// e.g. 3a + 2b + 1c = a +
|
||||
// (a) + b +
|
||||
// ((a) + b) + c
|
||||
let mut running_sum = G::Projective::zero();
|
||||
for exp in buckets.into_iter().rev() {
|
||||
running_sum.add_assign(&exp);
|
||||
acc.add_assign(&running_sum);
|
||||
}
|
||||
|
||||
Ok(acc)
|
||||
})
|
||||
};
|
||||
|
||||
skip += c;
|
||||
|
||||
if skip >= <G::Engine as Engine>::Fr::NUM_BITS {
|
||||
// There isn't another region.
|
||||
Box::new(this)
|
||||
} else {
|
||||
// There's another region more significant. Calculate and join it with
|
||||
// this region recursively.
|
||||
Box::new(
|
||||
this.join(multiexp_inner(pool, bases, density_map, exponents, skip, c, false))
|
||||
.map(move |(this, mut higher)| {
|
||||
for _ in 0..c {
|
||||
higher.double();
|
||||
}
|
||||
|
||||
higher.add_assign(&this);
|
||||
|
||||
higher
|
||||
})
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/// Perform multi-exponentiation. The caller is responsible for ensuring the
|
||||
/// query size is the same as the number of exponents.
|
||||
pub fn multiexp<Q, D, G, S>(
|
||||
pool: &Worker,
|
||||
bases: S,
|
||||
density_map: D,
|
||||
exponents: Arc<Vec<<<G::Engine as Engine>::Fr as PrimeField>::Repr>>
|
||||
) -> Box<Future<Item=<G as CurveAffine>::Projective, Error=SynthesisError>>
|
||||
where for<'a> &'a Q: QueryDensity,
|
||||
D: Send + Sync + 'static + Clone + AsRef<Q>,
|
||||
G: CurveAffine,
|
||||
S: SourceBuilder<G>
|
||||
{
|
||||
let c = if exponents.len() < 32 {
|
||||
3u32
|
||||
} else {
|
||||
(f64::from(exponents.len() as u32)).ln().ceil() as u32
|
||||
};
|
||||
|
||||
if let Some(query_size) = density_map.as_ref().get_query_size() {
|
||||
// If the density map has a known query size, it should not be
|
||||
// inconsistent with the number of exponents.
|
||||
|
||||
assert!(query_size == exponents.len());
|
||||
}
|
||||
|
||||
multiexp_inner(pool, bases, density_map, exponents, 0, c, true)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_bls12() {
|
||||
fn naive_multiexp<G: CurveAffine>(
|
||||
bases: Arc<Vec<G>>,
|
||||
exponents: Arc<Vec<<G::Scalar as PrimeField>::Repr>>
|
||||
) -> G::Projective
|
||||
{
|
||||
assert_eq!(bases.len(), exponents.len());
|
||||
|
||||
let mut acc = G::Projective::zero();
|
||||
|
||||
for (base, exp) in bases.iter().zip(exponents.iter()) {
|
||||
acc.add_assign(&base.mul(*exp));
|
||||
}
|
||||
|
||||
acc
|
||||
}
|
||||
|
||||
use rand::{self, Rand};
|
||||
use pairing::bls12_381::Bls12;
|
||||
|
||||
const SAMPLES: usize = 1 << 14;
|
||||
|
||||
let rng = &mut rand::thread_rng();
|
||||
let v = Arc::new((0..SAMPLES).map(|_| <Bls12 as Engine>::Fr::rand(rng).into_repr()).collect::<Vec<_>>());
|
||||
let g = Arc::new((0..SAMPLES).map(|_| <Bls12 as Engine>::G1::rand(rng).into_affine()).collect::<Vec<_>>());
|
||||
|
||||
let naive = naive_multiexp(g.clone(), v.clone());
|
||||
|
||||
let pool = Worker::new();
|
||||
|
||||
let fast = multiexp(
|
||||
&pool,
|
||||
(g, 0),
|
||||
FullDensity,
|
||||
v
|
||||
).wait().unwrap();
|
||||
|
||||
assert_eq!(naive, fast);
|
||||
}
|
251
bellman/tests/mimc.rs
Normal file
251
bellman/tests/mimc.rs
Normal file
@ -0,0 +1,251 @@
|
||||
extern crate bellman;
|
||||
extern crate pairing;
|
||||
extern crate rand;
|
||||
|
||||
// For randomness (during paramgen and proof generation)
|
||||
use rand::{thread_rng, Rng};
|
||||
|
||||
// For benchmarking
|
||||
use std::time::{Duration, Instant};
|
||||
|
||||
// Bring in some tools for using pairing-friendly curves
|
||||
use pairing::{
|
||||
Engine,
|
||||
Field
|
||||
};
|
||||
|
||||
// We're going to use the BLS12-381 pairing-friendly elliptic curve.
|
||||
use pairing::bls12_381::{
|
||||
Bls12
|
||||
};
|
||||
|
||||
// We'll use these interfaces to construct our circuit.
|
||||
use bellman::{
|
||||
Circuit,
|
||||
ConstraintSystem,
|
||||
SynthesisError
|
||||
};
|
||||
|
||||
// We're going to use the Groth16 proving system.
|
||||
use bellman::groth16::{
|
||||
Proof,
|
||||
generate_random_parameters,
|
||||
prepare_verifying_key,
|
||||
create_random_proof,
|
||||
verify_proof,
|
||||
};
|
||||
|
||||
const MIMC_ROUNDS: usize = 322;
|
||||
|
||||
/// This is an implementation of MiMC, specifically a
|
||||
/// variant named `LongsightF322p3` for BLS12-381.
|
||||
/// See http://eprint.iacr.org/2016/492 for more
|
||||
/// information about this construction.
|
||||
///
|
||||
/// ```
|
||||
/// function LongsightF322p3(xL ⦂ Fp, xR ⦂ Fp) {
|
||||
/// for i from 0 up to 321 {
|
||||
/// xL, xR := xR + (xL + Ci)^3, xL
|
||||
/// }
|
||||
/// return xL
|
||||
/// }
|
||||
/// ```
|
||||
fn mimc<E: Engine>(
|
||||
mut xl: E::Fr,
|
||||
mut xr: E::Fr,
|
||||
constants: &[E::Fr]
|
||||
) -> E::Fr
|
||||
{
|
||||
assert_eq!(constants.len(), MIMC_ROUNDS);
|
||||
|
||||
for i in 0..MIMC_ROUNDS {
|
||||
let mut tmp1 = xl;
|
||||
tmp1.add_assign(&constants[i]);
|
||||
let mut tmp2 = tmp1;
|
||||
tmp2.square();
|
||||
tmp2.mul_assign(&tmp1);
|
||||
tmp2.add_assign(&xr);
|
||||
xr = xl;
|
||||
xl = tmp2;
|
||||
}
|
||||
|
||||
xl
|
||||
}
|
||||
|
||||
/// This is our demo circuit for proving knowledge of the
|
||||
/// preimage of a MiMC hash invocation.
|
||||
struct MiMCDemo<'a, E: Engine> {
|
||||
xl: Option<E::Fr>,
|
||||
xr: Option<E::Fr>,
|
||||
constants: &'a [E::Fr]
|
||||
}
|
||||
|
||||
/// Our demo circuit implements this `Circuit` trait which
|
||||
/// is used during paramgen and proving in order to
|
||||
/// synthesize the constraint system.
|
||||
impl<'a, E: Engine> Circuit<E> for MiMCDemo<'a, E> {
|
||||
fn synthesize<CS: ConstraintSystem<E>>(
|
||||
self,
|
||||
cs: &mut CS
|
||||
) -> Result<(), SynthesisError>
|
||||
{
|
||||
assert_eq!(self.constants.len(), MIMC_ROUNDS);
|
||||
|
||||
// Allocate the first component of the preimage.
|
||||
let mut xl_value = self.xl;
|
||||
let mut xl = cs.alloc(|| "preimage xl", || {
|
||||
xl_value.ok_or(SynthesisError::AssignmentMissing)
|
||||
})?;
|
||||
|
||||
// Allocate the second component of the preimage.
|
||||
let mut xr_value = self.xr;
|
||||
let mut xr = cs.alloc(|| "preimage xr", || {
|
||||
xr_value.ok_or(SynthesisError::AssignmentMissing)
|
||||
})?;
|
||||
|
||||
for i in 0..MIMC_ROUNDS {
|
||||
// xL, xR := xR + (xL + Ci)^3, xL
|
||||
let cs = &mut cs.namespace(|| format!("round {}", i));
|
||||
|
||||
// tmp = (xL + Ci)^2
|
||||
let mut tmp_value = xl_value.map(|mut e| {
|
||||
e.add_assign(&self.constants[i]);
|
||||
e.square();
|
||||
e
|
||||
});
|
||||
let mut tmp = cs.alloc(|| "tmp", || {
|
||||
tmp_value.ok_or(SynthesisError::AssignmentMissing)
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "tmp = (xL + Ci)^2",
|
||||
|lc| lc + xl + (self.constants[i], CS::one()),
|
||||
|lc| lc + xl + (self.constants[i], CS::one()),
|
||||
|lc| lc + tmp
|
||||
);
|
||||
|
||||
// new_xL = xR + (xL + Ci)^3
|
||||
// new_xL = xR + tmp * (xL + Ci)
|
||||
// new_xL - xR = tmp * (xL + Ci)
|
||||
let mut new_xl_value = xl_value.map(|mut e| {
|
||||
e.add_assign(&self.constants[i]);
|
||||
e.mul_assign(&tmp_value.unwrap());
|
||||
e.add_assign(&xr_value.unwrap());
|
||||
e
|
||||
});
|
||||
|
||||
let mut new_xl = if i == (MIMC_ROUNDS-1) {
|
||||
// This is the last round, xL is our image and so
|
||||
// we allocate a public input.
|
||||
cs.alloc_input(|| "image", || {
|
||||
new_xl_value.ok_or(SynthesisError::AssignmentMissing)
|
||||
})?
|
||||
} else {
|
||||
cs.alloc(|| "new_xl", || {
|
||||
new_xl_value.ok_or(SynthesisError::AssignmentMissing)
|
||||
})?
|
||||
};
|
||||
|
||||
cs.enforce(
|
||||
|| "new_xL = xR + (xL + Ci)^3",
|
||||
|lc| lc + tmp,
|
||||
|lc| lc + xl + (self.constants[i], CS::one()),
|
||||
|lc| lc + new_xl - xr
|
||||
);
|
||||
|
||||
// xR = xL
|
||||
xr = xl;
|
||||
xr_value = xl_value;
|
||||
|
||||
// xL = new_xL
|
||||
xl = new_xl;
|
||||
xl_value = new_xl_value;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mimc() {
|
||||
// This may not be cryptographically safe, use
|
||||
// `OsRng` (for example) in production software.
|
||||
let rng = &mut thread_rng();
|
||||
|
||||
// Generate the MiMC round constants
|
||||
let constants = (0..MIMC_ROUNDS).map(|_| rng.gen()).collect::<Vec<_>>();
|
||||
|
||||
println!("Creating parameters...");
|
||||
|
||||
// Create parameters for our circuit
|
||||
let params = {
|
||||
let c = MiMCDemo::<Bls12> {
|
||||
xl: None,
|
||||
xr: None,
|
||||
constants: &constants
|
||||
};
|
||||
|
||||
generate_random_parameters(c, rng).unwrap()
|
||||
};
|
||||
|
||||
// Prepare the verification key (for proof verification)
|
||||
let pvk = prepare_verifying_key(¶ms.vk);
|
||||
|
||||
println!("Creating proofs...");
|
||||
|
||||
// Let's benchmark stuff!
|
||||
const SAMPLES: u32 = 50;
|
||||
let mut total_proving = Duration::new(0, 0);
|
||||
let mut total_verifying = Duration::new(0, 0);
|
||||
|
||||
// Just a place to put the proof data, so we can
|
||||
// benchmark deserialization.
|
||||
let mut proof_vec = vec![];
|
||||
|
||||
for _ in 0..SAMPLES {
|
||||
// Generate a random preimage and compute the image
|
||||
let xl = rng.gen();
|
||||
let xr = rng.gen();
|
||||
let image = mimc::<Bls12>(xl, xr, &constants);
|
||||
|
||||
proof_vec.truncate(0);
|
||||
|
||||
let start = Instant::now();
|
||||
{
|
||||
// Create an instance of our circuit (with the
|
||||
// witness)
|
||||
let c = MiMCDemo {
|
||||
xl: Some(xl),
|
||||
xr: Some(xr),
|
||||
constants: &constants
|
||||
};
|
||||
|
||||
// Create a groth16 proof with our parameters.
|
||||
let proof = create_random_proof(c, ¶ms, rng).unwrap();
|
||||
|
||||
proof.write(&mut proof_vec).unwrap();
|
||||
}
|
||||
|
||||
total_proving += start.elapsed();
|
||||
|
||||
let start = Instant::now();
|
||||
let proof = Proof::read(&proof_vec[..]).unwrap();
|
||||
// Check the proof
|
||||
assert!(verify_proof(
|
||||
&pvk,
|
||||
&proof,
|
||||
&[image]
|
||||
).unwrap());
|
||||
total_verifying += start.elapsed();
|
||||
}
|
||||
let proving_avg = total_proving / SAMPLES;
|
||||
let proving_avg = proving_avg.subsec_nanos() as f64 / 1_000_000_000f64
|
||||
+ (proving_avg.as_secs() as f64);
|
||||
|
||||
let verifying_avg = total_verifying / SAMPLES;
|
||||
let verifying_avg = verifying_avg.subsec_nanos() as f64 / 1_000_000_000f64
|
||||
+ (verifying_avg.as_secs() as f64);
|
||||
|
||||
println!("Average proving time: {:?} seconds", proving_avg);
|
||||
println!("Average verifying time: {:?} seconds", verifying_avg);
|
||||
}
|
27
librustzcash/Cargo.toml
Normal file
27
librustzcash/Cargo.toml
Normal file
@ -0,0 +1,27 @@
|
||||
[package]
|
||||
name = "librustzcash"
|
||||
version = "0.1.0"
|
||||
authors = [
|
||||
"Sean Bowe <ewillbefull@gmail.com>",
|
||||
"Jack Grigg <jack@z.cash>",
|
||||
"Jay Graber <jay@z.cash>",
|
||||
"Simon Liu <simon@z.cash>"
|
||||
]
|
||||
|
||||
[lib]
|
||||
name = "rustzcash"
|
||||
path = "src/rustzcash.rs"
|
||||
crate-type = ["staticlib"]
|
||||
|
||||
[dependencies]
|
||||
bellman = { path = "../bellman" }
|
||||
libc = "0.2"
|
||||
pairing = { path = "../pairing" }
|
||||
lazy_static = "1"
|
||||
byteorder = "1"
|
||||
rand = "0.4"
|
||||
sapling-crypto = { path = "../sapling-crypto" }
|
||||
|
||||
[dependencies.blake2-rfc]
|
||||
git = "https://github.com/gtank/blake2-rfc"
|
||||
rev = "7a5b5fc99ae483a0043db7547fb79a6fa44b88a9"
|
20
librustzcash/README.md
Normal file
20
librustzcash/README.md
Normal file
@ -0,0 +1,20 @@
|
||||
# librustzcash
|
||||
|
||||
This repository contains librustzcash, a static library for Zcash code assets written in Rust.
|
||||
|
||||
## License
|
||||
|
||||
Licensed under either of
|
||||
|
||||
* Apache License, Version 2.0, ([LICENSE-APACHE](../LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
|
||||
* MIT license ([LICENSE-MIT](../LICENSE-MIT) or http://opensource.org/licenses/MIT)
|
||||
|
||||
at your option.
|
||||
|
||||
### Contribution
|
||||
|
||||
Unless you explicitly state otherwise, any contribution intentionally
|
||||
submitted for inclusion in the work by you, as defined in the Apache-2.0
|
||||
license, shall be dual licensed as above, without any additional terms or
|
||||
conditions.
|
||||
|
3
pairing/.gitignore
vendored
Normal file
3
pairing/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
target/
|
||||
**/*.rs.bk
|
||||
Cargo.lock
|
14
pairing/COPYRIGHT
Normal file
14
pairing/COPYRIGHT
Normal file
@ -0,0 +1,14 @@
|
||||
Copyrights in the "pairing" library are retained by their contributors. No
|
||||
copyright assignment is required to contribute to the "pairing" library.
|
||||
|
||||
The "pairing" library is licensed under either of
|
||||
|
||||
* Apache License, Version 2.0, (see ./LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
|
||||
* MIT license (see ./LICENSE-MIT or http://opensource.org/licenses/MIT)
|
||||
|
||||
at your option.
|
||||
|
||||
Unless you explicitly state otherwise, any contribution intentionally
|
||||
submitted for inclusion in the work by you, as defined in the Apache-2.0
|
||||
license, shall be dual licensed as above, without any additional terms or
|
||||
conditions.
|
23
pairing/Cargo.toml
Normal file
23
pairing/Cargo.toml
Normal file
@ -0,0 +1,23 @@
|
||||
[package]
|
||||
name = "pairing"
|
||||
|
||||
# Remember to change version string in README.md.
|
||||
version = "0.14.2"
|
||||
authors = ["Sean Bowe <ewillbefull@gmail.com>"]
|
||||
license = "MIT/Apache-2.0"
|
||||
|
||||
description = "Pairing-friendly elliptic curve library"
|
||||
documentation = "https://docs.rs/pairing/"
|
||||
homepage = "https://github.com/ebfull/pairing"
|
||||
repository = "https://github.com/ebfull/pairing"
|
||||
|
||||
[dependencies]
|
||||
rand = "0.4"
|
||||
byteorder = "1"
|
||||
clippy = { version = "0.0.200", optional = true }
|
||||
|
||||
[features]
|
||||
unstable-features = ["expose-arith"]
|
||||
expose-arith = []
|
||||
u128-support = []
|
||||
default = []
|
201
pairing/LICENSE-APACHE
Normal file
201
pairing/LICENSE-APACHE
Normal file
@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
23
pairing/LICENSE-MIT
Normal file
23
pairing/LICENSE-MIT
Normal file
@ -0,0 +1,23 @@
|
||||
Permission is hereby granted, free of charge, to any
|
||||
person obtaining a copy of this software and associated
|
||||
documentation files (the "Software"), to deal in the
|
||||
Software without restriction, including without
|
||||
limitation the rights to use, copy, modify, merge,
|
||||
publish, distribute, sublicense, and/or sell copies of
|
||||
the Software, and to permit persons to whom the Software
|
||||
is furnished to do so, subject to the following
|
||||
conditions:
|
||||
|
||||
The above copyright notice and this permission notice
|
||||
shall be included in all copies or substantial portions
|
||||
of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
|
||||
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
|
||||
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
|
||||
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
|
||||
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
|
||||
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
DEALINGS IN THE SOFTWARE.
|
35
pairing/README.md
Normal file
35
pairing/README.md
Normal file
@ -0,0 +1,35 @@
|
||||
# pairing [![Crates.io](https://img.shields.io/crates/v/pairing.svg)](https://crates.io/crates/pairing) #
|
||||
|
||||
This is a Rust crate for using pairing-friendly elliptic curves. Currently, only the [BLS12-381](https://z.cash/blog/new-snark-curve.html) construction is implemented.
|
||||
|
||||
## [Documentation](https://docs.rs/pairing/)
|
||||
|
||||
Bring the `pairing` crate into your project just as you normally would.
|
||||
|
||||
If you're using a supported platform and the nightly Rust compiler, you can enable the `u128-support` feature for faster arithmetic.
|
||||
|
||||
```toml
|
||||
[dependencies.pairing]
|
||||
version = "0.14"
|
||||
features = ["u128-support"]
|
||||
```
|
||||
|
||||
## Security Warnings
|
||||
|
||||
This library does not make any guarantees about constant-time operations, memory access patterns, or resistance to side-channel attacks.
|
||||
|
||||
## License
|
||||
|
||||
Licensed under either of
|
||||
|
||||
* Apache License, Version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
|
||||
* MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
|
||||
|
||||
at your option.
|
||||
|
||||
### Contribution
|
||||
|
||||
Unless you explicitly state otherwise, any contribution intentionally
|
||||
submitted for inclusion in the work by you, as defined in the Apache-2.0
|
||||
license, shall be dual licensed as above, without any additional terms or
|
||||
conditions.
|
127
pairing/benches/bls12_381/ec.rs
Normal file
127
pairing/benches/bls12_381/ec.rs
Normal file
@ -0,0 +1,127 @@
|
||||
mod g1 {
|
||||
use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
use pairing::bls12_381::*;
|
||||
use pairing::CurveProjective;
|
||||
|
||||
#[bench]
|
||||
fn bench_g1_mul_assign(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(G1, Fr)> = (0..SAMPLES)
|
||||
.map(|_| (G1::rand(&mut rng), Fr::rand(&mut rng)))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.mul_assign(v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_g1_add_assign(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(G1, G1)> = (0..SAMPLES)
|
||||
.map(|_| (G1::rand(&mut rng), G1::rand(&mut rng)))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.add_assign(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_g1_add_assign_mixed(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(G1, G1Affine)> = (0..SAMPLES)
|
||||
.map(|_| (G1::rand(&mut rng), G1::rand(&mut rng).into()))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.add_assign_mixed(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
mod g2 {
|
||||
use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
use pairing::bls12_381::*;
|
||||
use pairing::CurveProjective;
|
||||
|
||||
#[bench]
|
||||
fn bench_g2_mul_assign(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(G2, Fr)> = (0..SAMPLES)
|
||||
.map(|_| (G2::rand(&mut rng), Fr::rand(&mut rng)))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.mul_assign(v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_g2_add_assign(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(G2, G2)> = (0..SAMPLES)
|
||||
.map(|_| (G2::rand(&mut rng), G2::rand(&mut rng)))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.add_assign(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_g2_add_assign_mixed(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(G2, G2Affine)> = (0..SAMPLES)
|
||||
.map(|_| (G2::rand(&mut rng), G2::rand(&mut rng).into()))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.add_assign_mixed(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
}
|
268
pairing/benches/bls12_381/fq.rs
Normal file
268
pairing/benches/bls12_381/fq.rs
Normal file
@ -0,0 +1,268 @@
|
||||
use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
use pairing::bls12_381::*;
|
||||
use pairing::{Field, PrimeField, PrimeFieldRepr, SqrtField};
|
||||
|
||||
#[bench]
|
||||
fn bench_fq_repr_add_nocarry(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(FqRepr, FqRepr)> = (0..SAMPLES)
|
||||
.map(|_| {
|
||||
let mut tmp1 = FqRepr::rand(&mut rng);
|
||||
let mut tmp2 = FqRepr::rand(&mut rng);
|
||||
// Shave a few bits off to avoid overflow.
|
||||
for _ in 0..3 {
|
||||
tmp1.div2();
|
||||
tmp2.div2();
|
||||
}
|
||||
(tmp1, tmp2)
|
||||
})
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.add_nocarry(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq_repr_sub_noborrow(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(FqRepr, FqRepr)> = (0..SAMPLES)
|
||||
.map(|_| {
|
||||
let tmp1 = FqRepr::rand(&mut rng);
|
||||
let mut tmp2 = tmp1;
|
||||
// Ensure tmp2 is smaller than tmp1.
|
||||
for _ in 0..10 {
|
||||
tmp2.div2();
|
||||
}
|
||||
(tmp1, tmp2)
|
||||
})
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.sub_noborrow(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq_repr_num_bits(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<FqRepr> = (0..SAMPLES).map(|_| FqRepr::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let tmp = v[count].num_bits();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq_repr_mul2(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<FqRepr> = (0..SAMPLES).map(|_| FqRepr::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count];
|
||||
tmp.mul2();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq_repr_div2(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<FqRepr> = (0..SAMPLES).map(|_| FqRepr::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count];
|
||||
tmp.div2();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq_add_assign(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(Fq, Fq)> = (0..SAMPLES)
|
||||
.map(|_| (Fq::rand(&mut rng), Fq::rand(&mut rng)))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.add_assign(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq_sub_assign(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(Fq, Fq)> = (0..SAMPLES)
|
||||
.map(|_| (Fq::rand(&mut rng), Fq::rand(&mut rng)))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.sub_assign(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq_mul_assign(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(Fq, Fq)> = (0..SAMPLES)
|
||||
.map(|_| (Fq::rand(&mut rng), Fq::rand(&mut rng)))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.mul_assign(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq_square(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<Fq> = (0..SAMPLES).map(|_| Fq::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count];
|
||||
tmp.square();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq_inverse(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<Fq> = (0..SAMPLES).map(|_| Fq::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
count = (count + 1) % SAMPLES;
|
||||
v[count].inverse()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq_negate(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<Fq> = (0..SAMPLES).map(|_| Fq::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count];
|
||||
tmp.negate();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq_sqrt(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<Fq> = (0..SAMPLES)
|
||||
.map(|_| {
|
||||
let mut tmp = Fq::rand(&mut rng);
|
||||
tmp.square();
|
||||
tmp
|
||||
})
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
count = (count + 1) % SAMPLES;
|
||||
v[count].sqrt()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq_into_repr(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<Fq> = (0..SAMPLES).map(|_| Fq::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
count = (count + 1) % SAMPLES;
|
||||
v[count].into_repr()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq_from_repr(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<FqRepr> = (0..SAMPLES)
|
||||
.map(|_| Fq::rand(&mut rng).into_repr())
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
count = (count + 1) % SAMPLES;
|
||||
Fq::from_repr(v[count])
|
||||
});
|
||||
}
|
94
pairing/benches/bls12_381/fq12.rs
Normal file
94
pairing/benches/bls12_381/fq12.rs
Normal file
@ -0,0 +1,94 @@
|
||||
use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
use pairing::bls12_381::*;
|
||||
use pairing::Field;
|
||||
|
||||
#[bench]
|
||||
fn bench_fq12_add_assign(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(Fq12, Fq12)> = (0..SAMPLES)
|
||||
.map(|_| (Fq12::rand(&mut rng), Fq12::rand(&mut rng)))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.add_assign(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq12_sub_assign(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(Fq12, Fq12)> = (0..SAMPLES)
|
||||
.map(|_| (Fq12::rand(&mut rng), Fq12::rand(&mut rng)))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.sub_assign(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq12_mul_assign(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(Fq12, Fq12)> = (0..SAMPLES)
|
||||
.map(|_| (Fq12::rand(&mut rng), Fq12::rand(&mut rng)))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.mul_assign(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq12_squaring(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<Fq12> = (0..SAMPLES).map(|_| Fq12::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count];
|
||||
tmp.square();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq12_inverse(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<Fq12> = (0..SAMPLES).map(|_| Fq12::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let tmp = v[count].inverse();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
110
pairing/benches/bls12_381/fq2.rs
Normal file
110
pairing/benches/bls12_381/fq2.rs
Normal file
@ -0,0 +1,110 @@
|
||||
use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
use pairing::bls12_381::*;
|
||||
use pairing::{Field, SqrtField};
|
||||
|
||||
#[bench]
|
||||
fn bench_fq2_add_assign(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(Fq2, Fq2)> = (0..SAMPLES)
|
||||
.map(|_| (Fq2::rand(&mut rng), Fq2::rand(&mut rng)))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.add_assign(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq2_sub_assign(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(Fq2, Fq2)> = (0..SAMPLES)
|
||||
.map(|_| (Fq2::rand(&mut rng), Fq2::rand(&mut rng)))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.sub_assign(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq2_mul_assign(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(Fq2, Fq2)> = (0..SAMPLES)
|
||||
.map(|_| (Fq2::rand(&mut rng), Fq2::rand(&mut rng)))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.mul_assign(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq2_squaring(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<Fq2> = (0..SAMPLES).map(|_| Fq2::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count];
|
||||
tmp.square();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq2_inverse(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<Fq2> = (0..SAMPLES).map(|_| Fq2::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let tmp = v[count].inverse();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fq2_sqrt(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<Fq2> = (0..SAMPLES).map(|_| Fq2::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let tmp = v[count].sqrt();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
268
pairing/benches/bls12_381/fr.rs
Normal file
268
pairing/benches/bls12_381/fr.rs
Normal file
@ -0,0 +1,268 @@
|
||||
use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
use pairing::bls12_381::*;
|
||||
use pairing::{Field, PrimeField, PrimeFieldRepr, SqrtField};
|
||||
|
||||
#[bench]
|
||||
fn bench_fr_repr_add_nocarry(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(FrRepr, FrRepr)> = (0..SAMPLES)
|
||||
.map(|_| {
|
||||
let mut tmp1 = FrRepr::rand(&mut rng);
|
||||
let mut tmp2 = FrRepr::rand(&mut rng);
|
||||
// Shave a few bits off to avoid overflow.
|
||||
for _ in 0..3 {
|
||||
tmp1.div2();
|
||||
tmp2.div2();
|
||||
}
|
||||
(tmp1, tmp2)
|
||||
})
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.add_nocarry(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fr_repr_sub_noborrow(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(FrRepr, FrRepr)> = (0..SAMPLES)
|
||||
.map(|_| {
|
||||
let tmp1 = FrRepr::rand(&mut rng);
|
||||
let mut tmp2 = tmp1;
|
||||
// Ensure tmp2 is smaller than tmp1.
|
||||
for _ in 0..10 {
|
||||
tmp2.div2();
|
||||
}
|
||||
(tmp1, tmp2)
|
||||
})
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.sub_noborrow(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fr_repr_num_bits(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<FrRepr> = (0..SAMPLES).map(|_| FrRepr::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let tmp = v[count].num_bits();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fr_repr_mul2(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<FrRepr> = (0..SAMPLES).map(|_| FrRepr::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count];
|
||||
tmp.mul2();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fr_repr_div2(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<FrRepr> = (0..SAMPLES).map(|_| FrRepr::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count];
|
||||
tmp.div2();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fr_add_assign(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(Fr, Fr)> = (0..SAMPLES)
|
||||
.map(|_| (Fr::rand(&mut rng), Fr::rand(&mut rng)))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.add_assign(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fr_sub_assign(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(Fr, Fr)> = (0..SAMPLES)
|
||||
.map(|_| (Fr::rand(&mut rng), Fr::rand(&mut rng)))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.sub_assign(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fr_mul_assign(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(Fr, Fr)> = (0..SAMPLES)
|
||||
.map(|_| (Fr::rand(&mut rng), Fr::rand(&mut rng)))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count].0;
|
||||
tmp.mul_assign(&v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fr_square(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<Fr> = (0..SAMPLES).map(|_| Fr::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count];
|
||||
tmp.square();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fr_inverse(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<Fr> = (0..SAMPLES).map(|_| Fr::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
count = (count + 1) % SAMPLES;
|
||||
v[count].inverse()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fr_negate(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<Fr> = (0..SAMPLES).map(|_| Fr::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let mut tmp = v[count];
|
||||
tmp.negate();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fr_sqrt(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<Fr> = (0..SAMPLES)
|
||||
.map(|_| {
|
||||
let mut tmp = Fr::rand(&mut rng);
|
||||
tmp.square();
|
||||
tmp
|
||||
})
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
count = (count + 1) % SAMPLES;
|
||||
v[count].sqrt()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fr_into_repr(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<Fr> = (0..SAMPLES).map(|_| Fr::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
count = (count + 1) % SAMPLES;
|
||||
v[count].into_repr()
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fr_from_repr(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<FrRepr> = (0..SAMPLES)
|
||||
.map(|_| Fr::rand(&mut rng).into_repr())
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
count = (count + 1) % SAMPLES;
|
||||
Fr::from_repr(v[count])
|
||||
});
|
||||
}
|
107
pairing/benches/bls12_381/mod.rs
Normal file
107
pairing/benches/bls12_381/mod.rs
Normal file
@ -0,0 +1,107 @@
|
||||
mod ec;
|
||||
mod fq;
|
||||
mod fq12;
|
||||
mod fq2;
|
||||
mod fr;
|
||||
|
||||
use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
use pairing::bls12_381::*;
|
||||
use pairing::{CurveAffine, Engine};
|
||||
|
||||
#[bench]
|
||||
fn bench_pairing_g1_preparation(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<G1> = (0..SAMPLES).map(|_| G1::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let tmp = G1Affine::from(v[count]).prepare();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_pairing_g2_preparation(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<G2> = (0..SAMPLES).map(|_| G2::rand(&mut rng)).collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let tmp = G2Affine::from(v[count]).prepare();
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_pairing_miller_loop(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(G1Prepared, G2Prepared)> = (0..SAMPLES)
|
||||
.map(|_| {
|
||||
(
|
||||
G1Affine::from(G1::rand(&mut rng)).prepare(),
|
||||
G2Affine::from(G2::rand(&mut rng)).prepare(),
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let tmp = Bls12::miller_loop(&[(&v[count].0, &v[count].1)]);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_pairing_final_exponentiation(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<Fq12> = (0..SAMPLES)
|
||||
.map(|_| {
|
||||
(
|
||||
G1Affine::from(G1::rand(&mut rng)).prepare(),
|
||||
G2Affine::from(G2::rand(&mut rng)).prepare(),
|
||||
)
|
||||
})
|
||||
.map(|(ref p, ref q)| Bls12::miller_loop(&[(p, q)]))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let tmp = Bls12::final_exponentiation(&v[count]);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_pairing_full(b: &mut ::test::Bencher) {
|
||||
const SAMPLES: usize = 1000;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let v: Vec<(G1, G2)> = (0..SAMPLES)
|
||||
.map(|_| (G1::rand(&mut rng), G2::rand(&mut rng)))
|
||||
.collect();
|
||||
|
||||
let mut count = 0;
|
||||
b.iter(|| {
|
||||
let tmp = Bls12::pairing(v[count].0, v[count].1);
|
||||
count = (count + 1) % SAMPLES;
|
||||
tmp
|
||||
});
|
||||
}
|
7
pairing/benches/pairing_benches.rs
Normal file
7
pairing/benches/pairing_benches.rs
Normal file
@ -0,0 +1,7 @@
|
||||
#![feature(test)]
|
||||
|
||||
extern crate pairing;
|
||||
extern crate rand;
|
||||
extern crate test;
|
||||
|
||||
mod bls12_381;
|
71
pairing/src/bls12_381/README.md
Normal file
71
pairing/src/bls12_381/README.md
Normal file
@ -0,0 +1,71 @@
|
||||
# BLS12-381
|
||||
|
||||
This is an implementation of the BLS12-381 pairing-friendly elliptic curve construction.
|
||||
|
||||
## BLS12 Parameterization
|
||||
|
||||
BLS12 curves are parameterized by a value *x* such that the base field modulus *q* and subgroup *r* can be computed by:
|
||||
|
||||
* q = (x - 1)<sup>2</sup> ((x<sup>4</sup> - x<sup>2</sup> + 1) / 3) + x
|
||||
* r = (x<sup>4</sup> - x<sup>2</sup> + 1)
|
||||
|
||||
Given primes *q* and *r* parameterized as above, we can easily construct an elliptic curve over the prime field F<sub>*q*</sub> which contains a subgroup of order *r* such that *r* | (*q*<sup>12</sup> - 1), giving it an embedding degree of 12. Instantiating its sextic twist over an extension field F<sub>q<sup>2</sup></sub> gives rise to an efficient bilinear pairing function between elements of the order *r* subgroups of either curves, into an order *r* multiplicative subgroup of F<sub>q<sup>12</sup></sub>.
|
||||
|
||||
In zk-SNARK schemes, we require F<sub>r</sub> with large 2<sup>n</sup> roots of unity for performing efficient fast-fourier transforms. As such, guaranteeing that large 2<sup>n</sup> | (r - 1), or equivalently that *x* has a large 2<sup>n</sup> factor, gives rise to BLS12 curves suitable for zk-SNARKs.
|
||||
|
||||
Due to recent research, it is estimated by many that *q* should be approximately 384 bits to target 128-bit security. Conveniently, *r* is approximately 256 bits when *q* is approximately 384 bits, making BLS12 curves ideal for 128-bit security. It also makes them ideal for many zk-SNARK applications, as the scalar field can be used for keying material such as embedded curve constructions.
|
||||
|
||||
Many curves match our descriptions, but we require some extra properties for efficiency purposes:
|
||||
|
||||
* *q* should be smaller than 2<sup>383</sup>, and *r* should be smaller than 2<sup>255</sup>, so that the most significant bit is unset when using 64-bit or 32-bit limbs. This allows for cheap reductions.
|
||||
* F<sub>q<sup>12</sup></sub> is typically constructed using towers of extension fields. As a byproduct of [research](https://eprint.iacr.org/2011/465.pdf) for BLS curves of embedding degree 24, we can identify subfamilies of BLS12 curves (for our purposes, where x mod 72 = {16, 64}) that produce efficient extension field towers and twisting isomorphisms.
|
||||
* We desire *x* of small Hamming weight, to increase the performance of the pairing function.
|
||||
|
||||
## BLS12-381 Instantiation
|
||||
|
||||
The BLS12-381 construction is instantiated by `x = -0xd201000000010000`, which produces the largest `q` and smallest Hamming weight of `x` that meets the above requirements. This produces:
|
||||
|
||||
* q = `0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab` (381 bits)
|
||||
* r = `0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001` (255 bits)
|
||||
|
||||
Our extension field tower is constructed as follows:
|
||||
|
||||
1. F<sub>q<sup>2</sup></sub> is constructed as F<sub>q</sub>(u) / (u<sup>2</sup> - β) where β = -1.
|
||||
2. F<sub>q<sup>6</sup></sub> is constructed as F<sub>q<sup>2</sup></sub>(v) / (v<sup>3</sup> - ξ) where ξ = u + 1
|
||||
3. F<sub>q<sup>12</sup></sub> is constructed as F<sub>q<sup>6</sup></sub>(w) / (w<sup>2</sup> - γ) where γ = v
|
||||
|
||||
Now, we instantiate the elliptic curve E(F<sub>q</sub>) : y<sup>2</sup> = x<sup>3</sup> + 4, and the elliptic curve E'(F<sub>q<sup>2</sup></sub>) : y<sup>2</sup> = x<sup>3</sup> + 4(u + 1).
|
||||
|
||||
The group G<sub>1</sub> is the *r* order subgroup of E, which has cofactor (x - 1)<sup>2</sup> / 3. The group G<sub>2</sub> is the *r* order subgroup of E', which has cofactor (x<sup>8</sup> - 4x<sup>7</sup> + 5x<sup>6</sup> - 4x<sup>4</sup> + 6x<sup>3</sup> - 4x<sup>2</sup> - 4x + 13) / 9.
|
||||
|
||||
### Generators
|
||||
|
||||
The generators of G<sub>1</sub> and G<sub>2</sub> are computed by finding the lexicographically smallest valid `x`-coordinate, and its lexicographically smallest `y`-coordinate and scaling it by the cofactor such that the result is not the point at infinity.
|
||||
|
||||
#### G1
|
||||
|
||||
```
|
||||
x = 3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507
|
||||
y = 1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569
|
||||
```
|
||||
|
||||
#### G2
|
||||
|
||||
```
|
||||
x = 3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758*u + 352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160
|
||||
y = 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582*u + 1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905
|
||||
```
|
||||
|
||||
### Serialization
|
||||
|
||||
* Fq elements are encoded in big-endian form. They occupy 48 bytes in this form.
|
||||
* Fq2 elements are encoded in big-endian form, meaning that the Fq element c0 + c1 * u is represented by the Fq element c1 followed by the Fq element c0. This means Fq2 elements occupy 96 bytes in this form.
|
||||
* The group G1 uses Fq elements for coordinates. The group G2 uses Fq2 elements for coordinates.
|
||||
* G1 and G2 elements can be encoded in uncompressed form (the x-coordinate followed by the y-coordinate) or in compressed form (just the x-coordinate). G1 elements occupy 96 bytes in uncompressed form, and 48 bytes in compressed form. G2 elements occupy 192 bytes in uncompressed form, and 96 bytes in compressed form.
|
||||
|
||||
The most-significant three bits of a G1 or G2 encoding should be masked away before the coordinate(s) are interpreted. These bits are used to unambiguously represent the underlying element:
|
||||
|
||||
* The most significant bit, when set, indicates that the point is in compressed form. Otherwise, the point is in uncompressed form.
|
||||
* The second-most significant bit indicates that the point is at infinity. If this bit is set, the remaining bits of the group element's encoding should be set to zero.
|
||||
* The third-most significant bit is set if (and only if) this point is in compressed form _and_ it is not the point at infinity _and_ its y-coordinate is the lexicographically largest of the two associated with the encoded x-coordinate.
|
||||
|
2026
pairing/src/bls12_381/ec.rs
Normal file
2026
pairing/src/bls12_381/ec.rs
Normal file
File diff suppressed because it is too large
Load Diff
2959
pairing/src/bls12_381/fq.rs
Normal file
2959
pairing/src/bls12_381/fq.rs
Normal file
File diff suppressed because it is too large
Load Diff
189
pairing/src/bls12_381/fq12.rs
Normal file
189
pairing/src/bls12_381/fq12.rs
Normal file
@ -0,0 +1,189 @@
|
||||
use super::fq::FROBENIUS_COEFF_FQ12_C1;
|
||||
use super::fq2::Fq2;
|
||||
use super::fq6::Fq6;
|
||||
use rand::{Rand, Rng};
|
||||
use Field;
|
||||
|
||||
/// An element of Fq12, represented by c0 + c1 * w.
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
pub struct Fq12 {
|
||||
pub c0: Fq6,
|
||||
pub c1: Fq6,
|
||||
}
|
||||
|
||||
impl ::std::fmt::Display for Fq12 {
|
||||
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
|
||||
write!(f, "Fq12({} + {} * w)", self.c0, self.c1)
|
||||
}
|
||||
}
|
||||
|
||||
impl Rand for Fq12 {
|
||||
fn rand<R: Rng>(rng: &mut R) -> Self {
|
||||
Fq12 {
|
||||
c0: rng.gen(),
|
||||
c1: rng.gen(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Fq12 {
|
||||
pub fn conjugate(&mut self) {
|
||||
self.c1.negate();
|
||||
}
|
||||
|
||||
pub fn mul_by_014(&mut self, c0: &Fq2, c1: &Fq2, c4: &Fq2) {
|
||||
let mut aa = self.c0;
|
||||
aa.mul_by_01(c0, c1);
|
||||
let mut bb = self.c1;
|
||||
bb.mul_by_1(c4);
|
||||
let mut o = *c1;
|
||||
o.add_assign(c4);
|
||||
self.c1.add_assign(&self.c0);
|
||||
self.c1.mul_by_01(c0, &o);
|
||||
self.c1.sub_assign(&aa);
|
||||
self.c1.sub_assign(&bb);
|
||||
self.c0 = bb;
|
||||
self.c0.mul_by_nonresidue();
|
||||
self.c0.add_assign(&aa);
|
||||
}
|
||||
}
|
||||
|
||||
impl Field for Fq12 {
|
||||
fn zero() -> Self {
|
||||
Fq12 {
|
||||
c0: Fq6::zero(),
|
||||
c1: Fq6::zero(),
|
||||
}
|
||||
}
|
||||
|
||||
fn one() -> Self {
|
||||
Fq12 {
|
||||
c0: Fq6::one(),
|
||||
c1: Fq6::zero(),
|
||||
}
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
self.c0.is_zero() && self.c1.is_zero()
|
||||
}
|
||||
|
||||
fn double(&mut self) {
|
||||
self.c0.double();
|
||||
self.c1.double();
|
||||
}
|
||||
|
||||
fn negate(&mut self) {
|
||||
self.c0.negate();
|
||||
self.c1.negate();
|
||||
}
|
||||
|
||||
fn add_assign(&mut self, other: &Self) {
|
||||
self.c0.add_assign(&other.c0);
|
||||
self.c1.add_assign(&other.c1);
|
||||
}
|
||||
|
||||
fn sub_assign(&mut self, other: &Self) {
|
||||
self.c0.sub_assign(&other.c0);
|
||||
self.c1.sub_assign(&other.c1);
|
||||
}
|
||||
|
||||
fn frobenius_map(&mut self, power: usize) {
|
||||
self.c0.frobenius_map(power);
|
||||
self.c1.frobenius_map(power);
|
||||
|
||||
self.c1.c0.mul_assign(&FROBENIUS_COEFF_FQ12_C1[power % 12]);
|
||||
self.c1.c1.mul_assign(&FROBENIUS_COEFF_FQ12_C1[power % 12]);
|
||||
self.c1.c2.mul_assign(&FROBENIUS_COEFF_FQ12_C1[power % 12]);
|
||||
}
|
||||
|
||||
fn square(&mut self) {
|
||||
let mut ab = self.c0;
|
||||
ab.mul_assign(&self.c1);
|
||||
let mut c0c1 = self.c0;
|
||||
c0c1.add_assign(&self.c1);
|
||||
let mut c0 = self.c1;
|
||||
c0.mul_by_nonresidue();
|
||||
c0.add_assign(&self.c0);
|
||||
c0.mul_assign(&c0c1);
|
||||
c0.sub_assign(&ab);
|
||||
self.c1 = ab;
|
||||
self.c1.add_assign(&ab);
|
||||
ab.mul_by_nonresidue();
|
||||
c0.sub_assign(&ab);
|
||||
self.c0 = c0;
|
||||
}
|
||||
|
||||
fn mul_assign(&mut self, other: &Self) {
|
||||
let mut aa = self.c0;
|
||||
aa.mul_assign(&other.c0);
|
||||
let mut bb = self.c1;
|
||||
bb.mul_assign(&other.c1);
|
||||
let mut o = other.c0;
|
||||
o.add_assign(&other.c1);
|
||||
self.c1.add_assign(&self.c0);
|
||||
self.c1.mul_assign(&o);
|
||||
self.c1.sub_assign(&aa);
|
||||
self.c1.sub_assign(&bb);
|
||||
self.c0 = bb;
|
||||
self.c0.mul_by_nonresidue();
|
||||
self.c0.add_assign(&aa);
|
||||
}
|
||||
|
||||
fn inverse(&self) -> Option<Self> {
|
||||
let mut c0s = self.c0;
|
||||
c0s.square();
|
||||
let mut c1s = self.c1;
|
||||
c1s.square();
|
||||
c1s.mul_by_nonresidue();
|
||||
c0s.sub_assign(&c1s);
|
||||
|
||||
c0s.inverse().map(|t| {
|
||||
let mut tmp = Fq12 { c0: t, c1: t };
|
||||
tmp.c0.mul_assign(&self.c0);
|
||||
tmp.c1.mul_assign(&self.c1);
|
||||
tmp.c1.negate();
|
||||
|
||||
tmp
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
use rand::{SeedableRng, XorShiftRng};
|
||||
|
||||
#[test]
|
||||
fn test_fq12_mul_by_014() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let c0 = Fq2::rand(&mut rng);
|
||||
let c1 = Fq2::rand(&mut rng);
|
||||
let c5 = Fq2::rand(&mut rng);
|
||||
let mut a = Fq12::rand(&mut rng);
|
||||
let mut b = a;
|
||||
|
||||
a.mul_by_014(&c0, &c1, &c5);
|
||||
b.mul_assign(&Fq12 {
|
||||
c0: Fq6 {
|
||||
c0: c0,
|
||||
c1: c1,
|
||||
c2: Fq2::zero(),
|
||||
},
|
||||
c1: Fq6 {
|
||||
c0: Fq2::zero(),
|
||||
c1: c5,
|
||||
c2: Fq2::zero(),
|
||||
},
|
||||
});
|
||||
|
||||
assert_eq!(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn fq12_field_tests() {
|
||||
use PrimeField;
|
||||
|
||||
::tests::field::random_field_tests::<Fq12>();
|
||||
::tests::field::random_frobenius_tests::<Fq12, _>(super::fq::Fq::char(), 13);
|
||||
}
|
908
pairing/src/bls12_381/fq2.rs
Normal file
908
pairing/src/bls12_381/fq2.rs
Normal file
@ -0,0 +1,908 @@
|
||||
use super::fq::{FROBENIUS_COEFF_FQ2_C1, Fq, NEGATIVE_ONE};
|
||||
use rand::{Rand, Rng};
|
||||
use {Field, SqrtField};
|
||||
|
||||
use std::cmp::Ordering;
|
||||
|
||||
/// An element of Fq2, represented by c0 + c1 * u.
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
pub struct Fq2 {
|
||||
pub c0: Fq,
|
||||
pub c1: Fq,
|
||||
}
|
||||
|
||||
impl ::std::fmt::Display for Fq2 {
|
||||
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
|
||||
write!(f, "Fq2({} + {} * u)", self.c0, self.c1)
|
||||
}
|
||||
}
|
||||
|
||||
/// `Fq2` elements are ordered lexicographically.
|
||||
impl Ord for Fq2 {
|
||||
#[inline(always)]
|
||||
fn cmp(&self, other: &Fq2) -> Ordering {
|
||||
match self.c1.cmp(&other.c1) {
|
||||
Ordering::Greater => Ordering::Greater,
|
||||
Ordering::Less => Ordering::Less,
|
||||
Ordering::Equal => self.c0.cmp(&other.c0),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for Fq2 {
|
||||
#[inline(always)]
|
||||
fn partial_cmp(&self, other: &Fq2) -> Option<Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
|
||||
impl Fq2 {
|
||||
/// Multiply this element by the cubic and quadratic nonresidue 1 + u.
|
||||
pub fn mul_by_nonresidue(&mut self) {
|
||||
let t0 = self.c0;
|
||||
self.c0.sub_assign(&self.c1);
|
||||
self.c1.add_assign(&t0);
|
||||
}
|
||||
|
||||
/// Norm of Fq2 as extension field in i over Fq
|
||||
pub fn norm(&self) -> Fq {
|
||||
let mut t0 = self.c0;
|
||||
let mut t1 = self.c1;
|
||||
t0.square();
|
||||
t1.square();
|
||||
t1.add_assign(&t0);
|
||||
|
||||
t1
|
||||
}
|
||||
}
|
||||
|
||||
impl Rand for Fq2 {
|
||||
fn rand<R: Rng>(rng: &mut R) -> Self {
|
||||
Fq2 {
|
||||
c0: rng.gen(),
|
||||
c1: rng.gen(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Field for Fq2 {
|
||||
fn zero() -> Self {
|
||||
Fq2 {
|
||||
c0: Fq::zero(),
|
||||
c1: Fq::zero(),
|
||||
}
|
||||
}
|
||||
|
||||
fn one() -> Self {
|
||||
Fq2 {
|
||||
c0: Fq::one(),
|
||||
c1: Fq::zero(),
|
||||
}
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
self.c0.is_zero() && self.c1.is_zero()
|
||||
}
|
||||
|
||||
fn square(&mut self) {
|
||||
let mut ab = self.c0;
|
||||
ab.mul_assign(&self.c1);
|
||||
let mut c0c1 = self.c0;
|
||||
c0c1.add_assign(&self.c1);
|
||||
let mut c0 = self.c1;
|
||||
c0.negate();
|
||||
c0.add_assign(&self.c0);
|
||||
c0.mul_assign(&c0c1);
|
||||
c0.sub_assign(&ab);
|
||||
self.c1 = ab;
|
||||
self.c1.add_assign(&ab);
|
||||
c0.add_assign(&ab);
|
||||
self.c0 = c0;
|
||||
}
|
||||
|
||||
fn double(&mut self) {
|
||||
self.c0.double();
|
||||
self.c1.double();
|
||||
}
|
||||
|
||||
fn negate(&mut self) {
|
||||
self.c0.negate();
|
||||
self.c1.negate();
|
||||
}
|
||||
|
||||
fn add_assign(&mut self, other: &Self) {
|
||||
self.c0.add_assign(&other.c0);
|
||||
self.c1.add_assign(&other.c1);
|
||||
}
|
||||
|
||||
fn sub_assign(&mut self, other: &Self) {
|
||||
self.c0.sub_assign(&other.c0);
|
||||
self.c1.sub_assign(&other.c1);
|
||||
}
|
||||
|
||||
fn mul_assign(&mut self, other: &Self) {
|
||||
let mut aa = self.c0;
|
||||
aa.mul_assign(&other.c0);
|
||||
let mut bb = self.c1;
|
||||
bb.mul_assign(&other.c1);
|
||||
let mut o = other.c0;
|
||||
o.add_assign(&other.c1);
|
||||
self.c1.add_assign(&self.c0);
|
||||
self.c1.mul_assign(&o);
|
||||
self.c1.sub_assign(&aa);
|
||||
self.c1.sub_assign(&bb);
|
||||
self.c0 = aa;
|
||||
self.c0.sub_assign(&bb);
|
||||
}
|
||||
|
||||
fn inverse(&self) -> Option<Self> {
|
||||
let mut t1 = self.c1;
|
||||
t1.square();
|
||||
let mut t0 = self.c0;
|
||||
t0.square();
|
||||
t0.add_assign(&t1);
|
||||
t0.inverse().map(|t| {
|
||||
let mut tmp = Fq2 {
|
||||
c0: self.c0,
|
||||
c1: self.c1,
|
||||
};
|
||||
tmp.c0.mul_assign(&t);
|
||||
tmp.c1.mul_assign(&t);
|
||||
tmp.c1.negate();
|
||||
|
||||
tmp
|
||||
})
|
||||
}
|
||||
|
||||
fn frobenius_map(&mut self, power: usize) {
|
||||
self.c1.mul_assign(&FROBENIUS_COEFF_FQ2_C1[power % 2]);
|
||||
}
|
||||
}
|
||||
|
||||
impl SqrtField for Fq2 {
|
||||
fn legendre(&self) -> ::LegendreSymbol {
|
||||
self.norm().legendre()
|
||||
}
|
||||
|
||||
fn sqrt(&self) -> Option<Self> {
|
||||
// Algorithm 9, https://eprint.iacr.org/2012/685.pdf
|
||||
|
||||
if self.is_zero() {
|
||||
Some(Self::zero())
|
||||
} else {
|
||||
// a1 = self^((q - 3) / 4)
|
||||
let mut a1 = self.pow([
|
||||
0xee7fbfffffffeaaa,
|
||||
0x7aaffffac54ffff,
|
||||
0xd9cc34a83dac3d89,
|
||||
0xd91dd2e13ce144af,
|
||||
0x92c6e9ed90d2eb35,
|
||||
0x680447a8e5ff9a6,
|
||||
]);
|
||||
let mut alpha = a1;
|
||||
alpha.square();
|
||||
alpha.mul_assign(self);
|
||||
let mut a0 = alpha;
|
||||
a0.frobenius_map(1);
|
||||
a0.mul_assign(&alpha);
|
||||
|
||||
let neg1 = Fq2 {
|
||||
c0: NEGATIVE_ONE,
|
||||
c1: Fq::zero(),
|
||||
};
|
||||
|
||||
if a0 == neg1 {
|
||||
None
|
||||
} else {
|
||||
a1.mul_assign(self);
|
||||
|
||||
if alpha == neg1 {
|
||||
a1.mul_assign(&Fq2 {
|
||||
c0: Fq::zero(),
|
||||
c1: Fq::one(),
|
||||
});
|
||||
} else {
|
||||
alpha.add_assign(&Fq2::one());
|
||||
// alpha = alpha^((q - 1) / 2)
|
||||
alpha = alpha.pow([
|
||||
0xdcff7fffffffd555,
|
||||
0xf55ffff58a9ffff,
|
||||
0xb39869507b587b12,
|
||||
0xb23ba5c279c2895f,
|
||||
0x258dd3db21a5d66b,
|
||||
0xd0088f51cbff34d,
|
||||
]);
|
||||
a1.mul_assign(&alpha);
|
||||
}
|
||||
|
||||
Some(a1)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2_ordering() {
|
||||
let mut a = Fq2 {
|
||||
c0: Fq::zero(),
|
||||
c1: Fq::zero(),
|
||||
};
|
||||
|
||||
let mut b = a.clone();
|
||||
|
||||
assert!(a.cmp(&b) == Ordering::Equal);
|
||||
b.c0.add_assign(&Fq::one());
|
||||
assert!(a.cmp(&b) == Ordering::Less);
|
||||
a.c0.add_assign(&Fq::one());
|
||||
assert!(a.cmp(&b) == Ordering::Equal);
|
||||
b.c1.add_assign(&Fq::one());
|
||||
assert!(a.cmp(&b) == Ordering::Less);
|
||||
a.c0.add_assign(&Fq::one());
|
||||
assert!(a.cmp(&b) == Ordering::Less);
|
||||
a.c1.add_assign(&Fq::one());
|
||||
assert!(a.cmp(&b) == Ordering::Greater);
|
||||
b.c0.add_assign(&Fq::one());
|
||||
assert!(a.cmp(&b) == Ordering::Equal);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2_basics() {
|
||||
assert_eq!(
|
||||
Fq2 {
|
||||
c0: Fq::zero(),
|
||||
c1: Fq::zero(),
|
||||
},
|
||||
Fq2::zero()
|
||||
);
|
||||
assert_eq!(
|
||||
Fq2 {
|
||||
c0: Fq::one(),
|
||||
c1: Fq::zero(),
|
||||
},
|
||||
Fq2::one()
|
||||
);
|
||||
assert!(Fq2::zero().is_zero());
|
||||
assert!(!Fq2::one().is_zero());
|
||||
assert!(!Fq2 {
|
||||
c0: Fq::zero(),
|
||||
c1: Fq::one(),
|
||||
}.is_zero());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2_squaring() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
|
||||
let mut a = Fq2 {
|
||||
c0: Fq::one(),
|
||||
c1: Fq::one(),
|
||||
}; // u + 1
|
||||
a.square();
|
||||
assert_eq!(
|
||||
a,
|
||||
Fq2 {
|
||||
c0: Fq::zero(),
|
||||
c1: Fq::from_repr(FqRepr::from(2)).unwrap(),
|
||||
}
|
||||
); // 2u
|
||||
|
||||
let mut a = Fq2 {
|
||||
c0: Fq::zero(),
|
||||
c1: Fq::one(),
|
||||
}; // u
|
||||
a.square();
|
||||
assert_eq!(a, {
|
||||
let mut neg1 = Fq::one();
|
||||
neg1.negate();
|
||||
Fq2 {
|
||||
c0: neg1,
|
||||
c1: Fq::zero(),
|
||||
}
|
||||
}); // -1
|
||||
|
||||
let mut a = Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x9c2c6309bbf8b598,
|
||||
0x4eef5c946536f602,
|
||||
0x90e34aab6fb6a6bd,
|
||||
0xf7f295a94e58ae7c,
|
||||
0x41b76dcc1c3fbe5e,
|
||||
0x7080c5fa1d8e042,
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0x38f473b3c870a4ab,
|
||||
0x6ad3291177c8c7e5,
|
||||
0xdac5a4c911a4353e,
|
||||
0xbfb99020604137a0,
|
||||
0xfc58a7b7be815407,
|
||||
0x10d1615e75250a21,
|
||||
])).unwrap(),
|
||||
};
|
||||
a.square();
|
||||
assert_eq!(
|
||||
a,
|
||||
Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0xf262c28c538bcf68,
|
||||
0xb9f2a66eae1073ba,
|
||||
0xdc46ab8fad67ae0,
|
||||
0xcb674157618da176,
|
||||
0x4cf17b5893c3d327,
|
||||
0x7eac81369c43361
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0xc1579cf58e980cf8,
|
||||
0xa23eb7e12dd54d98,
|
||||
0xe75138bce4cec7aa,
|
||||
0x38d0d7275a9689e1,
|
||||
0x739c983042779a65,
|
||||
0x1542a61c8a8db994
|
||||
])).unwrap(),
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2_mul() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
|
||||
let mut a = Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x85c9f989e1461f03,
|
||||
0xa2e33c333449a1d6,
|
||||
0x41e461154a7354a3,
|
||||
0x9ee53e7e84d7532e,
|
||||
0x1c202d8ed97afb45,
|
||||
0x51d3f9253e2516f,
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0xa7348a8b511aedcf,
|
||||
0x143c215d8176b319,
|
||||
0x4cc48081c09b8903,
|
||||
0x9533e4a9a5158be,
|
||||
0x7a5e1ecb676d65f9,
|
||||
0x180c3ee46656b008,
|
||||
])).unwrap(),
|
||||
};
|
||||
a.mul_assign(&Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0xe21f9169805f537e,
|
||||
0xfc87e62e179c285d,
|
||||
0x27ece175be07a531,
|
||||
0xcd460f9f0c23e430,
|
||||
0x6c9110292bfa409,
|
||||
0x2c93a72eb8af83e,
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0x4b1c3f936d8992d4,
|
||||
0x1d2a72916dba4c8a,
|
||||
0x8871c508658d1e5f,
|
||||
0x57a06d3135a752ae,
|
||||
0x634cd3c6c565096d,
|
||||
0x19e17334d4e93558,
|
||||
])).unwrap(),
|
||||
});
|
||||
assert_eq!(
|
||||
a,
|
||||
Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x95b5127e6360c7e4,
|
||||
0xde29c31a19a6937e,
|
||||
0xf61a96dacf5a39bc,
|
||||
0x5511fe4d84ee5f78,
|
||||
0x5310a202d92f9963,
|
||||
0x1751afbe166e5399
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0x84af0e1bd630117a,
|
||||
0x6c63cd4da2c2aa7,
|
||||
0x5ba6e5430e883d40,
|
||||
0xc975106579c275ee,
|
||||
0x33a9ac82ce4c5083,
|
||||
0x1ef1a36c201589d
|
||||
])).unwrap(),
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2_inverse() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
|
||||
assert!(Fq2::zero().inverse().is_none());
|
||||
|
||||
let a = Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x85c9f989e1461f03,
|
||||
0xa2e33c333449a1d6,
|
||||
0x41e461154a7354a3,
|
||||
0x9ee53e7e84d7532e,
|
||||
0x1c202d8ed97afb45,
|
||||
0x51d3f9253e2516f,
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0xa7348a8b511aedcf,
|
||||
0x143c215d8176b319,
|
||||
0x4cc48081c09b8903,
|
||||
0x9533e4a9a5158be,
|
||||
0x7a5e1ecb676d65f9,
|
||||
0x180c3ee46656b008,
|
||||
])).unwrap(),
|
||||
};
|
||||
let a = a.inverse().unwrap();
|
||||
assert_eq!(
|
||||
a,
|
||||
Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x70300f9bcb9e594,
|
||||
0xe5ecda5fdafddbb2,
|
||||
0x64bef617d2915a8f,
|
||||
0xdfba703293941c30,
|
||||
0xa6c3d8f9586f2636,
|
||||
0x1351ef01941b70c4
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0x8c39fd76a8312cb4,
|
||||
0x15d7b6b95defbff0,
|
||||
0x947143f89faedee9,
|
||||
0xcbf651a0f367afb2,
|
||||
0xdf4e54f0d3ef15a6,
|
||||
0x103bdf241afb0019
|
||||
])).unwrap(),
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2_addition() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
|
||||
let mut a = Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x2d0078036923ffc7,
|
||||
0x11e59ea221a3b6d2,
|
||||
0x8b1a52e0a90f59ed,
|
||||
0xb966ce3bc2108b13,
|
||||
0xccc649c4b9532bf3,
|
||||
0xf8d295b2ded9dc,
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0x977df6efcdaee0db,
|
||||
0x946ae52d684fa7ed,
|
||||
0xbe203411c66fb3a5,
|
||||
0xb3f8afc0ee248cad,
|
||||
0x4e464dea5bcfd41e,
|
||||
0x12d1137b8a6a837,
|
||||
])).unwrap(),
|
||||
};
|
||||
a.add_assign(&Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x619a02d78dc70ef2,
|
||||
0xb93adfc9119e33e8,
|
||||
0x4bf0b99a9f0dca12,
|
||||
0x3b88899a42a6318f,
|
||||
0x986a4a62fa82a49d,
|
||||
0x13ce433fa26027f5,
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0x66323bf80b58b9b9,
|
||||
0xa1379b6facf6e596,
|
||||
0x402aef1fb797e32f,
|
||||
0x2236f55246d0d44d,
|
||||
0x4c8c1800eb104566,
|
||||
0x11d6e20e986c2085,
|
||||
])).unwrap(),
|
||||
});
|
||||
assert_eq!(
|
||||
a,
|
||||
Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x8e9a7adaf6eb0eb9,
|
||||
0xcb207e6b3341eaba,
|
||||
0xd70b0c7b481d23ff,
|
||||
0xf4ef57d604b6bca2,
|
||||
0x65309427b3d5d090,
|
||||
0x14c715d5553f01d2
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0xfdb032e7d9079a94,
|
||||
0x35a2809d15468d83,
|
||||
0xfe4b23317e0796d5,
|
||||
0xd62fa51334f560fa,
|
||||
0x9ad265eb46e01984,
|
||||
0x1303f3465112c8bc
|
||||
])).unwrap(),
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2_subtraction() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
|
||||
let mut a = Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x2d0078036923ffc7,
|
||||
0x11e59ea221a3b6d2,
|
||||
0x8b1a52e0a90f59ed,
|
||||
0xb966ce3bc2108b13,
|
||||
0xccc649c4b9532bf3,
|
||||
0xf8d295b2ded9dc,
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0x977df6efcdaee0db,
|
||||
0x946ae52d684fa7ed,
|
||||
0xbe203411c66fb3a5,
|
||||
0xb3f8afc0ee248cad,
|
||||
0x4e464dea5bcfd41e,
|
||||
0x12d1137b8a6a837,
|
||||
])).unwrap(),
|
||||
};
|
||||
a.sub_assign(&Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x619a02d78dc70ef2,
|
||||
0xb93adfc9119e33e8,
|
||||
0x4bf0b99a9f0dca12,
|
||||
0x3b88899a42a6318f,
|
||||
0x986a4a62fa82a49d,
|
||||
0x13ce433fa26027f5,
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0x66323bf80b58b9b9,
|
||||
0xa1379b6facf6e596,
|
||||
0x402aef1fb797e32f,
|
||||
0x2236f55246d0d44d,
|
||||
0x4c8c1800eb104566,
|
||||
0x11d6e20e986c2085,
|
||||
])).unwrap(),
|
||||
});
|
||||
assert_eq!(
|
||||
a,
|
||||
Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x8565752bdb5c9b80,
|
||||
0x7756bed7c15982e9,
|
||||
0xa65a6be700b285fe,
|
||||
0xe255902672ef6c43,
|
||||
0x7f77a718021c342d,
|
||||
0x72ba14049fe9881
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0xeb4abaf7c255d1cd,
|
||||
0x11df49bc6cacc256,
|
||||
0xe52617930588c69a,
|
||||
0xf63905f39ad8cb1f,
|
||||
0x4cd5dd9fb40b3b8f,
|
||||
0x957411359ba6e4c
|
||||
])).unwrap(),
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2_negation() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
|
||||
let mut a = Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x2d0078036923ffc7,
|
||||
0x11e59ea221a3b6d2,
|
||||
0x8b1a52e0a90f59ed,
|
||||
0xb966ce3bc2108b13,
|
||||
0xccc649c4b9532bf3,
|
||||
0xf8d295b2ded9dc,
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0x977df6efcdaee0db,
|
||||
0x946ae52d684fa7ed,
|
||||
0xbe203411c66fb3a5,
|
||||
0xb3f8afc0ee248cad,
|
||||
0x4e464dea5bcfd41e,
|
||||
0x12d1137b8a6a837,
|
||||
])).unwrap(),
|
||||
};
|
||||
a.negate();
|
||||
assert_eq!(
|
||||
a,
|
||||
Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x8cfe87fc96dbaae4,
|
||||
0xcc6615c8fb0492d,
|
||||
0xdc167fc04da19c37,
|
||||
0xab107d49317487ab,
|
||||
0x7e555df189f880e3,
|
||||
0x19083f5486a10cbd
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0x228109103250c9d0,
|
||||
0x8a411ad149045812,
|
||||
0xa9109e8f3041427e,
|
||||
0xb07e9bc405608611,
|
||||
0xfcd559cbe77bd8b8,
|
||||
0x18d400b280d93e62
|
||||
])).unwrap(),
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2_doubling() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
|
||||
let mut a = Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x2d0078036923ffc7,
|
||||
0x11e59ea221a3b6d2,
|
||||
0x8b1a52e0a90f59ed,
|
||||
0xb966ce3bc2108b13,
|
||||
0xccc649c4b9532bf3,
|
||||
0xf8d295b2ded9dc,
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0x977df6efcdaee0db,
|
||||
0x946ae52d684fa7ed,
|
||||
0xbe203411c66fb3a5,
|
||||
0xb3f8afc0ee248cad,
|
||||
0x4e464dea5bcfd41e,
|
||||
0x12d1137b8a6a837,
|
||||
])).unwrap(),
|
||||
};
|
||||
a.double();
|
||||
assert_eq!(
|
||||
a,
|
||||
Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x5a00f006d247ff8e,
|
||||
0x23cb3d4443476da4,
|
||||
0x1634a5c1521eb3da,
|
||||
0x72cd9c7784211627,
|
||||
0x998c938972a657e7,
|
||||
0x1f1a52b65bdb3b9
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0x2efbeddf9b5dc1b6,
|
||||
0x28d5ca5ad09f4fdb,
|
||||
0x7c4068238cdf674b,
|
||||
0x67f15f81dc49195b,
|
||||
0x9c8c9bd4b79fa83d,
|
||||
0x25a226f714d506e
|
||||
])).unwrap(),
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2_frobenius_map() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
|
||||
let mut a = Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x2d0078036923ffc7,
|
||||
0x11e59ea221a3b6d2,
|
||||
0x8b1a52e0a90f59ed,
|
||||
0xb966ce3bc2108b13,
|
||||
0xccc649c4b9532bf3,
|
||||
0xf8d295b2ded9dc,
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0x977df6efcdaee0db,
|
||||
0x946ae52d684fa7ed,
|
||||
0xbe203411c66fb3a5,
|
||||
0xb3f8afc0ee248cad,
|
||||
0x4e464dea5bcfd41e,
|
||||
0x12d1137b8a6a837,
|
||||
])).unwrap(),
|
||||
};
|
||||
a.frobenius_map(0);
|
||||
assert_eq!(
|
||||
a,
|
||||
Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x2d0078036923ffc7,
|
||||
0x11e59ea221a3b6d2,
|
||||
0x8b1a52e0a90f59ed,
|
||||
0xb966ce3bc2108b13,
|
||||
0xccc649c4b9532bf3,
|
||||
0xf8d295b2ded9dc
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0x977df6efcdaee0db,
|
||||
0x946ae52d684fa7ed,
|
||||
0xbe203411c66fb3a5,
|
||||
0xb3f8afc0ee248cad,
|
||||
0x4e464dea5bcfd41e,
|
||||
0x12d1137b8a6a837
|
||||
])).unwrap(),
|
||||
}
|
||||
);
|
||||
a.frobenius_map(1);
|
||||
assert_eq!(
|
||||
a,
|
||||
Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x2d0078036923ffc7,
|
||||
0x11e59ea221a3b6d2,
|
||||
0x8b1a52e0a90f59ed,
|
||||
0xb966ce3bc2108b13,
|
||||
0xccc649c4b9532bf3,
|
||||
0xf8d295b2ded9dc
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0x228109103250c9d0,
|
||||
0x8a411ad149045812,
|
||||
0xa9109e8f3041427e,
|
||||
0xb07e9bc405608611,
|
||||
0xfcd559cbe77bd8b8,
|
||||
0x18d400b280d93e62
|
||||
])).unwrap(),
|
||||
}
|
||||
);
|
||||
a.frobenius_map(1);
|
||||
assert_eq!(
|
||||
a,
|
||||
Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x2d0078036923ffc7,
|
||||
0x11e59ea221a3b6d2,
|
||||
0x8b1a52e0a90f59ed,
|
||||
0xb966ce3bc2108b13,
|
||||
0xccc649c4b9532bf3,
|
||||
0xf8d295b2ded9dc
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0x977df6efcdaee0db,
|
||||
0x946ae52d684fa7ed,
|
||||
0xbe203411c66fb3a5,
|
||||
0xb3f8afc0ee248cad,
|
||||
0x4e464dea5bcfd41e,
|
||||
0x12d1137b8a6a837
|
||||
])).unwrap(),
|
||||
}
|
||||
);
|
||||
a.frobenius_map(2);
|
||||
assert_eq!(
|
||||
a,
|
||||
Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x2d0078036923ffc7,
|
||||
0x11e59ea221a3b6d2,
|
||||
0x8b1a52e0a90f59ed,
|
||||
0xb966ce3bc2108b13,
|
||||
0xccc649c4b9532bf3,
|
||||
0xf8d295b2ded9dc
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0x977df6efcdaee0db,
|
||||
0x946ae52d684fa7ed,
|
||||
0xbe203411c66fb3a5,
|
||||
0xb3f8afc0ee248cad,
|
||||
0x4e464dea5bcfd41e,
|
||||
0x12d1137b8a6a837
|
||||
])).unwrap(),
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2_sqrt() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
|
||||
assert_eq!(
|
||||
Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x476b4c309720e227,
|
||||
0x34c2d04faffdab6,
|
||||
0xa57e6fc1bab51fd9,
|
||||
0xdb4a116b5bf74aa1,
|
||||
0x1e58b2159dfe10e2,
|
||||
0x7ca7da1f13606ac
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0xfa8de88b7516d2c3,
|
||||
0x371a75ed14f41629,
|
||||
0x4cec2dca577a3eb6,
|
||||
0x212611bca4e99121,
|
||||
0x8ee5394d77afb3d,
|
||||
0xec92336650e49d5
|
||||
])).unwrap(),
|
||||
}.sqrt()
|
||||
.unwrap(),
|
||||
Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0x40b299b2704258c5,
|
||||
0x6ef7de92e8c68b63,
|
||||
0x6d2ddbe552203e82,
|
||||
0x8d7f1f723d02c1d3,
|
||||
0x881b3e01b611c070,
|
||||
0x10f6963bbad2ebc5
|
||||
])).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0xc099534fc209e752,
|
||||
0x7670594665676447,
|
||||
0x28a20faed211efe7,
|
||||
0x6b852aeaf2afcb1b,
|
||||
0xa4c93b08105d71a9,
|
||||
0x8d7cfff94216330
|
||||
])).unwrap(),
|
||||
}
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
0xb9f78429d1517a6b,
|
||||
0x1eabfffeb153ffff,
|
||||
0x6730d2a0f6b0f624,
|
||||
0x64774b84f38512bf,
|
||||
0x4b1ba7b6434bacd7,
|
||||
0x1a0111ea397fe69a
|
||||
])).unwrap(),
|
||||
c1: Fq::zero(),
|
||||
}.sqrt()
|
||||
.unwrap(),
|
||||
Fq2 {
|
||||
c0: Fq::zero(),
|
||||
c1: Fq::from_repr(FqRepr([
|
||||
0xb9fefffffd4357a3,
|
||||
0x1eabfffeb153ffff,
|
||||
0x6730d2a0f6b0f624,
|
||||
0x64774b84f38512bf,
|
||||
0x4b1ba7b6434bacd7,
|
||||
0x1a0111ea397fe69a
|
||||
])).unwrap(),
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2_legendre() {
|
||||
use LegendreSymbol::*;
|
||||
|
||||
assert_eq!(Zero, Fq2::zero().legendre());
|
||||
// i^2 = -1
|
||||
let mut m1 = Fq2::one();
|
||||
m1.negate();
|
||||
assert_eq!(QuadraticResidue, m1.legendre());
|
||||
m1.mul_by_nonresidue();
|
||||
assert_eq!(QuadraticNonResidue, m1.legendre());
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
use rand::{SeedableRng, XorShiftRng};
|
||||
|
||||
#[test]
|
||||
fn test_fq2_mul_nonresidue() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let nqr = Fq2 {
|
||||
c0: Fq::one(),
|
||||
c1: Fq::one(),
|
||||
};
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut a = Fq2::rand(&mut rng);
|
||||
let mut b = a;
|
||||
a.mul_by_nonresidue();
|
||||
b.mul_assign(&nqr);
|
||||
|
||||
assert_eq!(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn fq2_field_tests() {
|
||||
use PrimeField;
|
||||
|
||||
::tests::field::random_field_tests::<Fq2>();
|
||||
::tests::field::random_sqrt_tests::<Fq2>();
|
||||
::tests::field::random_frobenius_tests::<Fq2, _>(super::fq::Fq::char(), 13);
|
||||
}
|
374
pairing/src/bls12_381/fq6.rs
Normal file
374
pairing/src/bls12_381/fq6.rs
Normal file
@ -0,0 +1,374 @@
|
||||
use super::fq::{FROBENIUS_COEFF_FQ6_C1, FROBENIUS_COEFF_FQ6_C2};
|
||||
use super::fq2::Fq2;
|
||||
use rand::{Rand, Rng};
|
||||
use Field;
|
||||
|
||||
/// An element of Fq6, represented by c0 + c1 * v + c2 * v^(2).
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
pub struct Fq6 {
|
||||
pub c0: Fq2,
|
||||
pub c1: Fq2,
|
||||
pub c2: Fq2,
|
||||
}
|
||||
|
||||
impl ::std::fmt::Display for Fq6 {
|
||||
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
|
||||
write!(f, "Fq6({} + {} * v, {} * v^2)", self.c0, self.c1, self.c2)
|
||||
}
|
||||
}
|
||||
|
||||
impl Rand for Fq6 {
|
||||
fn rand<R: Rng>(rng: &mut R) -> Self {
|
||||
Fq6 {
|
||||
c0: rng.gen(),
|
||||
c1: rng.gen(),
|
||||
c2: rng.gen(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Fq6 {
|
||||
/// Multiply by quadratic nonresidue v.
|
||||
pub fn mul_by_nonresidue(&mut self) {
|
||||
use std::mem::swap;
|
||||
swap(&mut self.c0, &mut self.c1);
|
||||
swap(&mut self.c0, &mut self.c2);
|
||||
|
||||
self.c0.mul_by_nonresidue();
|
||||
}
|
||||
|
||||
pub fn mul_by_1(&mut self, c1: &Fq2) {
|
||||
let mut b_b = self.c1;
|
||||
b_b.mul_assign(c1);
|
||||
|
||||
let mut t1 = *c1;
|
||||
{
|
||||
let mut tmp = self.c1;
|
||||
tmp.add_assign(&self.c2);
|
||||
|
||||
t1.mul_assign(&tmp);
|
||||
t1.sub_assign(&b_b);
|
||||
t1.mul_by_nonresidue();
|
||||
}
|
||||
|
||||
let mut t2 = *c1;
|
||||
{
|
||||
let mut tmp = self.c0;
|
||||
tmp.add_assign(&self.c1);
|
||||
|
||||
t2.mul_assign(&tmp);
|
||||
t2.sub_assign(&b_b);
|
||||
}
|
||||
|
||||
self.c0 = t1;
|
||||
self.c1 = t2;
|
||||
self.c2 = b_b;
|
||||
}
|
||||
|
||||
pub fn mul_by_01(&mut self, c0: &Fq2, c1: &Fq2) {
|
||||
let mut a_a = self.c0;
|
||||
let mut b_b = self.c1;
|
||||
a_a.mul_assign(c0);
|
||||
b_b.mul_assign(c1);
|
||||
|
||||
let mut t1 = *c1;
|
||||
{
|
||||
let mut tmp = self.c1;
|
||||
tmp.add_assign(&self.c2);
|
||||
|
||||
t1.mul_assign(&tmp);
|
||||
t1.sub_assign(&b_b);
|
||||
t1.mul_by_nonresidue();
|
||||
t1.add_assign(&a_a);
|
||||
}
|
||||
|
||||
let mut t3 = *c0;
|
||||
{
|
||||
let mut tmp = self.c0;
|
||||
tmp.add_assign(&self.c2);
|
||||
|
||||
t3.mul_assign(&tmp);
|
||||
t3.sub_assign(&a_a);
|
||||
t3.add_assign(&b_b);
|
||||
}
|
||||
|
||||
let mut t2 = *c0;
|
||||
t2.add_assign(c1);
|
||||
{
|
||||
let mut tmp = self.c0;
|
||||
tmp.add_assign(&self.c1);
|
||||
|
||||
t2.mul_assign(&tmp);
|
||||
t2.sub_assign(&a_a);
|
||||
t2.sub_assign(&b_b);
|
||||
}
|
||||
|
||||
self.c0 = t1;
|
||||
self.c1 = t2;
|
||||
self.c2 = t3;
|
||||
}
|
||||
}
|
||||
|
||||
impl Field for Fq6 {
|
||||
fn zero() -> Self {
|
||||
Fq6 {
|
||||
c0: Fq2::zero(),
|
||||
c1: Fq2::zero(),
|
||||
c2: Fq2::zero(),
|
||||
}
|
||||
}
|
||||
|
||||
fn one() -> Self {
|
||||
Fq6 {
|
||||
c0: Fq2::one(),
|
||||
c1: Fq2::zero(),
|
||||
c2: Fq2::zero(),
|
||||
}
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
self.c0.is_zero() && self.c1.is_zero() && self.c2.is_zero()
|
||||
}
|
||||
|
||||
fn double(&mut self) {
|
||||
self.c0.double();
|
||||
self.c1.double();
|
||||
self.c2.double();
|
||||
}
|
||||
|
||||
fn negate(&mut self) {
|
||||
self.c0.negate();
|
||||
self.c1.negate();
|
||||
self.c2.negate();
|
||||
}
|
||||
|
||||
fn add_assign(&mut self, other: &Self) {
|
||||
self.c0.add_assign(&other.c0);
|
||||
self.c1.add_assign(&other.c1);
|
||||
self.c2.add_assign(&other.c2);
|
||||
}
|
||||
|
||||
fn sub_assign(&mut self, other: &Self) {
|
||||
self.c0.sub_assign(&other.c0);
|
||||
self.c1.sub_assign(&other.c1);
|
||||
self.c2.sub_assign(&other.c2);
|
||||
}
|
||||
|
||||
fn frobenius_map(&mut self, power: usize) {
|
||||
self.c0.frobenius_map(power);
|
||||
self.c1.frobenius_map(power);
|
||||
self.c2.frobenius_map(power);
|
||||
|
||||
self.c1.mul_assign(&FROBENIUS_COEFF_FQ6_C1[power % 6]);
|
||||
self.c2.mul_assign(&FROBENIUS_COEFF_FQ6_C2[power % 6]);
|
||||
}
|
||||
|
||||
fn square(&mut self) {
|
||||
let mut s0 = self.c0;
|
||||
s0.square();
|
||||
let mut ab = self.c0;
|
||||
ab.mul_assign(&self.c1);
|
||||
let mut s1 = ab;
|
||||
s1.double();
|
||||
let mut s2 = self.c0;
|
||||
s2.sub_assign(&self.c1);
|
||||
s2.add_assign(&self.c2);
|
||||
s2.square();
|
||||
let mut bc = self.c1;
|
||||
bc.mul_assign(&self.c2);
|
||||
let mut s3 = bc;
|
||||
s3.double();
|
||||
let mut s4 = self.c2;
|
||||
s4.square();
|
||||
|
||||
self.c0 = s3;
|
||||
self.c0.mul_by_nonresidue();
|
||||
self.c0.add_assign(&s0);
|
||||
|
||||
self.c1 = s4;
|
||||
self.c1.mul_by_nonresidue();
|
||||
self.c1.add_assign(&s1);
|
||||
|
||||
self.c2 = s1;
|
||||
self.c2.add_assign(&s2);
|
||||
self.c2.add_assign(&s3);
|
||||
self.c2.sub_assign(&s0);
|
||||
self.c2.sub_assign(&s4);
|
||||
}
|
||||
|
||||
fn mul_assign(&mut self, other: &Self) {
|
||||
let mut a_a = self.c0;
|
||||
let mut b_b = self.c1;
|
||||
let mut c_c = self.c2;
|
||||
a_a.mul_assign(&other.c0);
|
||||
b_b.mul_assign(&other.c1);
|
||||
c_c.mul_assign(&other.c2);
|
||||
|
||||
let mut t1 = other.c1;
|
||||
t1.add_assign(&other.c2);
|
||||
{
|
||||
let mut tmp = self.c1;
|
||||
tmp.add_assign(&self.c2);
|
||||
|
||||
t1.mul_assign(&tmp);
|
||||
t1.sub_assign(&b_b);
|
||||
t1.sub_assign(&c_c);
|
||||
t1.mul_by_nonresidue();
|
||||
t1.add_assign(&a_a);
|
||||
}
|
||||
|
||||
let mut t3 = other.c0;
|
||||
t3.add_assign(&other.c2);
|
||||
{
|
||||
let mut tmp = self.c0;
|
||||
tmp.add_assign(&self.c2);
|
||||
|
||||
t3.mul_assign(&tmp);
|
||||
t3.sub_assign(&a_a);
|
||||
t3.add_assign(&b_b);
|
||||
t3.sub_assign(&c_c);
|
||||
}
|
||||
|
||||
let mut t2 = other.c0;
|
||||
t2.add_assign(&other.c1);
|
||||
{
|
||||
let mut tmp = self.c0;
|
||||
tmp.add_assign(&self.c1);
|
||||
|
||||
t2.mul_assign(&tmp);
|
||||
t2.sub_assign(&a_a);
|
||||
t2.sub_assign(&b_b);
|
||||
c_c.mul_by_nonresidue();
|
||||
t2.add_assign(&c_c);
|
||||
}
|
||||
|
||||
self.c0 = t1;
|
||||
self.c1 = t2;
|
||||
self.c2 = t3;
|
||||
}
|
||||
|
||||
fn inverse(&self) -> Option<Self> {
|
||||
let mut c0 = self.c2;
|
||||
c0.mul_by_nonresidue();
|
||||
c0.mul_assign(&self.c1);
|
||||
c0.negate();
|
||||
{
|
||||
let mut c0s = self.c0;
|
||||
c0s.square();
|
||||
c0.add_assign(&c0s);
|
||||
}
|
||||
let mut c1 = self.c2;
|
||||
c1.square();
|
||||
c1.mul_by_nonresidue();
|
||||
{
|
||||
let mut c01 = self.c0;
|
||||
c01.mul_assign(&self.c1);
|
||||
c1.sub_assign(&c01);
|
||||
}
|
||||
let mut c2 = self.c1;
|
||||
c2.square();
|
||||
{
|
||||
let mut c02 = self.c0;
|
||||
c02.mul_assign(&self.c2);
|
||||
c2.sub_assign(&c02);
|
||||
}
|
||||
|
||||
let mut tmp1 = self.c2;
|
||||
tmp1.mul_assign(&c1);
|
||||
let mut tmp2 = self.c1;
|
||||
tmp2.mul_assign(&c2);
|
||||
tmp1.add_assign(&tmp2);
|
||||
tmp1.mul_by_nonresidue();
|
||||
tmp2 = self.c0;
|
||||
tmp2.mul_assign(&c0);
|
||||
tmp1.add_assign(&tmp2);
|
||||
|
||||
match tmp1.inverse() {
|
||||
Some(t) => {
|
||||
let mut tmp = Fq6 {
|
||||
c0: t,
|
||||
c1: t,
|
||||
c2: t,
|
||||
};
|
||||
tmp.c0.mul_assign(&c0);
|
||||
tmp.c1.mul_assign(&c1);
|
||||
tmp.c2.mul_assign(&c2);
|
||||
|
||||
Some(tmp)
|
||||
}
|
||||
None => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
use rand::{SeedableRng, XorShiftRng};
|
||||
|
||||
#[test]
|
||||
fn test_fq6_mul_nonresidue() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let nqr = Fq6 {
|
||||
c0: Fq2::zero(),
|
||||
c1: Fq2::one(),
|
||||
c2: Fq2::zero(),
|
||||
};
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut a = Fq6::rand(&mut rng);
|
||||
let mut b = a;
|
||||
a.mul_by_nonresidue();
|
||||
b.mul_assign(&nqr);
|
||||
|
||||
assert_eq!(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq6_mul_by_1() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let c1 = Fq2::rand(&mut rng);
|
||||
let mut a = Fq6::rand(&mut rng);
|
||||
let mut b = a;
|
||||
|
||||
a.mul_by_1(&c1);
|
||||
b.mul_assign(&Fq6 {
|
||||
c0: Fq2::zero(),
|
||||
c1: c1,
|
||||
c2: Fq2::zero(),
|
||||
});
|
||||
|
||||
assert_eq!(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq6_mul_by_01() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let c0 = Fq2::rand(&mut rng);
|
||||
let c1 = Fq2::rand(&mut rng);
|
||||
let mut a = Fq6::rand(&mut rng);
|
||||
let mut b = a;
|
||||
|
||||
a.mul_by_01(&c0, &c1);
|
||||
b.mul_assign(&Fq6 {
|
||||
c0: c0,
|
||||
c1: c1,
|
||||
c2: Fq2::zero(),
|
||||
});
|
||||
|
||||
assert_eq!(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn fq6_field_tests() {
|
||||
use PrimeField;
|
||||
|
||||
::tests::field::random_field_tests::<Fq6>();
|
||||
::tests::field::random_frobenius_tests::<Fq6, _>(super::fq::Fq::char(), 13);
|
||||
}
|
1614
pairing/src/bls12_381/fr.rs
Normal file
1614
pairing/src/bls12_381/fr.rs
Normal file
File diff suppressed because it is too large
Load Diff
364
pairing/src/bls12_381/mod.rs
Normal file
364
pairing/src/bls12_381/mod.rs
Normal file
@ -0,0 +1,364 @@
|
||||
mod ec;
|
||||
mod fq;
|
||||
mod fq12;
|
||||
mod fq2;
|
||||
mod fq6;
|
||||
mod fr;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
pub use self::ec::{
|
||||
G1, G1Affine, G1Compressed, G1Prepared, G1Uncompressed, G2, G2Affine, G2Compressed, G2Prepared,
|
||||
G2Uncompressed,
|
||||
};
|
||||
pub use self::fq::{Fq, FqRepr};
|
||||
pub use self::fq12::Fq12;
|
||||
pub use self::fq2::Fq2;
|
||||
pub use self::fq6::Fq6;
|
||||
pub use self::fr::{Fr, FrRepr};
|
||||
|
||||
use super::{BitIterator, CurveAffine, Engine, Field};
|
||||
|
||||
// The BLS parameter x for BLS12-381 is -0xd201000000010000
|
||||
const BLS_X: u64 = 0xd201000000010000;
|
||||
const BLS_X_IS_NEGATIVE: bool = true;
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Bls12;
|
||||
|
||||
impl Engine for Bls12 {
|
||||
type Fr = Fr;
|
||||
type G1 = G1;
|
||||
type G1Affine = G1Affine;
|
||||
type G2 = G2;
|
||||
type G2Affine = G2Affine;
|
||||
type Fq = Fq;
|
||||
type Fqe = Fq2;
|
||||
type Fqk = Fq12;
|
||||
|
||||
fn miller_loop<'a, I>(i: I) -> Self::Fqk
|
||||
where
|
||||
I: IntoIterator<
|
||||
Item = &'a (
|
||||
&'a <Self::G1Affine as CurveAffine>::Prepared,
|
||||
&'a <Self::G2Affine as CurveAffine>::Prepared,
|
||||
),
|
||||
>,
|
||||
{
|
||||
let mut pairs = vec![];
|
||||
for &(p, q) in i {
|
||||
if !p.is_zero() && !q.is_zero() {
|
||||
pairs.push((p, q.coeffs.iter()));
|
||||
}
|
||||
}
|
||||
|
||||
// Twisting isomorphism from E to E'
|
||||
fn ell(f: &mut Fq12, coeffs: &(Fq2, Fq2, Fq2), p: &G1Affine) {
|
||||
let mut c0 = coeffs.0;
|
||||
let mut c1 = coeffs.1;
|
||||
|
||||
c0.c0.mul_assign(&p.y);
|
||||
c0.c1.mul_assign(&p.y);
|
||||
|
||||
c1.c0.mul_assign(&p.x);
|
||||
c1.c1.mul_assign(&p.x);
|
||||
|
||||
// Sparse multiplication in Fq12
|
||||
f.mul_by_014(&coeffs.2, &c1, &c0);
|
||||
}
|
||||
|
||||
let mut f = Fq12::one();
|
||||
|
||||
let mut found_one = false;
|
||||
for i in BitIterator::new(&[BLS_X >> 1]) {
|
||||
if !found_one {
|
||||
found_one = i;
|
||||
continue;
|
||||
}
|
||||
|
||||
for &mut (p, ref mut coeffs) in &mut pairs {
|
||||
ell(&mut f, coeffs.next().unwrap(), &p.0);
|
||||
}
|
||||
|
||||
if i {
|
||||
for &mut (p, ref mut coeffs) in &mut pairs {
|
||||
ell(&mut f, coeffs.next().unwrap(), &p.0);
|
||||
}
|
||||
}
|
||||
|
||||
f.square();
|
||||
}
|
||||
|
||||
for &mut (p, ref mut coeffs) in &mut pairs {
|
||||
ell(&mut f, coeffs.next().unwrap(), &p.0);
|
||||
}
|
||||
|
||||
if BLS_X_IS_NEGATIVE {
|
||||
f.conjugate();
|
||||
}
|
||||
|
||||
f
|
||||
}
|
||||
|
||||
fn final_exponentiation(r: &Fq12) -> Option<Fq12> {
|
||||
let mut f1 = *r;
|
||||
f1.conjugate();
|
||||
|
||||
match r.inverse() {
|
||||
Some(mut f2) => {
|
||||
let mut r = f1;
|
||||
r.mul_assign(&f2);
|
||||
f2 = r;
|
||||
r.frobenius_map(2);
|
||||
r.mul_assign(&f2);
|
||||
|
||||
fn exp_by_x(f: &mut Fq12, x: u64) {
|
||||
*f = f.pow(&[x]);
|
||||
if BLS_X_IS_NEGATIVE {
|
||||
f.conjugate();
|
||||
}
|
||||
}
|
||||
|
||||
let mut x = BLS_X;
|
||||
let mut y0 = r;
|
||||
y0.square();
|
||||
let mut y1 = y0;
|
||||
exp_by_x(&mut y1, x);
|
||||
x >>= 1;
|
||||
let mut y2 = y1;
|
||||
exp_by_x(&mut y2, x);
|
||||
x <<= 1;
|
||||
let mut y3 = r;
|
||||
y3.conjugate();
|
||||
y1.mul_assign(&y3);
|
||||
y1.conjugate();
|
||||
y1.mul_assign(&y2);
|
||||
y2 = y1;
|
||||
exp_by_x(&mut y2, x);
|
||||
y3 = y2;
|
||||
exp_by_x(&mut y3, x);
|
||||
y1.conjugate();
|
||||
y3.mul_assign(&y1);
|
||||
y1.conjugate();
|
||||
y1.frobenius_map(3);
|
||||
y2.frobenius_map(2);
|
||||
y1.mul_assign(&y2);
|
||||
y2 = y3;
|
||||
exp_by_x(&mut y2, x);
|
||||
y2.mul_assign(&y0);
|
||||
y2.mul_assign(&r);
|
||||
y1.mul_assign(&y2);
|
||||
y2 = y3;
|
||||
y2.frobenius_map(1);
|
||||
y1.mul_assign(&y2);
|
||||
|
||||
Some(y1)
|
||||
}
|
||||
None => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl G2Prepared {
|
||||
pub fn is_zero(&self) -> bool {
|
||||
self.infinity
|
||||
}
|
||||
|
||||
pub fn from_affine(q: G2Affine) -> Self {
|
||||
if q.is_zero() {
|
||||
return G2Prepared {
|
||||
coeffs: vec![],
|
||||
infinity: true,
|
||||
};
|
||||
}
|
||||
|
||||
fn doubling_step(r: &mut G2) -> (Fq2, Fq2, Fq2) {
|
||||
// Adaptation of Algorithm 26, https://eprint.iacr.org/2010/354.pdf
|
||||
let mut tmp0 = r.x;
|
||||
tmp0.square();
|
||||
|
||||
let mut tmp1 = r.y;
|
||||
tmp1.square();
|
||||
|
||||
let mut tmp2 = tmp1;
|
||||
tmp2.square();
|
||||
|
||||
let mut tmp3 = tmp1;
|
||||
tmp3.add_assign(&r.x);
|
||||
tmp3.square();
|
||||
tmp3.sub_assign(&tmp0);
|
||||
tmp3.sub_assign(&tmp2);
|
||||
tmp3.double();
|
||||
|
||||
let mut tmp4 = tmp0;
|
||||
tmp4.double();
|
||||
tmp4.add_assign(&tmp0);
|
||||
|
||||
let mut tmp6 = r.x;
|
||||
tmp6.add_assign(&tmp4);
|
||||
|
||||
let mut tmp5 = tmp4;
|
||||
tmp5.square();
|
||||
|
||||
let mut zsquared = r.z;
|
||||
zsquared.square();
|
||||
|
||||
r.x = tmp5;
|
||||
r.x.sub_assign(&tmp3);
|
||||
r.x.sub_assign(&tmp3);
|
||||
|
||||
r.z.add_assign(&r.y);
|
||||
r.z.square();
|
||||
r.z.sub_assign(&tmp1);
|
||||
r.z.sub_assign(&zsquared);
|
||||
|
||||
r.y = tmp3;
|
||||
r.y.sub_assign(&r.x);
|
||||
r.y.mul_assign(&tmp4);
|
||||
|
||||
tmp2.double();
|
||||
tmp2.double();
|
||||
tmp2.double();
|
||||
|
||||
r.y.sub_assign(&tmp2);
|
||||
|
||||
tmp3 = tmp4;
|
||||
tmp3.mul_assign(&zsquared);
|
||||
tmp3.double();
|
||||
tmp3.negate();
|
||||
|
||||
tmp6.square();
|
||||
tmp6.sub_assign(&tmp0);
|
||||
tmp6.sub_assign(&tmp5);
|
||||
|
||||
tmp1.double();
|
||||
tmp1.double();
|
||||
|
||||
tmp6.sub_assign(&tmp1);
|
||||
|
||||
tmp0 = r.z;
|
||||
tmp0.mul_assign(&zsquared);
|
||||
tmp0.double();
|
||||
|
||||
(tmp0, tmp3, tmp6)
|
||||
}
|
||||
|
||||
fn addition_step(r: &mut G2, q: &G2Affine) -> (Fq2, Fq2, Fq2) {
|
||||
// Adaptation of Algorithm 27, https://eprint.iacr.org/2010/354.pdf
|
||||
let mut zsquared = r.z;
|
||||
zsquared.square();
|
||||
|
||||
let mut ysquared = q.y;
|
||||
ysquared.square();
|
||||
|
||||
let mut t0 = zsquared;
|
||||
t0.mul_assign(&q.x);
|
||||
|
||||
let mut t1 = q.y;
|
||||
t1.add_assign(&r.z);
|
||||
t1.square();
|
||||
t1.sub_assign(&ysquared);
|
||||
t1.sub_assign(&zsquared);
|
||||
t1.mul_assign(&zsquared);
|
||||
|
||||
let mut t2 = t0;
|
||||
t2.sub_assign(&r.x);
|
||||
|
||||
let mut t3 = t2;
|
||||
t3.square();
|
||||
|
||||
let mut t4 = t3;
|
||||
t4.double();
|
||||
t4.double();
|
||||
|
||||
let mut t5 = t4;
|
||||
t5.mul_assign(&t2);
|
||||
|
||||
let mut t6 = t1;
|
||||
t6.sub_assign(&r.y);
|
||||
t6.sub_assign(&r.y);
|
||||
|
||||
let mut t9 = t6;
|
||||
t9.mul_assign(&q.x);
|
||||
|
||||
let mut t7 = t4;
|
||||
t7.mul_assign(&r.x);
|
||||
|
||||
r.x = t6;
|
||||
r.x.square();
|
||||
r.x.sub_assign(&t5);
|
||||
r.x.sub_assign(&t7);
|
||||
r.x.sub_assign(&t7);
|
||||
|
||||
r.z.add_assign(&t2);
|
||||
r.z.square();
|
||||
r.z.sub_assign(&zsquared);
|
||||
r.z.sub_assign(&t3);
|
||||
|
||||
let mut t10 = q.y;
|
||||
t10.add_assign(&r.z);
|
||||
|
||||
let mut t8 = t7;
|
||||
t8.sub_assign(&r.x);
|
||||
t8.mul_assign(&t6);
|
||||
|
||||
t0 = r.y;
|
||||
t0.mul_assign(&t5);
|
||||
t0.double();
|
||||
|
||||
r.y = t8;
|
||||
r.y.sub_assign(&t0);
|
||||
|
||||
t10.square();
|
||||
t10.sub_assign(&ysquared);
|
||||
|
||||
let mut ztsquared = r.z;
|
||||
ztsquared.square();
|
||||
|
||||
t10.sub_assign(&ztsquared);
|
||||
|
||||
t9.double();
|
||||
t9.sub_assign(&t10);
|
||||
|
||||
t10 = r.z;
|
||||
t10.double();
|
||||
|
||||
t6.negate();
|
||||
|
||||
t1 = t6;
|
||||
t1.double();
|
||||
|
||||
(t10, t1, t9)
|
||||
}
|
||||
|
||||
let mut coeffs = vec![];
|
||||
let mut r: G2 = q.into();
|
||||
|
||||
let mut found_one = false;
|
||||
for i in BitIterator::new([BLS_X >> 1]) {
|
||||
if !found_one {
|
||||
found_one = i;
|
||||
continue;
|
||||
}
|
||||
|
||||
coeffs.push(doubling_step(&mut r));
|
||||
|
||||
if i {
|
||||
coeffs.push(addition_step(&mut r, &q));
|
||||
}
|
||||
}
|
||||
|
||||
coeffs.push(doubling_step(&mut r));
|
||||
|
||||
G2Prepared {
|
||||
coeffs,
|
||||
infinity: false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bls12_engine_tests() {
|
||||
::tests::engine::engine_tests::<Bls12>();
|
||||
}
|
BIN
pairing/src/bls12_381/tests/g1_compressed_valid_test_vectors.dat
Normal file
BIN
pairing/src/bls12_381/tests/g1_compressed_valid_test_vectors.dat
Normal file
Binary file not shown.
Binary file not shown.
BIN
pairing/src/bls12_381/tests/g2_compressed_valid_test_vectors.dat
Normal file
BIN
pairing/src/bls12_381/tests/g2_compressed_valid_test_vectors.dat
Normal file
Binary file not shown.
Binary file not shown.
611
pairing/src/bls12_381/tests/mod.rs
Normal file
611
pairing/src/bls12_381/tests/mod.rs
Normal file
@ -0,0 +1,611 @@
|
||||
use super::*;
|
||||
use *;
|
||||
|
||||
#[test]
|
||||
fn test_pairing_result_against_relic() {
|
||||
/*
|
||||
Sent to me from Diego Aranha (author of RELIC library):
|
||||
|
||||
1250EBD871FC0A92 A7B2D83168D0D727 272D441BEFA15C50 3DD8E90CE98DB3E7 B6D194F60839C508 A84305AACA1789B6
|
||||
089A1C5B46E5110B 86750EC6A5323488 68A84045483C92B7 AF5AF689452EAFAB F1A8943E50439F1D 59882A98EAA0170F
|
||||
1368BB445C7C2D20 9703F239689CE34C 0378A68E72A6B3B2 16DA0E22A5031B54 DDFF57309396B38C 881C4C849EC23E87
|
||||
193502B86EDB8857 C273FA075A505129 37E0794E1E65A761 7C90D8BD66065B1F FFE51D7A579973B1 315021EC3C19934F
|
||||
01B2F522473D1713 91125BA84DC4007C FBF2F8DA752F7C74 185203FCCA589AC7 19C34DFFBBAAD843 1DAD1C1FB597AAA5
|
||||
018107154F25A764 BD3C79937A45B845 46DA634B8F6BE14A 8061E55CCEBA478B 23F7DACAA35C8CA7 8BEAE9624045B4B6
|
||||
19F26337D205FB46 9CD6BD15C3D5A04D C88784FBB3D0B2DB DEA54D43B2B73F2C BB12D58386A8703E 0F948226E47EE89D
|
||||
06FBA23EB7C5AF0D 9F80940CA771B6FF D5857BAAF222EB95 A7D2809D61BFE02E 1BFD1B68FF02F0B8 102AE1C2D5D5AB1A
|
||||
11B8B424CD48BF38 FCEF68083B0B0EC5 C81A93B330EE1A67 7D0D15FF7B984E89 78EF48881E32FAC9 1B93B47333E2BA57
|
||||
03350F55A7AEFCD3 C31B4FCB6CE5771C C6A0E9786AB59733 20C806AD36082910 7BA810C5A09FFDD9 BE2291A0C25A99A2
|
||||
04C581234D086A99 02249B64728FFD21 A189E87935A95405 1C7CDBA7B3872629 A4FAFC05066245CB 9108F0242D0FE3EF
|
||||
0F41E58663BF08CF 068672CBD01A7EC7 3BACA4D72CA93544 DEFF686BFD6DF543 D48EAA24AFE47E1E FDE449383B676631
|
||||
*/
|
||||
|
||||
assert_eq!(Bls12::pairing(G1::one(), G2::one()), Fq12 {
|
||||
c0: Fq6 {
|
||||
c0: Fq2 {
|
||||
c0: Fq::from_str("2819105605953691245277803056322684086884703000473961065716485506033588504203831029066448642358042597501014294104502").unwrap(),
|
||||
c1: Fq::from_str("1323968232986996742571315206151405965104242542339680722164220900812303524334628370163366153839984196298685227734799").unwrap()
|
||||
},
|
||||
c1: Fq2 {
|
||||
c0: Fq::from_str("2987335049721312504428602988447616328830341722376962214011674875969052835043875658579425548512925634040144704192135").unwrap(),
|
||||
c1: Fq::from_str("3879723582452552452538684314479081967502111497413076598816163759028842927668327542875108457755966417881797966271311").unwrap()
|
||||
},
|
||||
c2: Fq2 {
|
||||
c0: Fq::from_str("261508182517997003171385743374653339186059518494239543139839025878870012614975302676296704930880982238308326681253").unwrap(),
|
||||
c1: Fq::from_str("231488992246460459663813598342448669854473942105054381511346786719005883340876032043606739070883099647773793170614").unwrap()
|
||||
}
|
||||
},
|
||||
c1: Fq6 {
|
||||
c0: Fq2 {
|
||||
c0: Fq::from_str("3993582095516422658773669068931361134188738159766715576187490305611759126554796569868053818105850661142222948198557").unwrap(),
|
||||
c1: Fq::from_str("1074773511698422344502264006159859710502164045911412750831641680783012525555872467108249271286757399121183508900634").unwrap()
|
||||
},
|
||||
c1: Fq2 {
|
||||
c0: Fq::from_str("2727588299083545686739024317998512740561167011046940249988557419323068809019137624943703910267790601287073339193943").unwrap(),
|
||||
c1: Fq::from_str("493643299814437640914745677854369670041080344349607504656543355799077485536288866009245028091988146107059514546594").unwrap()
|
||||
},
|
||||
c2: Fq2 {
|
||||
c0: Fq::from_str("734401332196641441839439105942623141234148957972407782257355060229193854324927417865401895596108124443575283868655").unwrap(),
|
||||
c1: Fq::from_str("2348330098288556420918672502923664952620152483128593484301759394583320358354186482723629999370241674973832318248497").unwrap()
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
fn test_vectors<G: CurveProjective, E: EncodedPoint<Affine = G::Affine>>(expected: &[u8]) {
|
||||
let mut e = G::zero();
|
||||
|
||||
let mut v = vec![];
|
||||
{
|
||||
let mut expected = expected;
|
||||
for _ in 0..1000 {
|
||||
let e_affine = e.into_affine();
|
||||
let encoded = E::from_affine(e_affine);
|
||||
v.extend_from_slice(encoded.as_ref());
|
||||
|
||||
let mut decoded = E::empty();
|
||||
decoded.as_mut().copy_from_slice(&expected[0..E::size()]);
|
||||
expected = &expected[E::size()..];
|
||||
let decoded = decoded.into_affine().unwrap();
|
||||
assert_eq!(e_affine, decoded);
|
||||
|
||||
e.add_assign(&G::one());
|
||||
}
|
||||
}
|
||||
|
||||
assert_eq!(&v[..], expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g1_uncompressed_valid_vectors() {
|
||||
test_vectors::<G1, G1Uncompressed>(include_bytes!("g1_uncompressed_valid_test_vectors.dat"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g1_compressed_valid_vectors() {
|
||||
test_vectors::<G1, G1Compressed>(include_bytes!("g1_compressed_valid_test_vectors.dat"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g2_uncompressed_valid_vectors() {
|
||||
test_vectors::<G2, G2Uncompressed>(include_bytes!("g2_uncompressed_valid_test_vectors.dat"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g2_compressed_valid_vectors() {
|
||||
test_vectors::<G2, G2Compressed>(include_bytes!("g2_compressed_valid_test_vectors.dat"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g1_uncompressed_invalid_vectors() {
|
||||
{
|
||||
let z = G1Affine::zero().into_uncompressed();
|
||||
|
||||
{
|
||||
let mut z = z;
|
||||
z.as_mut()[0] |= 0b1000_0000;
|
||||
if let Err(GroupDecodingError::UnexpectedCompressionMode) = z.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because we expected an uncompressed point");
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let mut z = z;
|
||||
z.as_mut()[0] |= 0b0010_0000;
|
||||
if let Err(GroupDecodingError::UnexpectedInformation) = z.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because the parity bit should not be set if the point is at infinity");
|
||||
}
|
||||
}
|
||||
|
||||
for i in 0..G1Uncompressed::size() {
|
||||
let mut z = z;
|
||||
z.as_mut()[i] |= 0b0000_0001;
|
||||
if let Err(GroupDecodingError::UnexpectedInformation) = z.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because the coordinates should be zeroes at the point at infinity");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let o = G1Affine::one().into_uncompressed();
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
o.as_mut()[0] |= 0b1000_0000;
|
||||
if let Err(GroupDecodingError::UnexpectedCompressionMode) = o.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because we expected an uncompressed point");
|
||||
}
|
||||
}
|
||||
|
||||
let m = Fq::char();
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
m.write_be(&mut o.as_mut()[0..]).unwrap();
|
||||
|
||||
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
|
||||
assert_eq!(coordinate, "x coordinate");
|
||||
} else {
|
||||
panic!("should have rejected the point")
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
m.write_be(&mut o.as_mut()[48..]).unwrap();
|
||||
|
||||
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
|
||||
assert_eq!(coordinate, "y coordinate");
|
||||
} else {
|
||||
panic!("should have rejected the point")
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let m = Fq::zero().into_repr();
|
||||
|
||||
let mut o = o;
|
||||
m.write_be(&mut o.as_mut()[0..]).unwrap();
|
||||
|
||||
if let Err(GroupDecodingError::NotOnCurve) = o.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because it isn't on the curve")
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
let mut x = Fq::one();
|
||||
|
||||
loop {
|
||||
let mut x3b = x;
|
||||
x3b.square();
|
||||
x3b.mul_assign(&x);
|
||||
x3b.add_assign(&Fq::from_repr(FqRepr::from(4)).unwrap()); // TODO: perhaps expose coeff_b through API?
|
||||
|
||||
if let Some(y) = x3b.sqrt() {
|
||||
// We know this is on the curve, but it's likely not going to be in the correct subgroup.
|
||||
x.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
|
||||
y.into_repr().write_be(&mut o.as_mut()[48..]).unwrap();
|
||||
|
||||
if let Err(GroupDecodingError::NotInSubgroup) = o.into_affine() {
|
||||
break;
|
||||
} else {
|
||||
panic!(
|
||||
"should have rejected the point because it isn't in the correct subgroup"
|
||||
)
|
||||
}
|
||||
} else {
|
||||
x.add_assign(&Fq::one());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g2_uncompressed_invalid_vectors() {
|
||||
{
|
||||
let z = G2Affine::zero().into_uncompressed();
|
||||
|
||||
{
|
||||
let mut z = z;
|
||||
z.as_mut()[0] |= 0b1000_0000;
|
||||
if let Err(GroupDecodingError::UnexpectedCompressionMode) = z.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because we expected an uncompressed point");
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let mut z = z;
|
||||
z.as_mut()[0] |= 0b0010_0000;
|
||||
if let Err(GroupDecodingError::UnexpectedInformation) = z.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because the parity bit should not be set if the point is at infinity");
|
||||
}
|
||||
}
|
||||
|
||||
for i in 0..G2Uncompressed::size() {
|
||||
let mut z = z;
|
||||
z.as_mut()[i] |= 0b0000_0001;
|
||||
if let Err(GroupDecodingError::UnexpectedInformation) = z.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because the coordinates should be zeroes at the point at infinity");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let o = G2Affine::one().into_uncompressed();
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
o.as_mut()[0] |= 0b1000_0000;
|
||||
if let Err(GroupDecodingError::UnexpectedCompressionMode) = o.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because we expected an uncompressed point");
|
||||
}
|
||||
}
|
||||
|
||||
let m = Fq::char();
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
m.write_be(&mut o.as_mut()[0..]).unwrap();
|
||||
|
||||
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
|
||||
assert_eq!(coordinate, "x coordinate (c1)");
|
||||
} else {
|
||||
panic!("should have rejected the point")
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
m.write_be(&mut o.as_mut()[48..]).unwrap();
|
||||
|
||||
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
|
||||
assert_eq!(coordinate, "x coordinate (c0)");
|
||||
} else {
|
||||
panic!("should have rejected the point")
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
m.write_be(&mut o.as_mut()[96..]).unwrap();
|
||||
|
||||
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
|
||||
assert_eq!(coordinate, "y coordinate (c1)");
|
||||
} else {
|
||||
panic!("should have rejected the point")
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
m.write_be(&mut o.as_mut()[144..]).unwrap();
|
||||
|
||||
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
|
||||
assert_eq!(coordinate, "y coordinate (c0)");
|
||||
} else {
|
||||
panic!("should have rejected the point")
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let m = Fq::zero().into_repr();
|
||||
|
||||
let mut o = o;
|
||||
m.write_be(&mut o.as_mut()[0..]).unwrap();
|
||||
m.write_be(&mut o.as_mut()[48..]).unwrap();
|
||||
|
||||
if let Err(GroupDecodingError::NotOnCurve) = o.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because it isn't on the curve")
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
let mut x = Fq2::one();
|
||||
|
||||
loop {
|
||||
let mut x3b = x;
|
||||
x3b.square();
|
||||
x3b.mul_assign(&x);
|
||||
x3b.add_assign(&Fq2 {
|
||||
c0: Fq::from_repr(FqRepr::from(4)).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr::from(4)).unwrap(),
|
||||
}); // TODO: perhaps expose coeff_b through API?
|
||||
|
||||
if let Some(y) = x3b.sqrt() {
|
||||
// We know this is on the curve, but it's likely not going to be in the correct subgroup.
|
||||
x.c1.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
|
||||
x.c0.into_repr().write_be(&mut o.as_mut()[48..]).unwrap();
|
||||
y.c1.into_repr().write_be(&mut o.as_mut()[96..]).unwrap();
|
||||
y.c0.into_repr().write_be(&mut o.as_mut()[144..]).unwrap();
|
||||
|
||||
if let Err(GroupDecodingError::NotInSubgroup) = o.into_affine() {
|
||||
break;
|
||||
} else {
|
||||
panic!(
|
||||
"should have rejected the point because it isn't in the correct subgroup"
|
||||
)
|
||||
}
|
||||
} else {
|
||||
x.add_assign(&Fq2::one());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g1_compressed_invalid_vectors() {
|
||||
{
|
||||
let z = G1Affine::zero().into_compressed();
|
||||
|
||||
{
|
||||
let mut z = z;
|
||||
z.as_mut()[0] &= 0b0111_1111;
|
||||
if let Err(GroupDecodingError::UnexpectedCompressionMode) = z.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because we expected a compressed point");
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let mut z = z;
|
||||
z.as_mut()[0] |= 0b0010_0000;
|
||||
if let Err(GroupDecodingError::UnexpectedInformation) = z.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because the parity bit should not be set if the point is at infinity");
|
||||
}
|
||||
}
|
||||
|
||||
for i in 0..G1Compressed::size() {
|
||||
let mut z = z;
|
||||
z.as_mut()[i] |= 0b0000_0001;
|
||||
if let Err(GroupDecodingError::UnexpectedInformation) = z.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because the coordinates should be zeroes at the point at infinity");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let o = G1Affine::one().into_compressed();
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
o.as_mut()[0] &= 0b0111_1111;
|
||||
if let Err(GroupDecodingError::UnexpectedCompressionMode) = o.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because we expected a compressed point");
|
||||
}
|
||||
}
|
||||
|
||||
let m = Fq::char();
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
m.write_be(&mut o.as_mut()[0..]).unwrap();
|
||||
o.as_mut()[0] |= 0b1000_0000;
|
||||
|
||||
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
|
||||
assert_eq!(coordinate, "x coordinate");
|
||||
} else {
|
||||
panic!("should have rejected the point")
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
let mut x = Fq::one();
|
||||
|
||||
loop {
|
||||
let mut x3b = x;
|
||||
x3b.square();
|
||||
x3b.mul_assign(&x);
|
||||
x3b.add_assign(&Fq::from_repr(FqRepr::from(4)).unwrap()); // TODO: perhaps expose coeff_b through API?
|
||||
|
||||
if let Some(_) = x3b.sqrt() {
|
||||
x.add_assign(&Fq::one());
|
||||
} else {
|
||||
x.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
|
||||
o.as_mut()[0] |= 0b1000_0000;
|
||||
|
||||
if let Err(GroupDecodingError::NotOnCurve) = o.into_affine() {
|
||||
break;
|
||||
} else {
|
||||
panic!("should have rejected the point because it isn't on the curve")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
let mut x = Fq::one();
|
||||
|
||||
loop {
|
||||
let mut x3b = x;
|
||||
x3b.square();
|
||||
x3b.mul_assign(&x);
|
||||
x3b.add_assign(&Fq::from_repr(FqRepr::from(4)).unwrap()); // TODO: perhaps expose coeff_b through API?
|
||||
|
||||
if let Some(_) = x3b.sqrt() {
|
||||
// We know this is on the curve, but it's likely not going to be in the correct subgroup.
|
||||
x.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
|
||||
o.as_mut()[0] |= 0b1000_0000;
|
||||
|
||||
if let Err(GroupDecodingError::NotInSubgroup) = o.into_affine() {
|
||||
break;
|
||||
} else {
|
||||
panic!(
|
||||
"should have rejected the point because it isn't in the correct subgroup"
|
||||
)
|
||||
}
|
||||
} else {
|
||||
x.add_assign(&Fq::one());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g2_compressed_invalid_vectors() {
|
||||
{
|
||||
let z = G2Affine::zero().into_compressed();
|
||||
|
||||
{
|
||||
let mut z = z;
|
||||
z.as_mut()[0] &= 0b0111_1111;
|
||||
if let Err(GroupDecodingError::UnexpectedCompressionMode) = z.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because we expected a compressed point");
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let mut z = z;
|
||||
z.as_mut()[0] |= 0b0010_0000;
|
||||
if let Err(GroupDecodingError::UnexpectedInformation) = z.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because the parity bit should not be set if the point is at infinity");
|
||||
}
|
||||
}
|
||||
|
||||
for i in 0..G2Compressed::size() {
|
||||
let mut z = z;
|
||||
z.as_mut()[i] |= 0b0000_0001;
|
||||
if let Err(GroupDecodingError::UnexpectedInformation) = z.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because the coordinates should be zeroes at the point at infinity");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let o = G2Affine::one().into_compressed();
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
o.as_mut()[0] &= 0b0111_1111;
|
||||
if let Err(GroupDecodingError::UnexpectedCompressionMode) = o.into_affine() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because we expected a compressed point");
|
||||
}
|
||||
}
|
||||
|
||||
let m = Fq::char();
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
m.write_be(&mut o.as_mut()[0..]).unwrap();
|
||||
o.as_mut()[0] |= 0b1000_0000;
|
||||
|
||||
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
|
||||
assert_eq!(coordinate, "x coordinate (c1)");
|
||||
} else {
|
||||
panic!("should have rejected the point")
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
m.write_be(&mut o.as_mut()[48..]).unwrap();
|
||||
o.as_mut()[0] |= 0b1000_0000;
|
||||
|
||||
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
|
||||
assert_eq!(coordinate, "x coordinate (c0)");
|
||||
} else {
|
||||
panic!("should have rejected the point")
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
let mut x = Fq2 {
|
||||
c0: Fq::one(),
|
||||
c1: Fq::one(),
|
||||
};
|
||||
|
||||
loop {
|
||||
let mut x3b = x;
|
||||
x3b.square();
|
||||
x3b.mul_assign(&x);
|
||||
x3b.add_assign(&Fq2 {
|
||||
c0: Fq::from_repr(FqRepr::from(4)).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr::from(4)).unwrap(),
|
||||
}); // TODO: perhaps expose coeff_b through API?
|
||||
|
||||
if let Some(_) = x3b.sqrt() {
|
||||
x.add_assign(&Fq2::one());
|
||||
} else {
|
||||
x.c1.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
|
||||
x.c0.into_repr().write_be(&mut o.as_mut()[48..]).unwrap();
|
||||
o.as_mut()[0] |= 0b1000_0000;
|
||||
|
||||
if let Err(GroupDecodingError::NotOnCurve) = o.into_affine() {
|
||||
break;
|
||||
} else {
|
||||
panic!("should have rejected the point because it isn't on the curve")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
let mut x = Fq2 {
|
||||
c0: Fq::one(),
|
||||
c1: Fq::one(),
|
||||
};
|
||||
|
||||
loop {
|
||||
let mut x3b = x;
|
||||
x3b.square();
|
||||
x3b.mul_assign(&x);
|
||||
x3b.add_assign(&Fq2 {
|
||||
c0: Fq::from_repr(FqRepr::from(4)).unwrap(),
|
||||
c1: Fq::from_repr(FqRepr::from(4)).unwrap(),
|
||||
}); // TODO: perhaps expose coeff_b through API?
|
||||
|
||||
if let Some(_) = x3b.sqrt() {
|
||||
// We know this is on the curve, but it's likely not going to be in the correct subgroup.
|
||||
x.c1.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
|
||||
x.c0.into_repr().write_be(&mut o.as_mut()[48..]).unwrap();
|
||||
o.as_mut()[0] |= 0b1000_0000;
|
||||
|
||||
if let Err(GroupDecodingError::NotInSubgroup) = o.into_affine() {
|
||||
break;
|
||||
} else {
|
||||
panic!(
|
||||
"should have rejected the point because it isn't in the correct subgroup"
|
||||
)
|
||||
}
|
||||
} else {
|
||||
x.add_assign(&Fq2::one());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
758
pairing/src/lib.rs
Normal file
758
pairing/src/lib.rs
Normal file
@ -0,0 +1,758 @@
|
||||
// `clippy` is a code linting tool for improving code quality by catching
|
||||
// common mistakes or strange code patterns. If the `clippy` feature is
|
||||
// provided, it is enabled and all compiler warnings are prohibited.
|
||||
#![cfg_attr(feature = "clippy", deny(warnings))]
|
||||
#![cfg_attr(feature = "clippy", feature(plugin))]
|
||||
#![cfg_attr(feature = "clippy", plugin(clippy))]
|
||||
#![cfg_attr(feature = "clippy", allow(inline_always))]
|
||||
#![cfg_attr(feature = "clippy", allow(too_many_arguments))]
|
||||
#![cfg_attr(feature = "clippy", allow(unreadable_literal))]
|
||||
#![cfg_attr(feature = "clippy", allow(many_single_char_names))]
|
||||
#![cfg_attr(feature = "clippy", allow(new_without_default_derive))]
|
||||
#![cfg_attr(feature = "clippy", allow(write_literal))]
|
||||
// Force public structures to implement Debug
|
||||
#![deny(missing_debug_implementations)]
|
||||
|
||||
extern crate byteorder;
|
||||
extern crate rand;
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod tests;
|
||||
|
||||
pub mod bls12_381;
|
||||
|
||||
mod wnaf;
|
||||
pub use self::wnaf::Wnaf;
|
||||
|
||||
use std::error::Error;
|
||||
use std::fmt;
|
||||
use std::io::{self, Read, Write};
|
||||
|
||||
/// An "engine" is a collection of types (fields, elliptic curve groups, etc.)
|
||||
/// with well-defined relationships. In particular, the G1/G2 curve groups are
|
||||
/// of prime order `r`, and are equipped with a bilinear pairing function.
|
||||
pub trait Engine: Sized + 'static + Clone {
|
||||
/// This is the scalar field of the G1/G2 groups.
|
||||
type Fr: PrimeField + SqrtField;
|
||||
|
||||
/// The projective representation of an element in G1.
|
||||
type G1: CurveProjective<
|
||||
Engine = Self,
|
||||
Base = Self::Fq,
|
||||
Scalar = Self::Fr,
|
||||
Affine = Self::G1Affine,
|
||||
>
|
||||
+ From<Self::G1Affine>;
|
||||
|
||||
/// The affine representation of an element in G1.
|
||||
type G1Affine: CurveAffine<
|
||||
Engine = Self,
|
||||
Base = Self::Fq,
|
||||
Scalar = Self::Fr,
|
||||
Projective = Self::G1,
|
||||
Pair = Self::G2Affine,
|
||||
PairingResult = Self::Fqk,
|
||||
>
|
||||
+ From<Self::G1>;
|
||||
|
||||
/// The projective representation of an element in G2.
|
||||
type G2: CurveProjective<
|
||||
Engine = Self,
|
||||
Base = Self::Fqe,
|
||||
Scalar = Self::Fr,
|
||||
Affine = Self::G2Affine,
|
||||
>
|
||||
+ From<Self::G2Affine>;
|
||||
|
||||
/// The affine representation of an element in G2.
|
||||
type G2Affine: CurveAffine<
|
||||
Engine = Self,
|
||||
Base = Self::Fqe,
|
||||
Scalar = Self::Fr,
|
||||
Projective = Self::G2,
|
||||
Pair = Self::G1Affine,
|
||||
PairingResult = Self::Fqk,
|
||||
>
|
||||
+ From<Self::G2>;
|
||||
|
||||
/// The base field that hosts G1.
|
||||
type Fq: PrimeField + SqrtField;
|
||||
|
||||
/// The extension field that hosts G2.
|
||||
type Fqe: SqrtField;
|
||||
|
||||
/// The extension field that hosts the target group of the pairing.
|
||||
type Fqk: Field;
|
||||
|
||||
/// Perform a miller loop with some number of (G1, G2) pairs.
|
||||
fn miller_loop<'a, I>(i: I) -> Self::Fqk
|
||||
where
|
||||
I: IntoIterator<
|
||||
Item = &'a (
|
||||
&'a <Self::G1Affine as CurveAffine>::Prepared,
|
||||
&'a <Self::G2Affine as CurveAffine>::Prepared,
|
||||
),
|
||||
>;
|
||||
|
||||
/// Perform final exponentiation of the result of a miller loop.
|
||||
fn final_exponentiation(&Self::Fqk) -> Option<Self::Fqk>;
|
||||
|
||||
/// Performs a complete pairing operation `(p, q)`.
|
||||
fn pairing<G1, G2>(p: G1, q: G2) -> Self::Fqk
|
||||
where
|
||||
G1: Into<Self::G1Affine>,
|
||||
G2: Into<Self::G2Affine>,
|
||||
{
|
||||
Self::final_exponentiation(&Self::miller_loop(
|
||||
[(&(p.into().prepare()), &(q.into().prepare()))].into_iter(),
|
||||
)).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
/// Projective representation of an elliptic curve point guaranteed to be
|
||||
/// in the correct prime order subgroup.
|
||||
pub trait CurveProjective:
|
||||
PartialEq
|
||||
+ Eq
|
||||
+ Sized
|
||||
+ Copy
|
||||
+ Clone
|
||||
+ Send
|
||||
+ Sync
|
||||
+ fmt::Debug
|
||||
+ fmt::Display
|
||||
+ rand::Rand
|
||||
+ 'static
|
||||
{
|
||||
type Engine: Engine<Fr = Self::Scalar>;
|
||||
type Scalar: PrimeField + SqrtField;
|
||||
type Base: SqrtField;
|
||||
type Affine: CurveAffine<Projective = Self, Scalar = Self::Scalar>;
|
||||
|
||||
/// Returns the additive identity.
|
||||
fn zero() -> Self;
|
||||
|
||||
/// Returns a fixed generator of unknown exponent.
|
||||
fn one() -> Self;
|
||||
|
||||
/// Determines if this point is the point at infinity.
|
||||
fn is_zero(&self) -> bool;
|
||||
|
||||
/// Normalizes a slice of projective elements so that
|
||||
/// conversion to affine is cheap.
|
||||
fn batch_normalization(v: &mut [Self]);
|
||||
|
||||
/// Checks if the point is already "normalized" so that
|
||||
/// cheap affine conversion is possible.
|
||||
fn is_normalized(&self) -> bool;
|
||||
|
||||
/// Doubles this element.
|
||||
fn double(&mut self);
|
||||
|
||||
/// Adds another element to this element.
|
||||
fn add_assign(&mut self, other: &Self);
|
||||
|
||||
/// Subtracts another element from this element.
|
||||
fn sub_assign(&mut self, other: &Self) {
|
||||
let mut tmp = *other;
|
||||
tmp.negate();
|
||||
self.add_assign(&tmp);
|
||||
}
|
||||
|
||||
/// Adds an affine element to this element.
|
||||
fn add_assign_mixed(&mut self, other: &Self::Affine);
|
||||
|
||||
/// Negates this element.
|
||||
fn negate(&mut self);
|
||||
|
||||
/// Performs scalar multiplication of this element.
|
||||
fn mul_assign<S: Into<<Self::Scalar as PrimeField>::Repr>>(&mut self, other: S);
|
||||
|
||||
/// Converts this element into its affine representation.
|
||||
fn into_affine(&self) -> Self::Affine;
|
||||
|
||||
/// Recommends a wNAF window table size given a scalar. Always returns a number
|
||||
/// between 2 and 22, inclusive.
|
||||
fn recommended_wnaf_for_scalar(scalar: <Self::Scalar as PrimeField>::Repr) -> usize;
|
||||
|
||||
/// Recommends a wNAF window size given the number of scalars you intend to multiply
|
||||
/// a base by. Always returns a number between 2 and 22, inclusive.
|
||||
fn recommended_wnaf_for_num_scalars(num_scalars: usize) -> usize;
|
||||
}
|
||||
|
||||
/// Affine representation of an elliptic curve point guaranteed to be
|
||||
/// in the correct prime order subgroup.
|
||||
pub trait CurveAffine:
|
||||
Copy + Clone + Sized + Send + Sync + fmt::Debug + fmt::Display + PartialEq + Eq + 'static
|
||||
{
|
||||
type Engine: Engine<Fr = Self::Scalar>;
|
||||
type Scalar: PrimeField + SqrtField;
|
||||
type Base: SqrtField;
|
||||
type Projective: CurveProjective<Affine = Self, Scalar = Self::Scalar>;
|
||||
type Prepared: Clone + Send + Sync + 'static;
|
||||
type Uncompressed: EncodedPoint<Affine = Self>;
|
||||
type Compressed: EncodedPoint<Affine = Self>;
|
||||
type Pair: CurveAffine<Pair = Self>;
|
||||
type PairingResult: Field;
|
||||
|
||||
/// Returns the additive identity.
|
||||
fn zero() -> Self;
|
||||
|
||||
/// Returns a fixed generator of unknown exponent.
|
||||
fn one() -> Self;
|
||||
|
||||
/// Determines if this point represents the point at infinity; the
|
||||
/// additive identity.
|
||||
fn is_zero(&self) -> bool;
|
||||
|
||||
/// Negates this element.
|
||||
fn negate(&mut self);
|
||||
|
||||
/// Performs scalar multiplication of this element with mixed addition.
|
||||
fn mul<S: Into<<Self::Scalar as PrimeField>::Repr>>(&self, other: S) -> Self::Projective;
|
||||
|
||||
/// Prepares this element for pairing purposes.
|
||||
fn prepare(&self) -> Self::Prepared;
|
||||
|
||||
/// Perform a pairing
|
||||
fn pairing_with(&self, other: &Self::Pair) -> Self::PairingResult;
|
||||
|
||||
/// Converts this element into its affine representation.
|
||||
fn into_projective(&self) -> Self::Projective;
|
||||
|
||||
/// Converts this element into its compressed encoding, so long as it's not
|
||||
/// the point at infinity.
|
||||
fn into_compressed(&self) -> Self::Compressed {
|
||||
<Self::Compressed as EncodedPoint>::from_affine(*self)
|
||||
}
|
||||
|
||||
/// Converts this element into its uncompressed encoding, so long as it's not
|
||||
/// the point at infinity.
|
||||
fn into_uncompressed(&self) -> Self::Uncompressed {
|
||||
<Self::Uncompressed as EncodedPoint>::from_affine(*self)
|
||||
}
|
||||
}
|
||||
|
||||
/// An encoded elliptic curve point, which should essentially wrap a `[u8; N]`.
|
||||
pub trait EncodedPoint:
|
||||
Sized + Send + Sync + AsRef<[u8]> + AsMut<[u8]> + Clone + Copy + 'static
|
||||
{
|
||||
type Affine: CurveAffine;
|
||||
|
||||
/// Creates an empty representation.
|
||||
fn empty() -> Self;
|
||||
|
||||
/// Returns the number of bytes consumed by this representation.
|
||||
fn size() -> usize;
|
||||
|
||||
/// Converts an `EncodedPoint` into a `CurveAffine` element,
|
||||
/// if the encoding represents a valid element.
|
||||
fn into_affine(&self) -> Result<Self::Affine, GroupDecodingError>;
|
||||
|
||||
/// Converts an `EncodedPoint` into a `CurveAffine` element,
|
||||
/// without guaranteeing that the encoding represents a valid
|
||||
/// element. This is useful when the caller knows the encoding is
|
||||
/// valid already.
|
||||
///
|
||||
/// If the encoding is invalid, this can break API invariants,
|
||||
/// so caution is strongly encouraged.
|
||||
fn into_affine_unchecked(&self) -> Result<Self::Affine, GroupDecodingError>;
|
||||
|
||||
/// Creates an `EncodedPoint` from an affine point, as long as the
|
||||
/// point is not the point at infinity.
|
||||
fn from_affine(affine: Self::Affine) -> Self;
|
||||
}
|
||||
|
||||
/// This trait represents an element of a field.
|
||||
pub trait Field:
|
||||
Sized + Eq + Copy + Clone + Send + Sync + fmt::Debug + fmt::Display + 'static + rand::Rand
|
||||
{
|
||||
/// Returns the zero element of the field, the additive identity.
|
||||
fn zero() -> Self;
|
||||
|
||||
/// Returns the one element of the field, the multiplicative identity.
|
||||
fn one() -> Self;
|
||||
|
||||
/// Returns true iff this element is zero.
|
||||
fn is_zero(&self) -> bool;
|
||||
|
||||
/// Squares this element.
|
||||
fn square(&mut self);
|
||||
|
||||
/// Doubles this element.
|
||||
fn double(&mut self);
|
||||
|
||||
/// Negates this element.
|
||||
fn negate(&mut self);
|
||||
|
||||
/// Adds another element to this element.
|
||||
fn add_assign(&mut self, other: &Self);
|
||||
|
||||
/// Subtracts another element from this element.
|
||||
fn sub_assign(&mut self, other: &Self);
|
||||
|
||||
/// Multiplies another element by this element.
|
||||
fn mul_assign(&mut self, other: &Self);
|
||||
|
||||
/// Computes the multiplicative inverse of this element, if nonzero.
|
||||
fn inverse(&self) -> Option<Self>;
|
||||
|
||||
/// Exponentiates this element by a power of the base prime modulus via
|
||||
/// the Frobenius automorphism.
|
||||
fn frobenius_map(&mut self, power: usize);
|
||||
|
||||
/// Exponentiates this element by a number represented with `u64` limbs,
|
||||
/// least significant digit first.
|
||||
fn pow<S: AsRef<[u64]>>(&self, exp: S) -> Self {
|
||||
let mut res = Self::one();
|
||||
|
||||
let mut found_one = false;
|
||||
|
||||
for i in BitIterator::new(exp) {
|
||||
if found_one {
|
||||
res.square();
|
||||
} else {
|
||||
found_one = i;
|
||||
}
|
||||
|
||||
if i {
|
||||
res.mul_assign(self);
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
/// This trait represents an element of a field that has a square root operation described for it.
|
||||
pub trait SqrtField: Field {
|
||||
/// Returns the Legendre symbol of the field element.
|
||||
fn legendre(&self) -> LegendreSymbol;
|
||||
|
||||
/// Returns the square root of the field element, if it is
|
||||
/// quadratic residue.
|
||||
fn sqrt(&self) -> Option<Self>;
|
||||
}
|
||||
|
||||
/// This trait represents a wrapper around a biginteger which can encode any element of a particular
|
||||
/// prime field. It is a smart wrapper around a sequence of `u64` limbs, least-significant digit
|
||||
/// first.
|
||||
pub trait PrimeFieldRepr:
|
||||
Sized
|
||||
+ Copy
|
||||
+ Clone
|
||||
+ Eq
|
||||
+ Ord
|
||||
+ Send
|
||||
+ Sync
|
||||
+ Default
|
||||
+ fmt::Debug
|
||||
+ fmt::Display
|
||||
+ 'static
|
||||
+ rand::Rand
|
||||
+ AsRef<[u64]>
|
||||
+ AsMut<[u64]>
|
||||
+ From<u64>
|
||||
{
|
||||
/// Subtract another represetation from this one.
|
||||
fn sub_noborrow(&mut self, other: &Self);
|
||||
|
||||
/// Add another representation to this one.
|
||||
fn add_nocarry(&mut self, other: &Self);
|
||||
|
||||
/// Compute the number of bits needed to encode this number. Always a
|
||||
/// multiple of 64.
|
||||
fn num_bits(&self) -> u32;
|
||||
|
||||
/// Returns true iff this number is zero.
|
||||
fn is_zero(&self) -> bool;
|
||||
|
||||
/// Returns true iff this number is odd.
|
||||
fn is_odd(&self) -> bool;
|
||||
|
||||
/// Returns true iff this number is even.
|
||||
fn is_even(&self) -> bool;
|
||||
|
||||
/// Performs a rightwise bitshift of this number, effectively dividing
|
||||
/// it by 2.
|
||||
fn div2(&mut self);
|
||||
|
||||
/// Performs a rightwise bitshift of this number by some amount.
|
||||
fn shr(&mut self, amt: u32);
|
||||
|
||||
/// Performs a leftwise bitshift of this number, effectively multiplying
|
||||
/// it by 2. Overflow is ignored.
|
||||
fn mul2(&mut self);
|
||||
|
||||
/// Performs a leftwise bitshift of this number by some amount.
|
||||
fn shl(&mut self, amt: u32);
|
||||
|
||||
/// Writes this `PrimeFieldRepr` as a big endian integer.
|
||||
fn write_be<W: Write>(&self, mut writer: W) -> io::Result<()> {
|
||||
use byteorder::{BigEndian, WriteBytesExt};
|
||||
|
||||
for digit in self.as_ref().iter().rev() {
|
||||
writer.write_u64::<BigEndian>(*digit)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Reads a big endian integer into this representation.
|
||||
fn read_be<R: Read>(&mut self, mut reader: R) -> io::Result<()> {
|
||||
use byteorder::{BigEndian, ReadBytesExt};
|
||||
|
||||
for digit in self.as_mut().iter_mut().rev() {
|
||||
*digit = reader.read_u64::<BigEndian>()?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Writes this `PrimeFieldRepr` as a little endian integer.
|
||||
fn write_le<W: Write>(&self, mut writer: W) -> io::Result<()> {
|
||||
use byteorder::{LittleEndian, WriteBytesExt};
|
||||
|
||||
for digit in self.as_ref().iter() {
|
||||
writer.write_u64::<LittleEndian>(*digit)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Reads a little endian integer into this representation.
|
||||
fn read_le<R: Read>(&mut self, mut reader: R) -> io::Result<()> {
|
||||
use byteorder::{LittleEndian, ReadBytesExt};
|
||||
|
||||
for digit in self.as_mut().iter_mut() {
|
||||
*digit = reader.read_u64::<LittleEndian>()?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq)]
|
||||
pub enum LegendreSymbol {
|
||||
Zero = 0,
|
||||
QuadraticResidue = 1,
|
||||
QuadraticNonResidue = -1,
|
||||
}
|
||||
|
||||
/// An error that may occur when trying to interpret a `PrimeFieldRepr` as a
|
||||
/// `PrimeField` element.
|
||||
#[derive(Debug)]
|
||||
pub enum PrimeFieldDecodingError {
|
||||
/// The encoded value is not in the field
|
||||
NotInField(String),
|
||||
}
|
||||
|
||||
impl Error for PrimeFieldDecodingError {
|
||||
fn description(&self) -> &str {
|
||||
match *self {
|
||||
PrimeFieldDecodingError::NotInField(..) => "not an element of the field",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for PrimeFieldDecodingError {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
||||
match *self {
|
||||
PrimeFieldDecodingError::NotInField(ref repr) => {
|
||||
write!(f, "{} is not an element of the field", repr)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// An error that may occur when trying to decode an `EncodedPoint`.
|
||||
#[derive(Debug)]
|
||||
pub enum GroupDecodingError {
|
||||
/// The coordinate(s) do not lie on the curve.
|
||||
NotOnCurve,
|
||||
/// The element is not part of the r-order subgroup.
|
||||
NotInSubgroup,
|
||||
/// One of the coordinates could not be decoded
|
||||
CoordinateDecodingError(&'static str, PrimeFieldDecodingError),
|
||||
/// The compression mode of the encoded element was not as expected
|
||||
UnexpectedCompressionMode,
|
||||
/// The encoding contained bits that should not have been set
|
||||
UnexpectedInformation,
|
||||
}
|
||||
|
||||
impl Error for GroupDecodingError {
|
||||
fn description(&self) -> &str {
|
||||
match *self {
|
||||
GroupDecodingError::NotOnCurve => "coordinate(s) do not lie on the curve",
|
||||
GroupDecodingError::NotInSubgroup => "the element is not part of an r-order subgroup",
|
||||
GroupDecodingError::CoordinateDecodingError(..) => "coordinate(s) could not be decoded",
|
||||
GroupDecodingError::UnexpectedCompressionMode => {
|
||||
"encoding has unexpected compression mode"
|
||||
}
|
||||
GroupDecodingError::UnexpectedInformation => "encoding has unexpected information",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for GroupDecodingError {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
||||
match *self {
|
||||
GroupDecodingError::CoordinateDecodingError(description, ref err) => {
|
||||
write!(f, "{} decoding error: {}", description, err)
|
||||
}
|
||||
_ => write!(f, "{}", self.description()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// This represents an element of a prime field.
|
||||
pub trait PrimeField: Field {
|
||||
/// The prime field can be converted back and forth into this biginteger
|
||||
/// representation.
|
||||
type Repr: PrimeFieldRepr + From<Self>;
|
||||
|
||||
/// Interpret a string of numbers as a (congruent) prime field element.
|
||||
/// Does not accept unnecessary leading zeroes or a blank string.
|
||||
fn from_str(s: &str) -> Option<Self> {
|
||||
if s.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
||||
if s == "0" {
|
||||
return Some(Self::zero());
|
||||
}
|
||||
|
||||
let mut res = Self::zero();
|
||||
|
||||
let ten = Self::from_repr(Self::Repr::from(10)).unwrap();
|
||||
|
||||
let mut first_digit = true;
|
||||
|
||||
for c in s.chars() {
|
||||
match c.to_digit(10) {
|
||||
Some(c) => {
|
||||
if first_digit {
|
||||
if c == 0 {
|
||||
return None;
|
||||
}
|
||||
|
||||
first_digit = false;
|
||||
}
|
||||
|
||||
res.mul_assign(&ten);
|
||||
res.add_assign(&Self::from_repr(Self::Repr::from(u64::from(c))).unwrap());
|
||||
}
|
||||
None => {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Some(res)
|
||||
}
|
||||
|
||||
/// Convert this prime field element into a biginteger representation.
|
||||
fn from_repr(Self::Repr) -> Result<Self, PrimeFieldDecodingError>;
|
||||
|
||||
/// Convert a biginteger representation into a prime field element, if
|
||||
/// the number is an element of the field.
|
||||
fn into_repr(&self) -> Self::Repr;
|
||||
|
||||
/// Returns the field characteristic; the modulus.
|
||||
fn char() -> Self::Repr;
|
||||
|
||||
/// How many bits are needed to represent an element of this field.
|
||||
const NUM_BITS: u32;
|
||||
|
||||
/// How many bits of information can be reliably stored in the field element.
|
||||
const CAPACITY: u32;
|
||||
|
||||
/// Returns the multiplicative generator of `char()` - 1 order. This element
|
||||
/// must also be quadratic nonresidue.
|
||||
fn multiplicative_generator() -> Self;
|
||||
|
||||
/// 2^s * t = `char()` - 1 with t odd.
|
||||
const S: u32;
|
||||
|
||||
/// Returns the 2^s root of unity computed by exponentiating the `multiplicative_generator()`
|
||||
/// by t.
|
||||
fn root_of_unity() -> Self;
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct BitIterator<E> {
|
||||
t: E,
|
||||
n: usize,
|
||||
}
|
||||
|
||||
impl<E: AsRef<[u64]>> BitIterator<E> {
|
||||
pub fn new(t: E) -> Self {
|
||||
let n = t.as_ref().len() * 64;
|
||||
|
||||
BitIterator { t, n }
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: AsRef<[u64]>> Iterator for BitIterator<E> {
|
||||
type Item = bool;
|
||||
|
||||
fn next(&mut self) -> Option<bool> {
|
||||
if self.n == 0 {
|
||||
None
|
||||
} else {
|
||||
self.n -= 1;
|
||||
let part = self.n / 64;
|
||||
let bit = self.n - (64 * part);
|
||||
|
||||
Some(self.t.as_ref()[part] & (1 << bit) > 0)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bit_iterator() {
|
||||
let mut a = BitIterator::new([0xa953d79b83f6ab59, 0x6dea2059e200bd39]);
|
||||
let expected = "01101101111010100010000001011001111000100000000010111101001110011010100101010011110101111001101110000011111101101010101101011001";
|
||||
|
||||
for e in expected.chars() {
|
||||
assert!(a.next().unwrap() == (e == '1'));
|
||||
}
|
||||
|
||||
assert!(a.next().is_none());
|
||||
|
||||
let expected = "1010010101111110101010000101101011101000011101110101001000011001100100100011011010001011011011010001011011101100110100111011010010110001000011110100110001100110011101101000101100011100100100100100001010011101010111110011101011000011101000111011011101011001";
|
||||
|
||||
let mut a = BitIterator::new([
|
||||
0x429d5f3ac3a3b759,
|
||||
0xb10f4c66768b1c92,
|
||||
0x92368b6d16ecd3b4,
|
||||
0xa57ea85ae8775219,
|
||||
]);
|
||||
|
||||
for e in expected.chars() {
|
||||
assert!(a.next().unwrap() == (e == '1'));
|
||||
}
|
||||
|
||||
assert!(a.next().is_none());
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "expose-arith"))]
|
||||
use self::arith_impl::*;
|
||||
|
||||
#[cfg(feature = "expose-arith")]
|
||||
pub use self::arith_impl::*;
|
||||
|
||||
#[cfg(feature = "u128-support")]
|
||||
mod arith_impl {
|
||||
/// Calculate a - b - borrow, returning the result and modifying
|
||||
/// the borrow value.
|
||||
#[inline(always)]
|
||||
pub fn sbb(a: u64, b: u64, borrow: &mut u64) -> u64 {
|
||||
let tmp = (1u128 << 64) + u128::from(a) - u128::from(b) - u128::from(*borrow);
|
||||
|
||||
*borrow = if tmp >> 64 == 0 { 1 } else { 0 };
|
||||
|
||||
tmp as u64
|
||||
}
|
||||
|
||||
/// Calculate a + b + carry, returning the sum and modifying the
|
||||
/// carry value.
|
||||
#[inline(always)]
|
||||
pub fn adc(a: u64, b: u64, carry: &mut u64) -> u64 {
|
||||
let tmp = u128::from(a) + u128::from(b) + u128::from(*carry);
|
||||
|
||||
*carry = (tmp >> 64) as u64;
|
||||
|
||||
tmp as u64
|
||||
}
|
||||
|
||||
/// Calculate a + (b * c) + carry, returning the least significant digit
|
||||
/// and setting carry to the most significant digit.
|
||||
#[inline(always)]
|
||||
pub fn mac_with_carry(a: u64, b: u64, c: u64, carry: &mut u64) -> u64 {
|
||||
let tmp = (u128::from(a)) + u128::from(b) * u128::from(c) + u128::from(*carry);
|
||||
|
||||
*carry = (tmp >> 64) as u64;
|
||||
|
||||
tmp as u64
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "u128-support"))]
|
||||
mod arith_impl {
|
||||
#[inline(always)]
|
||||
fn split_u64(i: u64) -> (u64, u64) {
|
||||
(i >> 32, i & 0xFFFFFFFF)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn combine_u64(hi: u64, lo: u64) -> u64 {
|
||||
(hi << 32) | lo
|
||||
}
|
||||
|
||||
/// Calculate a - b - borrow, returning the result and modifying
|
||||
/// the borrow value.
|
||||
#[inline(always)]
|
||||
pub fn sbb(a: u64, b: u64, borrow: &mut u64) -> u64 {
|
||||
let (a_hi, a_lo) = split_u64(a);
|
||||
let (b_hi, b_lo) = split_u64(b);
|
||||
let (b, r0) = split_u64((1 << 32) + a_lo - b_lo - *borrow);
|
||||
let (b, r1) = split_u64((1 << 32) + a_hi - b_hi - ((b == 0) as u64));
|
||||
|
||||
*borrow = (b == 0) as u64;
|
||||
|
||||
combine_u64(r1, r0)
|
||||
}
|
||||
|
||||
/// Calculate a + b + carry, returning the sum and modifying the
|
||||
/// carry value.
|
||||
#[inline(always)]
|
||||
pub fn adc(a: u64, b: u64, carry: &mut u64) -> u64 {
|
||||
let (a_hi, a_lo) = split_u64(a);
|
||||
let (b_hi, b_lo) = split_u64(b);
|
||||
let (carry_hi, carry_lo) = split_u64(*carry);
|
||||
|
||||
let (t, r0) = split_u64(a_lo + b_lo + carry_lo);
|
||||
let (t, r1) = split_u64(t + a_hi + b_hi + carry_hi);
|
||||
|
||||
*carry = t;
|
||||
|
||||
combine_u64(r1, r0)
|
||||
}
|
||||
|
||||
/// Calculate a + (b * c) + carry, returning the least significant digit
|
||||
/// and setting carry to the most significant digit.
|
||||
#[inline(always)]
|
||||
pub fn mac_with_carry(a: u64, b: u64, c: u64, carry: &mut u64) -> u64 {
|
||||
/*
|
||||
[ b_hi | b_lo ]
|
||||
[ c_hi | c_lo ] *
|
||||
-------------------------------------------
|
||||
[ b_lo * c_lo ] <-- w
|
||||
[ b_hi * c_lo ] <-- x
|
||||
[ b_lo * c_hi ] <-- y
|
||||
[ b_hi * c_lo ] <-- z
|
||||
[ a_hi | a_lo ]
|
||||
[ C_hi | C_lo ]
|
||||
*/
|
||||
|
||||
let (a_hi, a_lo) = split_u64(a);
|
||||
let (b_hi, b_lo) = split_u64(b);
|
||||
let (c_hi, c_lo) = split_u64(c);
|
||||
let (carry_hi, carry_lo) = split_u64(*carry);
|
||||
|
||||
let (w_hi, w_lo) = split_u64(b_lo * c_lo);
|
||||
let (x_hi, x_lo) = split_u64(b_hi * c_lo);
|
||||
let (y_hi, y_lo) = split_u64(b_lo * c_hi);
|
||||
let (z_hi, z_lo) = split_u64(b_hi * c_hi);
|
||||
|
||||
let (t, r0) = split_u64(w_lo + a_lo + carry_lo);
|
||||
let (t, r1) = split_u64(t + w_hi + x_lo + y_lo + a_hi + carry_hi);
|
||||
let (t, r2) = split_u64(t + x_hi + y_hi + z_lo);
|
||||
let (_, r3) = split_u64(t + z_hi);
|
||||
|
||||
*carry = combine_u64(r3, r2);
|
||||
|
||||
combine_u64(r1, r0)
|
||||
}
|
||||
}
|
420
pairing/src/tests/curve.rs
Normal file
420
pairing/src/tests/curve.rs
Normal file
@ -0,0 +1,420 @@
|
||||
use rand::{Rand, Rng, SeedableRng, XorShiftRng};
|
||||
|
||||
use {CurveAffine, CurveProjective, EncodedPoint, Field};
|
||||
|
||||
pub fn curve_tests<G: CurveProjective>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
// Negation edge case with zero.
|
||||
{
|
||||
let mut z = G::zero();
|
||||
z.negate();
|
||||
assert!(z.is_zero());
|
||||
}
|
||||
|
||||
// Doubling edge case with zero.
|
||||
{
|
||||
let mut z = G::zero();
|
||||
z.double();
|
||||
assert!(z.is_zero());
|
||||
}
|
||||
|
||||
// Addition edge cases with zero
|
||||
{
|
||||
let mut r = G::rand(&mut rng);
|
||||
let rcopy = r;
|
||||
r.add_assign(&G::zero());
|
||||
assert_eq!(r, rcopy);
|
||||
r.add_assign_mixed(&G::Affine::zero());
|
||||
assert_eq!(r, rcopy);
|
||||
|
||||
let mut z = G::zero();
|
||||
z.add_assign(&G::zero());
|
||||
assert!(z.is_zero());
|
||||
z.add_assign_mixed(&G::Affine::zero());
|
||||
assert!(z.is_zero());
|
||||
|
||||
let mut z2 = z;
|
||||
z2.add_assign(&r);
|
||||
|
||||
z.add_assign_mixed(&r.into_affine());
|
||||
|
||||
assert_eq!(z, z2);
|
||||
assert_eq!(z, r);
|
||||
}
|
||||
|
||||
// Transformations
|
||||
{
|
||||
let a = G::rand(&mut rng);
|
||||
let b = a.into_affine().into_projective();
|
||||
let c = a
|
||||
.into_affine()
|
||||
.into_projective()
|
||||
.into_affine()
|
||||
.into_projective();
|
||||
assert_eq!(a, b);
|
||||
assert_eq!(b, c);
|
||||
}
|
||||
|
||||
random_addition_tests::<G>();
|
||||
random_multiplication_tests::<G>();
|
||||
random_doubling_tests::<G>();
|
||||
random_negation_tests::<G>();
|
||||
random_transformation_tests::<G>();
|
||||
random_wnaf_tests::<G>();
|
||||
random_encoding_tests::<G::Affine>();
|
||||
}
|
||||
|
||||
fn random_wnaf_tests<G: CurveProjective>() {
|
||||
use wnaf::*;
|
||||
use PrimeField;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
{
|
||||
let mut table = vec![];
|
||||
let mut wnaf = vec![];
|
||||
|
||||
for w in 2..14 {
|
||||
for _ in 0..100 {
|
||||
let g = G::rand(&mut rng);
|
||||
let s = G::Scalar::rand(&mut rng).into_repr();
|
||||
let mut g1 = g;
|
||||
g1.mul_assign(s);
|
||||
|
||||
wnaf_table(&mut table, g, w);
|
||||
wnaf_form(&mut wnaf, s, w);
|
||||
let g2 = wnaf_exp(&table, &wnaf);
|
||||
|
||||
assert_eq!(g1, g2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
fn only_compiles_if_send<S: Send>(_: &S) {}
|
||||
|
||||
for _ in 0..100 {
|
||||
let g = G::rand(&mut rng);
|
||||
let s = G::Scalar::rand(&mut rng).into_repr();
|
||||
let mut g1 = g;
|
||||
g1.mul_assign(s);
|
||||
|
||||
let g2 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
wnaf.base(g, 1).scalar(s)
|
||||
};
|
||||
let g3 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
wnaf.scalar(s).base(g)
|
||||
};
|
||||
let g4 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
let mut shared = wnaf.base(g, 1).shared();
|
||||
|
||||
only_compiles_if_send(&shared);
|
||||
|
||||
shared.scalar(s)
|
||||
};
|
||||
let g5 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
let mut shared = wnaf.scalar(s).shared();
|
||||
|
||||
only_compiles_if_send(&shared);
|
||||
|
||||
shared.base(g)
|
||||
};
|
||||
|
||||
let g6 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
{
|
||||
// Populate the vectors.
|
||||
wnaf.base(rng.gen(), 1).scalar(rng.gen());
|
||||
}
|
||||
wnaf.base(g, 1).scalar(s)
|
||||
};
|
||||
let g7 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
{
|
||||
// Populate the vectors.
|
||||
wnaf.base(rng.gen(), 1).scalar(rng.gen());
|
||||
}
|
||||
wnaf.scalar(s).base(g)
|
||||
};
|
||||
let g8 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
{
|
||||
// Populate the vectors.
|
||||
wnaf.base(rng.gen(), 1).scalar(rng.gen());
|
||||
}
|
||||
let mut shared = wnaf.base(g, 1).shared();
|
||||
|
||||
only_compiles_if_send(&shared);
|
||||
|
||||
shared.scalar(s)
|
||||
};
|
||||
let g9 = {
|
||||
let mut wnaf = Wnaf::new();
|
||||
{
|
||||
// Populate the vectors.
|
||||
wnaf.base(rng.gen(), 1).scalar(rng.gen());
|
||||
}
|
||||
let mut shared = wnaf.scalar(s).shared();
|
||||
|
||||
only_compiles_if_send(&shared);
|
||||
|
||||
shared.base(g)
|
||||
};
|
||||
|
||||
assert_eq!(g1, g2);
|
||||
assert_eq!(g1, g3);
|
||||
assert_eq!(g1, g4);
|
||||
assert_eq!(g1, g5);
|
||||
assert_eq!(g1, g6);
|
||||
assert_eq!(g1, g7);
|
||||
assert_eq!(g1, g8);
|
||||
assert_eq!(g1, g9);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn random_negation_tests<G: CurveProjective>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let r = G::rand(&mut rng);
|
||||
|
||||
let s = G::Scalar::rand(&mut rng);
|
||||
let mut sneg = s;
|
||||
sneg.negate();
|
||||
|
||||
let mut t1 = r;
|
||||
t1.mul_assign(s);
|
||||
|
||||
let mut t2 = r;
|
||||
t2.mul_assign(sneg);
|
||||
|
||||
let mut t3 = t1;
|
||||
t3.add_assign(&t2);
|
||||
assert!(t3.is_zero());
|
||||
|
||||
let mut t4 = t1;
|
||||
t4.add_assign_mixed(&t2.into_affine());
|
||||
assert!(t4.is_zero());
|
||||
|
||||
t1.negate();
|
||||
assert_eq!(t1, t2);
|
||||
}
|
||||
}
|
||||
|
||||
fn random_doubling_tests<G: CurveProjective>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut a = G::rand(&mut rng);
|
||||
let mut b = G::rand(&mut rng);
|
||||
|
||||
// 2(a + b)
|
||||
let mut tmp1 = a;
|
||||
tmp1.add_assign(&b);
|
||||
tmp1.double();
|
||||
|
||||
// 2a + 2b
|
||||
a.double();
|
||||
b.double();
|
||||
|
||||
let mut tmp2 = a;
|
||||
tmp2.add_assign(&b);
|
||||
|
||||
let mut tmp3 = a;
|
||||
tmp3.add_assign_mixed(&b.into_affine());
|
||||
|
||||
assert_eq!(tmp1, tmp2);
|
||||
assert_eq!(tmp1, tmp3);
|
||||
}
|
||||
}
|
||||
|
||||
fn random_multiplication_tests<G: CurveProjective>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut a = G::rand(&mut rng);
|
||||
let mut b = G::rand(&mut rng);
|
||||
let a_affine = a.into_affine();
|
||||
let b_affine = b.into_affine();
|
||||
|
||||
let s = G::Scalar::rand(&mut rng);
|
||||
|
||||
// s ( a + b )
|
||||
let mut tmp1 = a;
|
||||
tmp1.add_assign(&b);
|
||||
tmp1.mul_assign(s);
|
||||
|
||||
// sa + sb
|
||||
a.mul_assign(s);
|
||||
b.mul_assign(s);
|
||||
|
||||
let mut tmp2 = a;
|
||||
tmp2.add_assign(&b);
|
||||
|
||||
// Affine multiplication
|
||||
let mut tmp3 = a_affine.mul(s);
|
||||
tmp3.add_assign(&b_affine.mul(s));
|
||||
|
||||
assert_eq!(tmp1, tmp2);
|
||||
assert_eq!(tmp1, tmp3);
|
||||
}
|
||||
}
|
||||
|
||||
fn random_addition_tests<G: CurveProjective>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let a = G::rand(&mut rng);
|
||||
let b = G::rand(&mut rng);
|
||||
let c = G::rand(&mut rng);
|
||||
let a_affine = a.into_affine();
|
||||
let b_affine = b.into_affine();
|
||||
let c_affine = c.into_affine();
|
||||
|
||||
// a + a should equal the doubling
|
||||
{
|
||||
let mut aplusa = a;
|
||||
aplusa.add_assign(&a);
|
||||
|
||||
let mut aplusamixed = a;
|
||||
aplusamixed.add_assign_mixed(&a.into_affine());
|
||||
|
||||
let mut adouble = a;
|
||||
adouble.double();
|
||||
|
||||
assert_eq!(aplusa, adouble);
|
||||
assert_eq!(aplusa, aplusamixed);
|
||||
}
|
||||
|
||||
let mut tmp = vec![G::zero(); 6];
|
||||
|
||||
// (a + b) + c
|
||||
tmp[0] = a;
|
||||
tmp[0].add_assign(&b);
|
||||
tmp[0].add_assign(&c);
|
||||
|
||||
// a + (b + c)
|
||||
tmp[1] = b;
|
||||
tmp[1].add_assign(&c);
|
||||
tmp[1].add_assign(&a);
|
||||
|
||||
// (a + c) + b
|
||||
tmp[2] = a;
|
||||
tmp[2].add_assign(&c);
|
||||
tmp[2].add_assign(&b);
|
||||
|
||||
// Mixed addition
|
||||
|
||||
// (a + b) + c
|
||||
tmp[3] = a_affine.into_projective();
|
||||
tmp[3].add_assign_mixed(&b_affine);
|
||||
tmp[3].add_assign_mixed(&c_affine);
|
||||
|
||||
// a + (b + c)
|
||||
tmp[4] = b_affine.into_projective();
|
||||
tmp[4].add_assign_mixed(&c_affine);
|
||||
tmp[4].add_assign_mixed(&a_affine);
|
||||
|
||||
// (a + c) + b
|
||||
tmp[5] = a_affine.into_projective();
|
||||
tmp[5].add_assign_mixed(&c_affine);
|
||||
tmp[5].add_assign_mixed(&b_affine);
|
||||
|
||||
// Comparisons
|
||||
for i in 0..6 {
|
||||
for j in 0..6 {
|
||||
assert_eq!(tmp[i], tmp[j]);
|
||||
assert_eq!(tmp[i].into_affine(), tmp[j].into_affine());
|
||||
}
|
||||
|
||||
assert!(tmp[i] != a);
|
||||
assert!(tmp[i] != b);
|
||||
assert!(tmp[i] != c);
|
||||
|
||||
assert!(a != tmp[i]);
|
||||
assert!(b != tmp[i]);
|
||||
assert!(c != tmp[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn random_transformation_tests<G: CurveProjective>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let g = G::rand(&mut rng);
|
||||
let g_affine = g.into_affine();
|
||||
let g_projective = g_affine.into_projective();
|
||||
assert_eq!(g, g_projective);
|
||||
}
|
||||
|
||||
// Batch normalization
|
||||
for _ in 0..10 {
|
||||
let mut v = (0..1000).map(|_| G::rand(&mut rng)).collect::<Vec<_>>();
|
||||
|
||||
for i in &v {
|
||||
assert!(!i.is_normalized());
|
||||
}
|
||||
|
||||
use rand::distributions::{IndependentSample, Range};
|
||||
let between = Range::new(0, 1000);
|
||||
// Sprinkle in some normalized points
|
||||
for _ in 0..5 {
|
||||
v[between.ind_sample(&mut rng)] = G::zero();
|
||||
}
|
||||
for _ in 0..5 {
|
||||
let s = between.ind_sample(&mut rng);
|
||||
v[s] = v[s].into_affine().into_projective();
|
||||
}
|
||||
|
||||
let expected_v = v
|
||||
.iter()
|
||||
.map(|v| v.into_affine().into_projective())
|
||||
.collect::<Vec<_>>();
|
||||
G::batch_normalization(&mut v);
|
||||
|
||||
for i in &v {
|
||||
assert!(i.is_normalized());
|
||||
}
|
||||
|
||||
assert_eq!(v, expected_v);
|
||||
}
|
||||
}
|
||||
|
||||
fn random_encoding_tests<G: CurveAffine>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
assert_eq!(
|
||||
G::zero().into_uncompressed().into_affine().unwrap(),
|
||||
G::zero()
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
G::zero().into_compressed().into_affine().unwrap(),
|
||||
G::zero()
|
||||
);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut r = G::Projective::rand(&mut rng).into_affine();
|
||||
|
||||
let uncompressed = r.into_uncompressed();
|
||||
let de_uncompressed = uncompressed.into_affine().unwrap();
|
||||
assert_eq!(de_uncompressed, r);
|
||||
|
||||
let compressed = r.into_compressed();
|
||||
let de_compressed = compressed.into_affine().unwrap();
|
||||
assert_eq!(de_compressed, r);
|
||||
|
||||
r.negate();
|
||||
|
||||
let compressed = r.into_compressed();
|
||||
let de_compressed = compressed.into_affine().unwrap();
|
||||
assert_eq!(de_compressed, r);
|
||||
}
|
||||
}
|
126
pairing/src/tests/engine.rs
Normal file
126
pairing/src/tests/engine.rs
Normal file
@ -0,0 +1,126 @@
|
||||
use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
use {CurveAffine, CurveProjective, Engine, Field, PrimeField};
|
||||
|
||||
pub fn engine_tests<E: Engine>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..10 {
|
||||
let a = E::G1::rand(&mut rng).into_affine();
|
||||
let b = E::G2::rand(&mut rng).into_affine();
|
||||
|
||||
assert!(a.pairing_with(&b) == b.pairing_with(&a));
|
||||
assert!(a.pairing_with(&b) == E::pairing(a, b));
|
||||
}
|
||||
|
||||
for _ in 0..1000 {
|
||||
let z1 = E::G1Affine::zero().prepare();
|
||||
let z2 = E::G2Affine::zero().prepare();
|
||||
|
||||
let a = E::G1::rand(&mut rng).into_affine().prepare();
|
||||
let b = E::G2::rand(&mut rng).into_affine().prepare();
|
||||
let c = E::G1::rand(&mut rng).into_affine().prepare();
|
||||
let d = E::G2::rand(&mut rng).into_affine().prepare();
|
||||
|
||||
assert_eq!(
|
||||
E::Fqk::one(),
|
||||
E::final_exponentiation(&E::miller_loop(&[(&z1, &b)])).unwrap()
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
E::Fqk::one(),
|
||||
E::final_exponentiation(&E::miller_loop(&[(&a, &z2)])).unwrap()
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
E::final_exponentiation(&E::miller_loop(&[(&z1, &b), (&c, &d)])).unwrap(),
|
||||
E::final_exponentiation(&E::miller_loop(&[(&a, &z2), (&c, &d)])).unwrap()
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
E::final_exponentiation(&E::miller_loop(&[(&a, &b), (&z1, &d)])).unwrap(),
|
||||
E::final_exponentiation(&E::miller_loop(&[(&a, &b), (&c, &z2)])).unwrap()
|
||||
);
|
||||
}
|
||||
|
||||
random_bilinearity_tests::<E>();
|
||||
random_miller_loop_tests::<E>();
|
||||
}
|
||||
|
||||
fn random_miller_loop_tests<E: Engine>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
// Exercise the miller loop for a reduced pairing
|
||||
for _ in 0..1000 {
|
||||
let a = E::G1::rand(&mut rng);
|
||||
let b = E::G2::rand(&mut rng);
|
||||
|
||||
let p2 = E::pairing(a, b);
|
||||
|
||||
let a = a.into_affine().prepare();
|
||||
let b = b.into_affine().prepare();
|
||||
|
||||
let p1 = E::final_exponentiation(&E::miller_loop(&[(&a, &b)])).unwrap();
|
||||
|
||||
assert_eq!(p1, p2);
|
||||
}
|
||||
|
||||
// Exercise a double miller loop
|
||||
for _ in 0..1000 {
|
||||
let a = E::G1::rand(&mut rng);
|
||||
let b = E::G2::rand(&mut rng);
|
||||
let c = E::G1::rand(&mut rng);
|
||||
let d = E::G2::rand(&mut rng);
|
||||
|
||||
let ab = E::pairing(a, b);
|
||||
let cd = E::pairing(c, d);
|
||||
|
||||
let mut abcd = ab;
|
||||
abcd.mul_assign(&cd);
|
||||
|
||||
let a = a.into_affine().prepare();
|
||||
let b = b.into_affine().prepare();
|
||||
let c = c.into_affine().prepare();
|
||||
let d = d.into_affine().prepare();
|
||||
|
||||
let abcd_with_double_loop =
|
||||
E::final_exponentiation(&E::miller_loop(&[(&a, &b), (&c, &d)])).unwrap();
|
||||
|
||||
assert_eq!(abcd, abcd_with_double_loop);
|
||||
}
|
||||
}
|
||||
|
||||
fn random_bilinearity_tests<E: Engine>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let a = E::G1::rand(&mut rng);
|
||||
let b = E::G2::rand(&mut rng);
|
||||
|
||||
let c = E::Fr::rand(&mut rng);
|
||||
let d = E::Fr::rand(&mut rng);
|
||||
|
||||
let mut ac = a;
|
||||
ac.mul_assign(c);
|
||||
|
||||
let mut ad = a;
|
||||
ad.mul_assign(d);
|
||||
|
||||
let mut bc = b;
|
||||
bc.mul_assign(c);
|
||||
|
||||
let mut bd = b;
|
||||
bd.mul_assign(d);
|
||||
|
||||
let acbd = E::pairing(ac, bd);
|
||||
let adbc = E::pairing(ad, bc);
|
||||
|
||||
let mut cd = c;
|
||||
cd.mul_assign(&d);
|
||||
|
||||
let abcd = E::pairing(a, b).pow(cd.into_repr());
|
||||
|
||||
assert_eq!(acbd, adbc);
|
||||
assert_eq!(acbd, abcd);
|
||||
}
|
||||
}
|
266
pairing/src/tests/field.rs
Normal file
266
pairing/src/tests/field.rs
Normal file
@ -0,0 +1,266 @@
|
||||
use rand::{Rng, SeedableRng, XorShiftRng};
|
||||
use {Field, LegendreSymbol, PrimeField, SqrtField};
|
||||
|
||||
pub fn random_frobenius_tests<F: Field, C: AsRef<[u64]>>(characteristic: C, maxpower: usize) {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..100 {
|
||||
for i in 0..(maxpower + 1) {
|
||||
let mut a = F::rand(&mut rng);
|
||||
let mut b = a;
|
||||
|
||||
for _ in 0..i {
|
||||
a = a.pow(&characteristic);
|
||||
}
|
||||
b.frobenius_map(i);
|
||||
|
||||
assert_eq!(a, b);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn random_sqrt_tests<F: SqrtField>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..10000 {
|
||||
let a = F::rand(&mut rng);
|
||||
let mut b = a;
|
||||
b.square();
|
||||
assert_eq!(b.legendre(), LegendreSymbol::QuadraticResidue);
|
||||
|
||||
let b = b.sqrt().unwrap();
|
||||
let mut negb = b;
|
||||
negb.negate();
|
||||
|
||||
assert!(a == b || a == negb);
|
||||
}
|
||||
|
||||
let mut c = F::one();
|
||||
for _ in 0..10000 {
|
||||
let mut b = c;
|
||||
b.square();
|
||||
assert_eq!(b.legendre(), LegendreSymbol::QuadraticResidue);
|
||||
|
||||
b = b.sqrt().unwrap();
|
||||
|
||||
if b != c {
|
||||
b.negate();
|
||||
}
|
||||
|
||||
assert_eq!(b, c);
|
||||
|
||||
c.add_assign(&F::one());
|
||||
}
|
||||
}
|
||||
|
||||
pub fn random_field_tests<F: Field>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
random_multiplication_tests::<F, _>(&mut rng);
|
||||
random_addition_tests::<F, _>(&mut rng);
|
||||
random_subtraction_tests::<F, _>(&mut rng);
|
||||
random_negation_tests::<F, _>(&mut rng);
|
||||
random_doubling_tests::<F, _>(&mut rng);
|
||||
random_squaring_tests::<F, _>(&mut rng);
|
||||
random_inversion_tests::<F, _>(&mut rng);
|
||||
random_expansion_tests::<F, _>(&mut rng);
|
||||
|
||||
assert!(F::zero().is_zero());
|
||||
{
|
||||
let mut z = F::zero();
|
||||
z.negate();
|
||||
assert!(z.is_zero());
|
||||
}
|
||||
|
||||
assert!(F::zero().inverse().is_none());
|
||||
|
||||
// Multiplication by zero
|
||||
{
|
||||
let mut a = F::rand(&mut rng);
|
||||
a.mul_assign(&F::zero());
|
||||
assert!(a.is_zero());
|
||||
}
|
||||
|
||||
// Addition by zero
|
||||
{
|
||||
let mut a = F::rand(&mut rng);
|
||||
let copy = a;
|
||||
a.add_assign(&F::zero());
|
||||
assert_eq!(a, copy);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn from_str_tests<F: PrimeField>() {
|
||||
{
|
||||
let a = "84395729384759238745923745892374598234705297301958723458712394587103249587213984572934750213947582345792304758273458972349582734958273495872304598234";
|
||||
let b = "38495729084572938457298347502349857029384609283450692834058293405982304598230458230495820394850293845098234059823049582309485203948502938452093482039";
|
||||
let c = "3248875134290623212325429203829831876024364170316860259933542844758450336418538569901990710701240661702808867062612075657861768196242274635305077449545396068598317421057721935408562373834079015873933065667961469731886739181625866970316226171512545167081793907058686908697431878454091011239990119126";
|
||||
|
||||
let mut a = F::from_str(a).unwrap();
|
||||
let b = F::from_str(b).unwrap();
|
||||
let c = F::from_str(c).unwrap();
|
||||
|
||||
a.mul_assign(&b);
|
||||
|
||||
assert_eq!(a, c);
|
||||
}
|
||||
|
||||
{
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let n: u64 = rng.gen();
|
||||
|
||||
let a = F::from_str(&format!("{}", n)).unwrap();
|
||||
let b = F::from_repr(n.into()).unwrap();
|
||||
|
||||
assert_eq!(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
assert!(F::from_str("").is_none());
|
||||
assert!(F::from_str("0").unwrap().is_zero());
|
||||
assert!(F::from_str("00").is_none());
|
||||
assert!(F::from_str("00000000000").is_none());
|
||||
}
|
||||
|
||||
fn random_multiplication_tests<F: Field, R: Rng>(rng: &mut R) {
|
||||
for _ in 0..10000 {
|
||||
let a = F::rand(rng);
|
||||
let b = F::rand(rng);
|
||||
let c = F::rand(rng);
|
||||
|
||||
let mut t0 = a; // (a * b) * c
|
||||
t0.mul_assign(&b);
|
||||
t0.mul_assign(&c);
|
||||
|
||||
let mut t1 = a; // (a * c) * b
|
||||
t1.mul_assign(&c);
|
||||
t1.mul_assign(&b);
|
||||
|
||||
let mut t2 = b; // (b * c) * a
|
||||
t2.mul_assign(&c);
|
||||
t2.mul_assign(&a);
|
||||
|
||||
assert_eq!(t0, t1);
|
||||
assert_eq!(t1, t2);
|
||||
}
|
||||
}
|
||||
|
||||
fn random_addition_tests<F: Field, R: Rng>(rng: &mut R) {
|
||||
for _ in 0..10000 {
|
||||
let a = F::rand(rng);
|
||||
let b = F::rand(rng);
|
||||
let c = F::rand(rng);
|
||||
|
||||
let mut t0 = a; // (a + b) + c
|
||||
t0.add_assign(&b);
|
||||
t0.add_assign(&c);
|
||||
|
||||
let mut t1 = a; // (a + c) + b
|
||||
t1.add_assign(&c);
|
||||
t1.add_assign(&b);
|
||||
|
||||
let mut t2 = b; // (b + c) + a
|
||||
t2.add_assign(&c);
|
||||
t2.add_assign(&a);
|
||||
|
||||
assert_eq!(t0, t1);
|
||||
assert_eq!(t1, t2);
|
||||
}
|
||||
}
|
||||
|
||||
fn random_subtraction_tests<F: Field, R: Rng>(rng: &mut R) {
|
||||
for _ in 0..10000 {
|
||||
let a = F::rand(rng);
|
||||
let b = F::rand(rng);
|
||||
|
||||
let mut t0 = a; // (a - b)
|
||||
t0.sub_assign(&b);
|
||||
|
||||
let mut t1 = b; // (b - a)
|
||||
t1.sub_assign(&a);
|
||||
|
||||
let mut t2 = t0; // (a - b) + (b - a) = 0
|
||||
t2.add_assign(&t1);
|
||||
|
||||
assert!(t2.is_zero());
|
||||
}
|
||||
}
|
||||
|
||||
fn random_negation_tests<F: Field, R: Rng>(rng: &mut R) {
|
||||
for _ in 0..10000 {
|
||||
let a = F::rand(rng);
|
||||
let mut b = a;
|
||||
b.negate();
|
||||
b.add_assign(&a);
|
||||
|
||||
assert!(b.is_zero());
|
||||
}
|
||||
}
|
||||
|
||||
fn random_doubling_tests<F: Field, R: Rng>(rng: &mut R) {
|
||||
for _ in 0..10000 {
|
||||
let mut a = F::rand(rng);
|
||||
let mut b = a;
|
||||
a.add_assign(&b);
|
||||
b.double();
|
||||
|
||||
assert_eq!(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
fn random_squaring_tests<F: Field, R: Rng>(rng: &mut R) {
|
||||
for _ in 0..10000 {
|
||||
let mut a = F::rand(rng);
|
||||
let mut b = a;
|
||||
a.mul_assign(&b);
|
||||
b.square();
|
||||
|
||||
assert_eq!(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
fn random_inversion_tests<F: Field, R: Rng>(rng: &mut R) {
|
||||
assert!(F::zero().inverse().is_none());
|
||||
|
||||
for _ in 0..10000 {
|
||||
let mut a = F::rand(rng);
|
||||
let b = a.inverse().unwrap(); // probablistically nonzero
|
||||
a.mul_assign(&b);
|
||||
|
||||
assert_eq!(a, F::one());
|
||||
}
|
||||
}
|
||||
|
||||
fn random_expansion_tests<F: Field, R: Rng>(rng: &mut R) {
|
||||
for _ in 0..10000 {
|
||||
// Compare (a + b)(c + d) and (a*c + b*c + a*d + b*d)
|
||||
|
||||
let a = F::rand(rng);
|
||||
let b = F::rand(rng);
|
||||
let c = F::rand(rng);
|
||||
let d = F::rand(rng);
|
||||
|
||||
let mut t0 = a;
|
||||
t0.add_assign(&b);
|
||||
let mut t1 = c;
|
||||
t1.add_assign(&d);
|
||||
t0.mul_assign(&t1);
|
||||
|
||||
let mut t2 = a;
|
||||
t2.mul_assign(&c);
|
||||
let mut t3 = b;
|
||||
t3.mul_assign(&c);
|
||||
let mut t4 = a;
|
||||
t4.mul_assign(&d);
|
||||
let mut t5 = b;
|
||||
t5.mul_assign(&d);
|
||||
|
||||
t2.add_assign(&t3);
|
||||
t2.add_assign(&t4);
|
||||
t2.add_assign(&t5);
|
||||
|
||||
assert_eq!(t0, t2);
|
||||
}
|
||||
}
|
4
pairing/src/tests/mod.rs
Normal file
4
pairing/src/tests/mod.rs
Normal file
@ -0,0 +1,4 @@
|
||||
pub mod curve;
|
||||
pub mod engine;
|
||||
pub mod field;
|
||||
pub mod repr;
|
98
pairing/src/tests/repr.rs
Normal file
98
pairing/src/tests/repr.rs
Normal file
@ -0,0 +1,98 @@
|
||||
use rand::{SeedableRng, XorShiftRng};
|
||||
use PrimeFieldRepr;
|
||||
|
||||
pub fn random_repr_tests<R: PrimeFieldRepr>() {
|
||||
random_encoding_tests::<R>();
|
||||
random_shl_tests::<R>();
|
||||
random_shr_tests::<R>();
|
||||
}
|
||||
|
||||
fn random_encoding_tests<R: PrimeFieldRepr>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let r = R::rand(&mut rng);
|
||||
|
||||
// Big endian
|
||||
{
|
||||
let mut rdecoded = R::default();
|
||||
|
||||
let mut v: Vec<u8> = vec![];
|
||||
r.write_be(&mut v).unwrap();
|
||||
rdecoded.read_be(&v[0..]).unwrap();
|
||||
|
||||
assert_eq!(r, rdecoded);
|
||||
}
|
||||
|
||||
// Little endian
|
||||
{
|
||||
let mut rdecoded = R::default();
|
||||
|
||||
let mut v: Vec<u8> = vec![];
|
||||
r.write_le(&mut v).unwrap();
|
||||
rdecoded.read_le(&v[0..]).unwrap();
|
||||
|
||||
assert_eq!(r, rdecoded);
|
||||
}
|
||||
|
||||
{
|
||||
let mut rdecoded_le = R::default();
|
||||
let mut rdecoded_be_flip = R::default();
|
||||
|
||||
let mut v: Vec<u8> = vec![];
|
||||
r.write_le(&mut v).unwrap();
|
||||
|
||||
// This reads in little-endian, so we are done.
|
||||
rdecoded_le.read_le(&v[..]).unwrap();
|
||||
|
||||
// This reads in big-endian, so we perform a swap of the
|
||||
// bytes beforehand.
|
||||
let v: Vec<u8> = v.into_iter().rev().collect();
|
||||
rdecoded_be_flip.read_be(&v[..]).unwrap();
|
||||
|
||||
assert_eq!(rdecoded_le, rdecoded_be_flip);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn random_shl_tests<R: PrimeFieldRepr>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..100 {
|
||||
let r = R::rand(&mut rng);
|
||||
|
||||
for shift in 0..(r.num_bits() + 1) {
|
||||
let mut r1 = r;
|
||||
let mut r2 = r;
|
||||
|
||||
for _ in 0..shift {
|
||||
r1.mul2();
|
||||
}
|
||||
|
||||
r2.shl(shift);
|
||||
|
||||
assert_eq!(r1, r2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn random_shr_tests<R: PrimeFieldRepr>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..100 {
|
||||
let r = R::rand(&mut rng);
|
||||
|
||||
for shift in 0..(r.num_bits() + 1) {
|
||||
let mut r1 = r;
|
||||
let mut r2 = r;
|
||||
|
||||
for _ in 0..shift {
|
||||
r1.div2();
|
||||
}
|
||||
|
||||
r2.shr(shift);
|
||||
|
||||
assert_eq!(r1, r2);
|
||||
}
|
||||
}
|
||||
}
|
179
pairing/src/wnaf.rs
Normal file
179
pairing/src/wnaf.rs
Normal file
@ -0,0 +1,179 @@
|
||||
use super::{CurveProjective, PrimeField, PrimeFieldRepr};
|
||||
|
||||
/// Replaces the contents of `table` with a w-NAF window table for the given window size.
|
||||
pub(crate) fn wnaf_table<G: CurveProjective>(table: &mut Vec<G>, mut base: G, window: usize) {
|
||||
table.truncate(0);
|
||||
table.reserve(1 << (window - 1));
|
||||
|
||||
let mut dbl = base;
|
||||
dbl.double();
|
||||
|
||||
for _ in 0..(1 << (window - 1)) {
|
||||
table.push(base);
|
||||
base.add_assign(&dbl);
|
||||
}
|
||||
}
|
||||
|
||||
/// Replaces the contents of `wnaf` with the w-NAF representation of a scalar.
|
||||
pub(crate) fn wnaf_form<S: PrimeFieldRepr>(wnaf: &mut Vec<i64>, mut c: S, window: usize) {
|
||||
wnaf.truncate(0);
|
||||
|
||||
while !c.is_zero() {
|
||||
let mut u;
|
||||
if c.is_odd() {
|
||||
u = (c.as_ref()[0] % (1 << (window + 1))) as i64;
|
||||
|
||||
if u > (1 << window) {
|
||||
u -= 1 << (window + 1);
|
||||
}
|
||||
|
||||
if u > 0 {
|
||||
c.sub_noborrow(&S::from(u as u64));
|
||||
} else {
|
||||
c.add_nocarry(&S::from((-u) as u64));
|
||||
}
|
||||
} else {
|
||||
u = 0;
|
||||
}
|
||||
|
||||
wnaf.push(u);
|
||||
|
||||
c.div2();
|
||||
}
|
||||
}
|
||||
|
||||
/// Performs w-NAF exponentiation with the provided window table and w-NAF form scalar.
|
||||
///
|
||||
/// This function must be provided a `table` and `wnaf` that were constructed with
|
||||
/// the same window size; otherwise, it may panic or produce invalid results.
|
||||
pub(crate) fn wnaf_exp<G: CurveProjective>(table: &[G], wnaf: &[i64]) -> G {
|
||||
let mut result = G::zero();
|
||||
|
||||
let mut found_one = false;
|
||||
|
||||
for n in wnaf.iter().rev() {
|
||||
if found_one {
|
||||
result.double();
|
||||
}
|
||||
|
||||
if *n != 0 {
|
||||
found_one = true;
|
||||
|
||||
if *n > 0 {
|
||||
result.add_assign(&table[(n / 2) as usize]);
|
||||
} else {
|
||||
result.sub_assign(&table[((-n) / 2) as usize]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
/// A "w-ary non-adjacent form" exponentiation context.
|
||||
#[derive(Debug)]
|
||||
pub struct Wnaf<W, B, S> {
|
||||
base: B,
|
||||
scalar: S,
|
||||
window_size: W,
|
||||
}
|
||||
|
||||
impl<G: CurveProjective> Wnaf<(), Vec<G>, Vec<i64>> {
|
||||
/// Construct a new wNAF context without allocating.
|
||||
pub fn new() -> Self {
|
||||
Wnaf {
|
||||
base: vec![],
|
||||
scalar: vec![],
|
||||
window_size: (),
|
||||
}
|
||||
}
|
||||
|
||||
/// Given a base and a number of scalars, compute a window table and return a `Wnaf` object that
|
||||
/// can perform exponentiations with `.scalar(..)`.
|
||||
pub fn base(&mut self, base: G, num_scalars: usize) -> Wnaf<usize, &[G], &mut Vec<i64>> {
|
||||
// Compute the appropriate window size based on the number of scalars.
|
||||
let window_size = G::recommended_wnaf_for_num_scalars(num_scalars);
|
||||
|
||||
// Compute a wNAF table for the provided base and window size.
|
||||
wnaf_table(&mut self.base, base, window_size);
|
||||
|
||||
// Return a Wnaf object that immutably borrows the computed base storage location,
|
||||
// but mutably borrows the scalar storage location.
|
||||
Wnaf {
|
||||
base: &self.base[..],
|
||||
scalar: &mut self.scalar,
|
||||
window_size,
|
||||
}
|
||||
}
|
||||
|
||||
/// Given a scalar, compute its wNAF representation and return a `Wnaf` object that can perform
|
||||
/// exponentiations with `.base(..)`.
|
||||
pub fn scalar(
|
||||
&mut self,
|
||||
scalar: <<G as CurveProjective>::Scalar as PrimeField>::Repr,
|
||||
) -> Wnaf<usize, &mut Vec<G>, &[i64]> {
|
||||
// Compute the appropriate window size for the scalar.
|
||||
let window_size = G::recommended_wnaf_for_scalar(scalar);
|
||||
|
||||
// Compute the wNAF form of the scalar.
|
||||
wnaf_form(&mut self.scalar, scalar, window_size);
|
||||
|
||||
// Return a Wnaf object that mutably borrows the base storage location, but
|
||||
// immutably borrows the computed wNAF form scalar location.
|
||||
Wnaf {
|
||||
base: &mut self.base,
|
||||
scalar: &self.scalar[..],
|
||||
window_size,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, G: CurveProjective> Wnaf<usize, &'a [G], &'a mut Vec<i64>> {
|
||||
/// Constructs new space for the scalar representation while borrowing
|
||||
/// the computed window table, for sending the window table across threads.
|
||||
pub fn shared(&self) -> Wnaf<usize, &'a [G], Vec<i64>> {
|
||||
Wnaf {
|
||||
base: self.base,
|
||||
scalar: vec![],
|
||||
window_size: self.window_size,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, G: CurveProjective> Wnaf<usize, &'a mut Vec<G>, &'a [i64]> {
|
||||
/// Constructs new space for the window table while borrowing
|
||||
/// the computed scalar representation, for sending the scalar representation
|
||||
/// across threads.
|
||||
pub fn shared(&self) -> Wnaf<usize, Vec<G>, &'a [i64]> {
|
||||
Wnaf {
|
||||
base: vec![],
|
||||
scalar: self.scalar,
|
||||
window_size: self.window_size,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<B, S: AsRef<[i64]>> Wnaf<usize, B, S> {
|
||||
/// Performs exponentiation given a base.
|
||||
pub fn base<G: CurveProjective>(&mut self, base: G) -> G
|
||||
where
|
||||
B: AsMut<Vec<G>>,
|
||||
{
|
||||
wnaf_table(self.base.as_mut(), base, self.window_size);
|
||||
wnaf_exp(self.base.as_mut(), self.scalar.as_ref())
|
||||
}
|
||||
}
|
||||
|
||||
impl<B, S: AsMut<Vec<i64>>> Wnaf<usize, B, S> {
|
||||
/// Performs exponentiation given a scalar.
|
||||
pub fn scalar<G: CurveProjective>(
|
||||
&mut self,
|
||||
scalar: <<G as CurveProjective>::Scalar as PrimeField>::Repr,
|
||||
) -> G
|
||||
where
|
||||
B: AsRef<[G]>,
|
||||
{
|
||||
wnaf_form(self.scalar.as_mut(), scalar, self.window_size);
|
||||
wnaf_exp(self.base.as_ref(), self.scalar.as_mut())
|
||||
}
|
||||
}
|
3
sapling-crypto/.gitignore
vendored
Normal file
3
sapling-crypto/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
/target/
|
||||
**/*.rs.bk
|
||||
Cargo.lock
|
14
sapling-crypto/COPYRIGHT
Normal file
14
sapling-crypto/COPYRIGHT
Normal file
@ -0,0 +1,14 @@
|
||||
Copyrights in the "sapling-crypto" library are retained by their contributors. No
|
||||
copyright assignment is required to contribute to the "sapling-crypto" library.
|
||||
|
||||
The "sapling-crypto" library is licensed under either of
|
||||
|
||||
* Apache License, Version 2.0, (see ./LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
|
||||
* MIT license (see ./LICENSE-MIT or http://opensource.org/licenses/MIT)
|
||||
|
||||
at your option.
|
||||
|
||||
Unless you explicitly state otherwise, any contribution intentionally
|
||||
submitted for inclusion in the work by you, as defined in the Apache-2.0
|
||||
license, shall be dual licensed as above, without any additional terms or
|
||||
conditions.
|
31
sapling-crypto/Cargo.toml
Normal file
31
sapling-crypto/Cargo.toml
Normal file
@ -0,0 +1,31 @@
|
||||
[package]
|
||||
authors = ["Sean Bowe <sean@z.cash>"]
|
||||
description = "Cryptographic library for Zcash Sapling"
|
||||
documentation = "https://github.com/zcash-hackworks/sapling"
|
||||
homepage = "https://github.com/zcash-hackworks/sapling"
|
||||
license = "MIT/Apache-2.0"
|
||||
name = "sapling-crypto"
|
||||
repository = "https://github.com/zcash-hackworks/sapling"
|
||||
version = "0.0.1"
|
||||
|
||||
[dependencies.pairing]
|
||||
path = "../pairing"
|
||||
features = ["expose-arith"]
|
||||
|
||||
[dependencies]
|
||||
bellman = { path = "../bellman" }
|
||||
rand = "0.4"
|
||||
digest = "0.7"
|
||||
byteorder = "1"
|
||||
|
||||
[dependencies.blake2-rfc]
|
||||
git = "https://github.com/gtank/blake2-rfc"
|
||||
rev = "7a5b5fc99ae483a0043db7547fb79a6fa44b88a9"
|
||||
|
||||
[dev-dependencies]
|
||||
hex-literal = "0.1"
|
||||
rust-crypto = "0.2"
|
||||
|
||||
[features]
|
||||
default = ["u128-support"]
|
||||
u128-support = ["pairing/u128-support"]
|
201
sapling-crypto/LICENSE-APACHE
Normal file
201
sapling-crypto/LICENSE-APACHE
Normal file
@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
23
sapling-crypto/LICENSE-MIT
Normal file
23
sapling-crypto/LICENSE-MIT
Normal file
@ -0,0 +1,23 @@
|
||||
Permission is hereby granted, free of charge, to any
|
||||
person obtaining a copy of this software and associated
|
||||
documentation files (the "Software"), to deal in the
|
||||
Software without restriction, including without
|
||||
limitation the rights to use, copy, modify, merge,
|
||||
publish, distribute, sublicense, and/or sell copies of
|
||||
the Software, and to permit persons to whom the Software
|
||||
is furnished to do so, subject to the following
|
||||
conditions:
|
||||
|
||||
The above copyright notice and this permission notice
|
||||
shall be included in all copies or substantial portions
|
||||
of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
|
||||
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
|
||||
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
|
||||
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
|
||||
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
|
||||
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
DEALINGS IN THE SOFTWARE.
|
23
sapling-crypto/README.md
Normal file
23
sapling-crypto/README.md
Normal file
@ -0,0 +1,23 @@
|
||||
# sapling-crypto
|
||||
|
||||
This repository contains a (work-in-progress) implementation of Zcash's "Sapling" cryptography.
|
||||
|
||||
## Security Warnings
|
||||
|
||||
This library is currently under development and has not been reviewed.
|
||||
|
||||
## License
|
||||
|
||||
Licensed under either of
|
||||
|
||||
* Apache License, Version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
|
||||
* MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
|
||||
|
||||
at your option.
|
||||
|
||||
### Contribution
|
||||
|
||||
Unless you explicitly state otherwise, any contribution intentionally
|
||||
submitted for inclusion in the work by you, as defined in the Apache-2.0
|
||||
license, shall be dual licensed as above, without any additional terms or
|
||||
conditions.
|
23
sapling-crypto/benches/pedersen_hash.rs
Normal file
23
sapling-crypto/benches/pedersen_hash.rs
Normal file
@ -0,0 +1,23 @@
|
||||
#![feature(test)]
|
||||
|
||||
extern crate rand;
|
||||
extern crate test;
|
||||
extern crate pairing;
|
||||
extern crate sapling_crypto;
|
||||
|
||||
use rand::{Rand, thread_rng};
|
||||
use pairing::bls12_381::Bls12;
|
||||
use sapling_crypto::jubjub::JubjubBls12;
|
||||
use sapling_crypto::pedersen_hash::{pedersen_hash, Personalization};
|
||||
|
||||
#[bench]
|
||||
fn bench_pedersen_hash(b: &mut test::Bencher) {
|
||||
let params = JubjubBls12::new();
|
||||
let rng = &mut thread_rng();
|
||||
let bits = (0..510).map(|_| bool::rand(rng)).collect::<Vec<_>>();
|
||||
let personalization = Personalization::MerkleTree(31);
|
||||
|
||||
b.iter(|| {
|
||||
pedersen_hash::<Bls12, _>(personalization, bits.clone(), ¶ms)
|
||||
});
|
||||
}
|
102
sapling-crypto/examples/bench.rs
Normal file
102
sapling-crypto/examples/bench.rs
Normal file
@ -0,0 +1,102 @@
|
||||
extern crate sapling_crypto;
|
||||
extern crate bellman;
|
||||
extern crate rand;
|
||||
extern crate pairing;
|
||||
|
||||
use std::time::{Duration, Instant};
|
||||
use sapling_crypto::jubjub::{
|
||||
JubjubBls12,
|
||||
edwards,
|
||||
fs,
|
||||
};
|
||||
use sapling_crypto::circuit::sapling::{
|
||||
Spend
|
||||
};
|
||||
use sapling_crypto::primitives::{
|
||||
Diversifier,
|
||||
ProofGenerationKey,
|
||||
ValueCommitment
|
||||
};
|
||||
use bellman::groth16::*;
|
||||
use rand::{XorShiftRng, SeedableRng, Rng};
|
||||
use pairing::bls12_381::{Bls12, Fr};
|
||||
|
||||
const TREE_DEPTH: usize = 32;
|
||||
|
||||
fn main() {
|
||||
let jubjub_params = &JubjubBls12::new();
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
println!("Creating sample parameters...");
|
||||
let groth_params = generate_random_parameters::<Bls12, _, _>(
|
||||
Spend {
|
||||
params: jubjub_params,
|
||||
value_commitment: None,
|
||||
proof_generation_key: None,
|
||||
payment_address: None,
|
||||
commitment_randomness: None,
|
||||
ar: None,
|
||||
auth_path: vec![None; TREE_DEPTH],
|
||||
anchor: None
|
||||
},
|
||||
rng
|
||||
).unwrap();
|
||||
|
||||
const SAMPLES: u32 = 50;
|
||||
|
||||
let mut total_time = Duration::new(0, 0);
|
||||
for _ in 0..SAMPLES {
|
||||
let value_commitment = ValueCommitment {
|
||||
value: 1,
|
||||
randomness: rng.gen()
|
||||
};
|
||||
|
||||
let nsk: fs::Fs = rng.gen();
|
||||
let ak = edwards::Point::rand(rng, jubjub_params).mul_by_cofactor(jubjub_params);
|
||||
|
||||
let proof_generation_key = ProofGenerationKey {
|
||||
ak: ak.clone(),
|
||||
nsk: nsk.clone()
|
||||
};
|
||||
|
||||
let viewing_key = proof_generation_key.into_viewing_key(jubjub_params);
|
||||
|
||||
let payment_address;
|
||||
|
||||
loop {
|
||||
let diversifier = Diversifier(rng.gen());
|
||||
|
||||
if let Some(p) = viewing_key.into_payment_address(
|
||||
diversifier,
|
||||
jubjub_params
|
||||
)
|
||||
{
|
||||
payment_address = p;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
let commitment_randomness: fs::Fs = rng.gen();
|
||||
let auth_path = vec![Some((rng.gen(), rng.gen())); TREE_DEPTH];
|
||||
let ar: fs::Fs = rng.gen();
|
||||
let anchor: Fr = rng.gen();
|
||||
|
||||
let start = Instant::now();
|
||||
let _ = create_random_proof(Spend {
|
||||
params: jubjub_params,
|
||||
value_commitment: Some(value_commitment),
|
||||
proof_generation_key: Some(proof_generation_key),
|
||||
payment_address: Some(payment_address),
|
||||
commitment_randomness: Some(commitment_randomness),
|
||||
ar: Some(ar),
|
||||
auth_path: auth_path,
|
||||
anchor: Some(anchor)
|
||||
}, &groth_params, rng).unwrap();
|
||||
total_time += start.elapsed();
|
||||
}
|
||||
let avg = total_time / SAMPLES;
|
||||
let avg = avg.subsec_nanos() as f64 / 1_000_000_000f64
|
||||
+ (avg.as_secs() as f64);
|
||||
|
||||
println!("Average proving time (in seconds): {}", avg);
|
||||
}
|
438
sapling-crypto/src/circuit/blake2s.rs
Normal file
438
sapling-crypto/src/circuit/blake2s.rs
Normal file
@ -0,0 +1,438 @@
|
||||
use pairing::{
|
||||
Engine,
|
||||
};
|
||||
|
||||
use bellman::{
|
||||
SynthesisError,
|
||||
ConstraintSystem
|
||||
};
|
||||
|
||||
use super::boolean::{
|
||||
Boolean
|
||||
};
|
||||
|
||||
use super::uint32::{
|
||||
UInt32
|
||||
};
|
||||
|
||||
use super::multieq::MultiEq;
|
||||
|
||||
/*
|
||||
2.1. Parameters
|
||||
The following table summarizes various parameters and their ranges:
|
||||
| BLAKE2b | BLAKE2s |
|
||||
--------------+------------------+------------------+
|
||||
Bits in word | w = 64 | w = 32 |
|
||||
Rounds in F | r = 12 | r = 10 |
|
||||
Block bytes | bb = 128 | bb = 64 |
|
||||
Hash bytes | 1 <= nn <= 64 | 1 <= nn <= 32 |
|
||||
Key bytes | 0 <= kk <= 64 | 0 <= kk <= 32 |
|
||||
Input bytes | 0 <= ll < 2**128 | 0 <= ll < 2**64 |
|
||||
--------------+------------------+------------------+
|
||||
G Rotation | (R1, R2, R3, R4) | (R1, R2, R3, R4) |
|
||||
constants = | (32, 24, 16, 63) | (16, 12, 8, 7) |
|
||||
--------------+------------------+------------------+
|
||||
*/
|
||||
|
||||
const R1: usize = 16;
|
||||
const R2: usize = 12;
|
||||
const R3: usize = 8;
|
||||
const R4: usize = 7;
|
||||
|
||||
/*
|
||||
Round | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
||||
----------+-------------------------------------------------+
|
||||
SIGMA[0] | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
||||
SIGMA[1] | 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3 |
|
||||
SIGMA[2] | 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4 |
|
||||
SIGMA[3] | 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8 |
|
||||
SIGMA[4] | 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13 |
|
||||
SIGMA[5] | 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9 |
|
||||
SIGMA[6] | 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11 |
|
||||
SIGMA[7] | 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10 |
|
||||
SIGMA[8] | 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5 |
|
||||
SIGMA[9] | 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0 |
|
||||
----------+-------------------------------------------------+
|
||||
*/
|
||||
|
||||
const SIGMA: [[usize; 16]; 10] = [
|
||||
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
|
||||
[14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3],
|
||||
[11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4],
|
||||
[7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8],
|
||||
[9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13],
|
||||
[2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9],
|
||||
[12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11],
|
||||
[13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10],
|
||||
[6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5],
|
||||
[10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0]
|
||||
];
|
||||
|
||||
/*
|
||||
3.1. Mixing Function G
|
||||
The G primitive function mixes two input words, "x" and "y", into
|
||||
four words indexed by "a", "b", "c", and "d" in the working vector
|
||||
v[0..15]. The full modified vector is returned. The rotation
|
||||
constants (R1, R2, R3, R4) are given in Section 2.1.
|
||||
FUNCTION G( v[0..15], a, b, c, d, x, y )
|
||||
|
|
||||
| v[a] := (v[a] + v[b] + x) mod 2**w
|
||||
| v[d] := (v[d] ^ v[a]) >>> R1
|
||||
| v[c] := (v[c] + v[d]) mod 2**w
|
||||
| v[b] := (v[b] ^ v[c]) >>> R2
|
||||
| v[a] := (v[a] + v[b] + y) mod 2**w
|
||||
| v[d] := (v[d] ^ v[a]) >>> R3
|
||||
| v[c] := (v[c] + v[d]) mod 2**w
|
||||
| v[b] := (v[b] ^ v[c]) >>> R4
|
||||
|
|
||||
| RETURN v[0..15]
|
||||
|
|
||||
END FUNCTION.
|
||||
*/
|
||||
|
||||
fn mixing_g<E: Engine, CS: ConstraintSystem<E>, M>(
|
||||
mut cs: M,
|
||||
v: &mut [UInt32],
|
||||
a: usize,
|
||||
b: usize,
|
||||
c: usize,
|
||||
d: usize,
|
||||
x: &UInt32,
|
||||
y: &UInt32
|
||||
) -> Result<(), SynthesisError>
|
||||
where M: ConstraintSystem<E, Root=MultiEq<E, CS>>
|
||||
{
|
||||
v[a] = UInt32::addmany(cs.namespace(|| "mixing step 1"), &[v[a].clone(), v[b].clone(), x.clone()])?;
|
||||
v[d] = v[d].xor(cs.namespace(|| "mixing step 2"), &v[a])?.rotr(R1);
|
||||
v[c] = UInt32::addmany(cs.namespace(|| "mixing step 3"), &[v[c].clone(), v[d].clone()])?;
|
||||
v[b] = v[b].xor(cs.namespace(|| "mixing step 4"), &v[c])?.rotr(R2);
|
||||
v[a] = UInt32::addmany(cs.namespace(|| "mixing step 5"), &[v[a].clone(), v[b].clone(), y.clone()])?;
|
||||
v[d] = v[d].xor(cs.namespace(|| "mixing step 6"), &v[a])?.rotr(R3);
|
||||
v[c] = UInt32::addmany(cs.namespace(|| "mixing step 7"), &[v[c].clone(), v[d].clone()])?;
|
||||
v[b] = v[b].xor(cs.namespace(|| "mixing step 8"), &v[c])?.rotr(R4);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/*
|
||||
3.2. Compression Function F
|
||||
Compression function F takes as an argument the state vector "h",
|
||||
message block vector "m" (last block is padded with zeros to full
|
||||
block size, if required), 2w-bit offset counter "t", and final block
|
||||
indicator flag "f". Local vector v[0..15] is used in processing. F
|
||||
returns a new state vector. The number of rounds, "r", is 12 for
|
||||
BLAKE2b and 10 for BLAKE2s. Rounds are numbered from 0 to r - 1.
|
||||
FUNCTION F( h[0..7], m[0..15], t, f )
|
||||
|
|
||||
| // Initialize local work vector v[0..15]
|
||||
| v[0..7] := h[0..7] // First half from state.
|
||||
| v[8..15] := IV[0..7] // Second half from IV.
|
||||
|
|
||||
| v[12] := v[12] ^ (t mod 2**w) // Low word of the offset.
|
||||
| v[13] := v[13] ^ (t >> w) // High word.
|
||||
|
|
||||
| IF f = TRUE THEN // last block flag?
|
||||
| | v[14] := v[14] ^ 0xFF..FF // Invert all bits.
|
||||
| END IF.
|
||||
|
|
||||
| // Cryptographic mixing
|
||||
| FOR i = 0 TO r - 1 DO // Ten or twelve rounds.
|
||||
| |
|
||||
| | // Message word selection permutation for this round.
|
||||
| | s[0..15] := SIGMA[i mod 10][0..15]
|
||||
| |
|
||||
| | v := G( v, 0, 4, 8, 12, m[s[ 0]], m[s[ 1]] )
|
||||
| | v := G( v, 1, 5, 9, 13, m[s[ 2]], m[s[ 3]] )
|
||||
| | v := G( v, 2, 6, 10, 14, m[s[ 4]], m[s[ 5]] )
|
||||
| | v := G( v, 3, 7, 11, 15, m[s[ 6]], m[s[ 7]] )
|
||||
| |
|
||||
| | v := G( v, 0, 5, 10, 15, m[s[ 8]], m[s[ 9]] )
|
||||
| | v := G( v, 1, 6, 11, 12, m[s[10]], m[s[11]] )
|
||||
| | v := G( v, 2, 7, 8, 13, m[s[12]], m[s[13]] )
|
||||
| | v := G( v, 3, 4, 9, 14, m[s[14]], m[s[15]] )
|
||||
| |
|
||||
| END FOR
|
||||
|
|
||||
| FOR i = 0 TO 7 DO // XOR the two halves.
|
||||
| | h[i] := h[i] ^ v[i] ^ v[i + 8]
|
||||
| END FOR.
|
||||
|
|
||||
| RETURN h[0..7] // New state.
|
||||
|
|
||||
END FUNCTION.
|
||||
*/
|
||||
|
||||
|
||||
fn blake2s_compression<E: Engine, CS: ConstraintSystem<E>>(
|
||||
mut cs: CS,
|
||||
h: &mut [UInt32],
|
||||
m: &[UInt32],
|
||||
t: u64,
|
||||
f: bool
|
||||
) -> Result<(), SynthesisError>
|
||||
{
|
||||
assert_eq!(h.len(), 8);
|
||||
assert_eq!(m.len(), 16);
|
||||
|
||||
/*
|
||||
static const uint32_t blake2s_iv[8] =
|
||||
{
|
||||
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
|
||||
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
|
||||
};
|
||||
*/
|
||||
|
||||
let mut v = Vec::with_capacity(16);
|
||||
v.extend_from_slice(h);
|
||||
v.push(UInt32::constant(0x6A09E667));
|
||||
v.push(UInt32::constant(0xBB67AE85));
|
||||
v.push(UInt32::constant(0x3C6EF372));
|
||||
v.push(UInt32::constant(0xA54FF53A));
|
||||
v.push(UInt32::constant(0x510E527F));
|
||||
v.push(UInt32::constant(0x9B05688C));
|
||||
v.push(UInt32::constant(0x1F83D9AB));
|
||||
v.push(UInt32::constant(0x5BE0CD19));
|
||||
|
||||
assert_eq!(v.len(), 16);
|
||||
|
||||
v[12] = v[12].xor(cs.namespace(|| "first xor"), &UInt32::constant(t as u32))?;
|
||||
v[13] = v[13].xor(cs.namespace(|| "second xor"), &UInt32::constant((t >> 32) as u32))?;
|
||||
|
||||
if f {
|
||||
v[14] = v[14].xor(cs.namespace(|| "third xor"), &UInt32::constant(u32::max_value()))?;
|
||||
}
|
||||
|
||||
{
|
||||
let mut cs = MultiEq::new(&mut cs);
|
||||
|
||||
for i in 0..10 {
|
||||
let mut cs = cs.namespace(|| format!("round {}", i));
|
||||
|
||||
let s = SIGMA[i % 10];
|
||||
|
||||
mixing_g(cs.namespace(|| "mixing invocation 1"), &mut v, 0, 4, 8, 12, &m[s[ 0]], &m[s[ 1]])?;
|
||||
mixing_g(cs.namespace(|| "mixing invocation 2"), &mut v, 1, 5, 9, 13, &m[s[ 2]], &m[s[ 3]])?;
|
||||
mixing_g(cs.namespace(|| "mixing invocation 3"), &mut v, 2, 6, 10, 14, &m[s[ 4]], &m[s[ 5]])?;
|
||||
mixing_g(cs.namespace(|| "mixing invocation 4"), &mut v, 3, 7, 11, 15, &m[s[ 6]], &m[s[ 7]])?;
|
||||
|
||||
mixing_g(cs.namespace(|| "mixing invocation 5"), &mut v, 0, 5, 10, 15, &m[s[ 8]], &m[s[ 9]])?;
|
||||
mixing_g(cs.namespace(|| "mixing invocation 6"), &mut v, 1, 6, 11, 12, &m[s[10]], &m[s[11]])?;
|
||||
mixing_g(cs.namespace(|| "mixing invocation 7"), &mut v, 2, 7, 8, 13, &m[s[12]], &m[s[13]])?;
|
||||
mixing_g(cs.namespace(|| "mixing invocation 8"), &mut v, 3, 4, 9, 14, &m[s[14]], &m[s[15]])?;
|
||||
}
|
||||
}
|
||||
|
||||
for i in 0..8 {
|
||||
let mut cs = cs.namespace(|| format!("h[{i}] ^ v[{i}] ^ v[{i} + 8]", i=i));
|
||||
|
||||
h[i] = h[i].xor(cs.namespace(|| "first xor"), &v[i])?;
|
||||
h[i] = h[i].xor(cs.namespace(|| "second xor"), &v[i + 8])?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/*
|
||||
FUNCTION BLAKE2( d[0..dd-1], ll, kk, nn )
|
||||
|
|
||||
| h[0..7] := IV[0..7] // Initialization Vector.
|
||||
|
|
||||
| // Parameter block p[0]
|
||||
| h[0] := h[0] ^ 0x01010000 ^ (kk << 8) ^ nn
|
||||
|
|
||||
| // Process padded key and data blocks
|
||||
| IF dd > 1 THEN
|
||||
| | FOR i = 0 TO dd - 2 DO
|
||||
| | | h := F( h, d[i], (i + 1) * bb, FALSE )
|
||||
| | END FOR.
|
||||
| END IF.
|
||||
|
|
||||
| // Final block.
|
||||
| IF kk = 0 THEN
|
||||
| | h := F( h, d[dd - 1], ll, TRUE )
|
||||
| ELSE
|
||||
| | h := F( h, d[dd - 1], ll + bb, TRUE )
|
||||
| END IF.
|
||||
|
|
||||
| RETURN first "nn" bytes from little-endian word array h[].
|
||||
|
|
||||
END FUNCTION.
|
||||
*/
|
||||
|
||||
pub fn blake2s<E: Engine, CS: ConstraintSystem<E>>(
|
||||
mut cs: CS,
|
||||
input: &[Boolean],
|
||||
personalization: &[u8]
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
{
|
||||
use byteorder::{ByteOrder, LittleEndian};
|
||||
|
||||
assert_eq!(personalization.len(), 8);
|
||||
assert!(input.len() % 8 == 0);
|
||||
|
||||
let mut h = Vec::with_capacity(8);
|
||||
h.push(UInt32::constant(0x6A09E667 ^ 0x01010000 ^ 32));
|
||||
h.push(UInt32::constant(0xBB67AE85));
|
||||
h.push(UInt32::constant(0x3C6EF372));
|
||||
h.push(UInt32::constant(0xA54FF53A));
|
||||
h.push(UInt32::constant(0x510E527F));
|
||||
h.push(UInt32::constant(0x9B05688C));
|
||||
|
||||
// Personalization is stored here
|
||||
h.push(UInt32::constant(0x1F83D9AB ^ LittleEndian::read_u32(&personalization[0..4])));
|
||||
h.push(UInt32::constant(0x5BE0CD19 ^ LittleEndian::read_u32(&personalization[4..8])));
|
||||
|
||||
let mut blocks: Vec<Vec<UInt32>> = vec![];
|
||||
|
||||
for block in input.chunks(512) {
|
||||
let mut this_block = Vec::with_capacity(16);
|
||||
for word in block.chunks(32) {
|
||||
let mut tmp = word.to_vec();
|
||||
while tmp.len() < 32 {
|
||||
tmp.push(Boolean::constant(false));
|
||||
}
|
||||
this_block.push(UInt32::from_bits(&tmp));
|
||||
}
|
||||
while this_block.len() < 16 {
|
||||
this_block.push(UInt32::constant(0));
|
||||
}
|
||||
blocks.push(this_block);
|
||||
}
|
||||
|
||||
if blocks.len() == 0 {
|
||||
blocks.push((0..16).map(|_| UInt32::constant(0)).collect());
|
||||
}
|
||||
|
||||
for (i, block) in blocks[0..blocks.len() - 1].iter().enumerate() {
|
||||
let cs = cs.namespace(|| format!("block {}", i));
|
||||
|
||||
blake2s_compression(cs, &mut h, block, ((i as u64) + 1) * 64, false)?;
|
||||
}
|
||||
|
||||
{
|
||||
let cs = cs.namespace(|| "final block");
|
||||
|
||||
blake2s_compression(cs, &mut h, &blocks[blocks.len() - 1], (input.len() / 8) as u64, true)?;
|
||||
}
|
||||
|
||||
Ok(h.iter().flat_map(|b| b.into_bits()).collect())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use rand::{XorShiftRng, SeedableRng, Rng};
|
||||
use pairing::bls12_381::{Bls12};
|
||||
use ::circuit::boolean::{Boolean, AllocatedBit};
|
||||
use ::circuit::test::TestConstraintSystem;
|
||||
use super::blake2s;
|
||||
use bellman::{ConstraintSystem};
|
||||
use blake2_rfc::blake2s::Blake2s;
|
||||
|
||||
#[test]
|
||||
fn test_blank_hash() {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
let input_bits = vec![];
|
||||
let out = blake2s(&mut cs, &input_bits, b"12345678").unwrap();
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 0);
|
||||
|
||||
// >>> import blake2s from hashlib
|
||||
// >>> h = blake2s(digest_size=32, person=b'12345678')
|
||||
// >>> h.hexdigest()
|
||||
let expected = hex!("c59f682376d137f3f255e671e207d1f2374ebe504e9314208a52d9f88d69e8c8");
|
||||
|
||||
let mut out = out.into_iter();
|
||||
for b in expected.into_iter() {
|
||||
for i in 0..8 {
|
||||
let c = out.next().unwrap().get_value().unwrap();
|
||||
|
||||
assert_eq!(c, (b >> i) & 1u8 == 1u8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_blake2s_constraints() {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
let input_bits: Vec<_> = (0..512).map(|i| AllocatedBit::alloc(cs.namespace(|| format!("input bit {}", i)), Some(true)).unwrap().into()).collect();
|
||||
blake2s(&mut cs, &input_bits, b"12345678").unwrap();
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 21518);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_blake2s_precomp_constraints() {
|
||||
// Test that 512 fixed leading bits (constants)
|
||||
// doesn't result in more constraints.
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
let input_bits: Vec<_> = (0..512)
|
||||
.map(|_| Boolean::constant(rng.gen()))
|
||||
.chain((0..512)
|
||||
.map(|i| AllocatedBit::alloc(cs.namespace(|| format!("input bit {}", i)), Some(true)).unwrap().into()))
|
||||
.collect();
|
||||
blake2s(&mut cs, &input_bits, b"12345678").unwrap();
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 21518);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_blake2s_constant_constraints() {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
let input_bits: Vec<_> = (0..512).map(|_| Boolean::constant(rng.gen())).collect();
|
||||
blake2s(&mut cs, &input_bits, b"12345678").unwrap();
|
||||
assert_eq!(cs.num_constraints(), 0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_blake2s() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for input_len in (0..32).chain((32..256).filter(|a| a % 8 == 0))
|
||||
{
|
||||
let mut h = Blake2s::with_params(32, &[], &[], b"12345678");
|
||||
|
||||
let data: Vec<u8> = (0..input_len).map(|_| rng.gen()).collect();
|
||||
|
||||
h.update(&data);
|
||||
|
||||
let hash_result = h.finalize();
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let mut input_bits = vec![];
|
||||
|
||||
for (byte_i, input_byte) in data.into_iter().enumerate() {
|
||||
for bit_i in 0..8 {
|
||||
let cs = cs.namespace(|| format!("input bit {} {}", byte_i, bit_i));
|
||||
|
||||
input_bits.push(AllocatedBit::alloc(cs, Some((input_byte >> bit_i) & 1u8 == 1u8)).unwrap().into());
|
||||
}
|
||||
}
|
||||
|
||||
let r = blake2s(&mut cs, &input_bits, b"12345678").unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
let mut s = hash_result.as_ref().iter()
|
||||
.flat_map(|&byte| (0..8).map(move |i| (byte >> i) & 1u8 == 1u8));
|
||||
|
||||
for b in r {
|
||||
match b {
|
||||
Boolean::Is(b) => {
|
||||
assert!(s.next().unwrap() == b.get_value().unwrap());
|
||||
},
|
||||
Boolean::Not(b) => {
|
||||
assert!(s.next().unwrap() != b.get_value().unwrap());
|
||||
},
|
||||
Boolean::Constant(b) => {
|
||||
assert!(input_len == 0);
|
||||
assert!(s.next().unwrap() == b);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
1582
sapling-crypto/src/circuit/boolean.rs
Normal file
1582
sapling-crypto/src/circuit/boolean.rs
Normal file
File diff suppressed because it is too large
Load Diff
1213
sapling-crypto/src/circuit/ecc.rs
Normal file
1213
sapling-crypto/src/circuit/ecc.rs
Normal file
File diff suppressed because it is too large
Load Diff
307
sapling-crypto/src/circuit/lookup.rs
Normal file
307
sapling-crypto/src/circuit/lookup.rs
Normal file
@ -0,0 +1,307 @@
|
||||
use pairing::{Engine, Field};
|
||||
use super::*;
|
||||
use super::num::{
|
||||
AllocatedNum,
|
||||
Num
|
||||
};
|
||||
use super::boolean::Boolean;
|
||||
use bellman::{
|
||||
ConstraintSystem
|
||||
};
|
||||
|
||||
// Synthesize the constants for each base pattern.
|
||||
fn synth<'a, E: Engine, I>(
|
||||
window_size: usize,
|
||||
constants: I,
|
||||
assignment: &mut [E::Fr]
|
||||
)
|
||||
where I: IntoIterator<Item=&'a E::Fr>
|
||||
{
|
||||
assert_eq!(assignment.len(), 1 << window_size);
|
||||
|
||||
for (i, constant) in constants.into_iter().enumerate() {
|
||||
let mut cur = assignment[i];
|
||||
cur.negate();
|
||||
cur.add_assign(constant);
|
||||
assignment[i] = cur;
|
||||
for (j, eval) in assignment.iter_mut().enumerate().skip(i + 1) {
|
||||
if j & i == i {
|
||||
eval.add_assign(&cur);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Performs a 3-bit window table lookup. `bits` is in
|
||||
/// little-endian order.
|
||||
pub fn lookup3_xy<E: Engine, CS>(
|
||||
mut cs: CS,
|
||||
bits: &[Boolean],
|
||||
coords: &[(E::Fr, E::Fr)]
|
||||
) -> Result<(AllocatedNum<E>, AllocatedNum<E>), SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
assert_eq!(bits.len(), 3);
|
||||
assert_eq!(coords.len(), 8);
|
||||
|
||||
// Calculate the index into `coords`
|
||||
let i =
|
||||
match (bits[0].get_value(), bits[1].get_value(), bits[2].get_value()) {
|
||||
(Some(a_value), Some(b_value), Some(c_value)) => {
|
||||
let mut tmp = 0;
|
||||
if a_value {
|
||||
tmp += 1;
|
||||
}
|
||||
if b_value {
|
||||
tmp += 2;
|
||||
}
|
||||
if c_value {
|
||||
tmp += 4;
|
||||
}
|
||||
Some(tmp)
|
||||
},
|
||||
_ => None
|
||||
};
|
||||
|
||||
// Allocate the x-coordinate resulting from the lookup
|
||||
let res_x = AllocatedNum::alloc(
|
||||
cs.namespace(|| "x"),
|
||||
|| {
|
||||
Ok(coords[*i.get()?].0)
|
||||
}
|
||||
)?;
|
||||
|
||||
// Allocate the y-coordinate resulting from the lookup
|
||||
let res_y = AllocatedNum::alloc(
|
||||
cs.namespace(|| "y"),
|
||||
|| {
|
||||
Ok(coords[*i.get()?].1)
|
||||
}
|
||||
)?;
|
||||
|
||||
// Compute the coefficients for the lookup constraints
|
||||
let mut x_coeffs = [E::Fr::zero(); 8];
|
||||
let mut y_coeffs = [E::Fr::zero(); 8];
|
||||
synth::<E, _>(3, coords.iter().map(|c| &c.0), &mut x_coeffs);
|
||||
synth::<E, _>(3, coords.iter().map(|c| &c.1), &mut y_coeffs);
|
||||
|
||||
let precomp = Boolean::and(cs.namespace(|| "precomp"), &bits[1], &bits[2])?;
|
||||
|
||||
let one = CS::one();
|
||||
|
||||
cs.enforce(
|
||||
|| "x-coordinate lookup",
|
||||
|lc| lc + (x_coeffs[0b001], one)
|
||||
+ &bits[1].lc::<E>(one, x_coeffs[0b011])
|
||||
+ &bits[2].lc::<E>(one, x_coeffs[0b101])
|
||||
+ &precomp.lc::<E>(one, x_coeffs[0b111]),
|
||||
|lc| lc + &bits[0].lc::<E>(one, E::Fr::one()),
|
||||
|lc| lc + res_x.get_variable()
|
||||
- (x_coeffs[0b000], one)
|
||||
- &bits[1].lc::<E>(one, x_coeffs[0b010])
|
||||
- &bits[2].lc::<E>(one, x_coeffs[0b100])
|
||||
- &precomp.lc::<E>(one, x_coeffs[0b110]),
|
||||
);
|
||||
|
||||
cs.enforce(
|
||||
|| "y-coordinate lookup",
|
||||
|lc| lc + (y_coeffs[0b001], one)
|
||||
+ &bits[1].lc::<E>(one, y_coeffs[0b011])
|
||||
+ &bits[2].lc::<E>(one, y_coeffs[0b101])
|
||||
+ &precomp.lc::<E>(one, y_coeffs[0b111]),
|
||||
|lc| lc + &bits[0].lc::<E>(one, E::Fr::one()),
|
||||
|lc| lc + res_y.get_variable()
|
||||
- (y_coeffs[0b000], one)
|
||||
- &bits[1].lc::<E>(one, y_coeffs[0b010])
|
||||
- &bits[2].lc::<E>(one, y_coeffs[0b100])
|
||||
- &precomp.lc::<E>(one, y_coeffs[0b110]),
|
||||
);
|
||||
|
||||
Ok((res_x, res_y))
|
||||
}
|
||||
|
||||
/// Performs a 3-bit window table lookup, where
|
||||
/// one of the bits is a sign bit.
|
||||
pub fn lookup3_xy_with_conditional_negation<E: Engine, CS>(
|
||||
mut cs: CS,
|
||||
bits: &[Boolean],
|
||||
coords: &[(E::Fr, E::Fr)]
|
||||
) -> Result<(Num<E>, Num<E>), SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
assert_eq!(bits.len(), 3);
|
||||
assert_eq!(coords.len(), 4);
|
||||
|
||||
// Calculate the index into `coords`
|
||||
let i =
|
||||
match (bits[0].get_value(), bits[1].get_value()) {
|
||||
(Some(a_value), Some(b_value)) => {
|
||||
let mut tmp = 0;
|
||||
if a_value {
|
||||
tmp += 1;
|
||||
}
|
||||
if b_value {
|
||||
tmp += 2;
|
||||
}
|
||||
Some(tmp)
|
||||
},
|
||||
_ => None
|
||||
};
|
||||
|
||||
// Allocate the y-coordinate resulting from the lookup
|
||||
// and conditional negation
|
||||
let y = AllocatedNum::alloc(
|
||||
cs.namespace(|| "y"),
|
||||
|| {
|
||||
let mut tmp = coords[*i.get()?].1;
|
||||
if *bits[2].get_value().get()? {
|
||||
tmp.negate();
|
||||
}
|
||||
Ok(tmp)
|
||||
}
|
||||
)?;
|
||||
|
||||
let one = CS::one();
|
||||
|
||||
// Compute the coefficients for the lookup constraints
|
||||
let mut x_coeffs = [E::Fr::zero(); 4];
|
||||
let mut y_coeffs = [E::Fr::zero(); 4];
|
||||
synth::<E, _>(2, coords.iter().map(|c| &c.0), &mut x_coeffs);
|
||||
synth::<E, _>(2, coords.iter().map(|c| &c.1), &mut y_coeffs);
|
||||
|
||||
let precomp = Boolean::and(cs.namespace(|| "precomp"), &bits[0], &bits[1])?;
|
||||
|
||||
let x = Num::zero()
|
||||
.add_bool_with_coeff(one, &Boolean::constant(true), x_coeffs[0b00])
|
||||
.add_bool_with_coeff(one, &bits[0], x_coeffs[0b01])
|
||||
.add_bool_with_coeff(one, &bits[1], x_coeffs[0b10])
|
||||
.add_bool_with_coeff(one, &precomp, x_coeffs[0b11]);
|
||||
|
||||
let y_lc = precomp.lc::<E>(one, y_coeffs[0b11]) +
|
||||
&bits[1].lc::<E>(one, y_coeffs[0b10]) +
|
||||
&bits[0].lc::<E>(one, y_coeffs[0b01]) +
|
||||
(y_coeffs[0b00], one);
|
||||
|
||||
cs.enforce(
|
||||
|| "y-coordinate lookup",
|
||||
|lc| lc + &y_lc + &y_lc,
|
||||
|lc| lc + &bits[2].lc::<E>(one, E::Fr::one()),
|
||||
|lc| lc + &y_lc - y.get_variable()
|
||||
);
|
||||
|
||||
Ok((x, y.into()))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use rand::{SeedableRng, Rand, Rng, XorShiftRng};
|
||||
use super::*;
|
||||
use ::circuit::test::*;
|
||||
use ::circuit::boolean::{Boolean, AllocatedBit};
|
||||
use pairing::bls12_381::{Bls12, Fr};
|
||||
|
||||
#[test]
|
||||
fn test_lookup3_xy() {
|
||||
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0656]);
|
||||
|
||||
for _ in 0..100 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a_val = rng.gen();
|
||||
let a = Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| "a"), Some(a_val)).unwrap()
|
||||
);
|
||||
|
||||
let b_val = rng.gen();
|
||||
let b = Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| "b"), Some(b_val)).unwrap()
|
||||
);
|
||||
|
||||
let c_val = rng.gen();
|
||||
let c = Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| "c"), Some(c_val)).unwrap()
|
||||
);
|
||||
|
||||
let bits = vec![a, b, c];
|
||||
|
||||
let points: Vec<(Fr, Fr)> = (0..8).map(|_| (rng.gen(), rng.gen())).collect();
|
||||
|
||||
let res = lookup3_xy(&mut cs, &bits, &points).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
let mut index = 0;
|
||||
if a_val { index += 1 }
|
||||
if b_val { index += 2 }
|
||||
if c_val { index += 4 }
|
||||
|
||||
assert_eq!(res.0.get_value().unwrap(), points[index].0);
|
||||
assert_eq!(res.1.get_value().unwrap(), points[index].1);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_lookup3_xy_with_conditional_negation() {
|
||||
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..100 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a_val = rng.gen();
|
||||
let a = Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| "a"), Some(a_val)).unwrap()
|
||||
);
|
||||
|
||||
let b_val = rng.gen();
|
||||
let b = Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| "b"), Some(b_val)).unwrap()
|
||||
);
|
||||
|
||||
let c_val = rng.gen();
|
||||
let c = Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| "c"), Some(c_val)).unwrap()
|
||||
);
|
||||
|
||||
let bits = vec![a, b, c];
|
||||
|
||||
let points: Vec<(Fr, Fr)> = (0..4).map(|_| (rng.gen(), rng.gen())).collect();
|
||||
|
||||
let res = lookup3_xy_with_conditional_negation(&mut cs, &bits, &points).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
let mut index = 0;
|
||||
if a_val { index += 1 }
|
||||
if b_val { index += 2 }
|
||||
|
||||
assert_eq!(res.0.get_value().unwrap(), points[index].0);
|
||||
let mut tmp = points[index].1;
|
||||
if c_val { tmp.negate() }
|
||||
assert_eq!(res.1.get_value().unwrap(), tmp);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_synth() {
|
||||
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let window_size = 4;
|
||||
|
||||
let mut assignment = vec![Fr::zero(); 1 << window_size];
|
||||
let constants: Vec<_> = (0..(1 << window_size)).map(|_| Fr::rand(&mut rng)).collect();
|
||||
|
||||
synth::<Bls12, _>(window_size, &constants, &mut assignment);
|
||||
|
||||
for b in 0..(1 << window_size) {
|
||||
let mut acc = Fr::zero();
|
||||
|
||||
for j in 0..(1 << window_size) {
|
||||
if j & b == j {
|
||||
acc.add_assign(&assignment[j]);
|
||||
}
|
||||
}
|
||||
|
||||
assert_eq!(acc, constants[b]);
|
||||
}
|
||||
}
|
||||
}
|
39
sapling-crypto/src/circuit/mod.rs
Normal file
39
sapling-crypto/src/circuit/mod.rs
Normal file
@ -0,0 +1,39 @@
|
||||
#[cfg(test)]
|
||||
pub mod test;
|
||||
|
||||
pub mod boolean;
|
||||
pub mod multieq;
|
||||
pub mod uint32;
|
||||
pub mod blake2s;
|
||||
pub mod num;
|
||||
pub mod lookup;
|
||||
pub mod ecc;
|
||||
pub mod pedersen_hash;
|
||||
pub mod multipack;
|
||||
pub mod sha256;
|
||||
|
||||
pub mod sapling;
|
||||
pub mod sprout;
|
||||
|
||||
use bellman::{
|
||||
SynthesisError
|
||||
};
|
||||
|
||||
// TODO: This should probably be removed and we
|
||||
// should use existing helper methods on `Option`
|
||||
// for mapping with an error.
|
||||
/// This basically is just an extension to `Option`
|
||||
/// which allows for a convenient mapping to an
|
||||
/// error on `None`.
|
||||
trait Assignment<T> {
|
||||
fn get(&self) -> Result<&T, SynthesisError>;
|
||||
}
|
||||
|
||||
impl<T> Assignment<T> for Option<T> {
|
||||
fn get(&self) -> Result<&T, SynthesisError> {
|
||||
match *self {
|
||||
Some(ref v) => Ok(v),
|
||||
None => Err(SynthesisError::AssignmentMissing)
|
||||
}
|
||||
}
|
||||
}
|
137
sapling-crypto/src/circuit/multieq.rs
Normal file
137
sapling-crypto/src/circuit/multieq.rs
Normal file
@ -0,0 +1,137 @@
|
||||
use pairing::{
|
||||
Engine,
|
||||
Field,
|
||||
PrimeField
|
||||
};
|
||||
|
||||
use bellman::{
|
||||
SynthesisError,
|
||||
ConstraintSystem,
|
||||
LinearCombination,
|
||||
Variable
|
||||
};
|
||||
|
||||
pub struct MultiEq<E: Engine, CS: ConstraintSystem<E>>{
|
||||
cs: CS,
|
||||
ops: usize,
|
||||
bits_used: usize,
|
||||
lhs: LinearCombination<E>,
|
||||
rhs: LinearCombination<E>,
|
||||
}
|
||||
|
||||
impl<E: Engine, CS: ConstraintSystem<E>> MultiEq<E, CS> {
|
||||
pub fn new(cs: CS) -> Self {
|
||||
MultiEq {
|
||||
cs: cs,
|
||||
ops: 0,
|
||||
bits_used: 0,
|
||||
lhs: LinearCombination::zero(),
|
||||
rhs: LinearCombination::zero()
|
||||
}
|
||||
}
|
||||
|
||||
fn accumulate(&mut self)
|
||||
{
|
||||
let ops = self.ops;
|
||||
let lhs = self.lhs.clone();
|
||||
let rhs = self.rhs.clone();
|
||||
self.cs.enforce(
|
||||
|| format!("multieq {}", ops),
|
||||
|_| lhs,
|
||||
|lc| lc + CS::one(),
|
||||
|_| rhs
|
||||
);
|
||||
self.lhs = LinearCombination::zero();
|
||||
self.rhs = LinearCombination::zero();
|
||||
self.bits_used = 0;
|
||||
self.ops += 1;
|
||||
}
|
||||
|
||||
pub fn enforce_equal(
|
||||
&mut self,
|
||||
num_bits: usize,
|
||||
lhs: &LinearCombination<E>,
|
||||
rhs: &LinearCombination<E>
|
||||
)
|
||||
{
|
||||
// Check if we will exceed the capacity
|
||||
if (E::Fr::CAPACITY as usize) <= (self.bits_used + num_bits) {
|
||||
self.accumulate();
|
||||
}
|
||||
|
||||
assert!((E::Fr::CAPACITY as usize) > (self.bits_used + num_bits));
|
||||
|
||||
let coeff = E::Fr::from_str("2").unwrap().pow(&[self.bits_used as u64]);
|
||||
self.lhs = self.lhs.clone() + (coeff, lhs);
|
||||
self.rhs = self.rhs.clone() + (coeff, rhs);
|
||||
self.bits_used += num_bits;
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine, CS: ConstraintSystem<E>> Drop for MultiEq<E, CS> {
|
||||
fn drop(&mut self) {
|
||||
if self.bits_used > 0 {
|
||||
self.accumulate();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine, CS: ConstraintSystem<E>> ConstraintSystem<E> for MultiEq<E, CS>
|
||||
{
|
||||
type Root = Self;
|
||||
|
||||
fn one() -> Variable {
|
||||
CS::one()
|
||||
}
|
||||
|
||||
fn alloc<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
self.cs.alloc(annotation, f)
|
||||
}
|
||||
|
||||
fn alloc_input<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
self.cs.alloc_input(annotation, f)
|
||||
}
|
||||
|
||||
fn enforce<A, AR, LA, LB, LC>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
a: LA,
|
||||
b: LB,
|
||||
c: LC
|
||||
)
|
||||
where A: FnOnce() -> AR, AR: Into<String>,
|
||||
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
|
||||
{
|
||||
self.cs.enforce(annotation, a, b, c)
|
||||
}
|
||||
|
||||
fn push_namespace<NR, N>(&mut self, name_fn: N)
|
||||
where NR: Into<String>, N: FnOnce() -> NR
|
||||
{
|
||||
self.cs.get_root().push_namespace(name_fn)
|
||||
}
|
||||
|
||||
fn pop_namespace(&mut self)
|
||||
{
|
||||
self.cs.get_root().pop_namespace()
|
||||
}
|
||||
|
||||
fn get_root(&mut self) -> &mut Self::Root
|
||||
{
|
||||
self
|
||||
}
|
||||
}
|
113
sapling-crypto/src/circuit/multipack.rs
Normal file
113
sapling-crypto/src/circuit/multipack.rs
Normal file
@ -0,0 +1,113 @@
|
||||
use pairing::{Engine, Field, PrimeField};
|
||||
use bellman::{ConstraintSystem, SynthesisError};
|
||||
use super::boolean::{Boolean};
|
||||
use super::num::Num;
|
||||
use super::Assignment;
|
||||
|
||||
/// Takes a sequence of booleans and exposes them as compact
|
||||
/// public inputs
|
||||
pub fn pack_into_inputs<E, CS>(
|
||||
mut cs: CS,
|
||||
bits: &[Boolean]
|
||||
) -> Result<(), SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
for (i, bits) in bits.chunks(E::Fr::CAPACITY as usize).enumerate()
|
||||
{
|
||||
let mut num = Num::<E>::zero();
|
||||
let mut coeff = E::Fr::one();
|
||||
for bit in bits {
|
||||
num = num.add_bool_with_coeff(CS::one(), bit, coeff);
|
||||
|
||||
coeff.double();
|
||||
}
|
||||
|
||||
let input = cs.alloc_input(|| format!("input {}", i), || {
|
||||
Ok(*num.get_value().get()?)
|
||||
})?;
|
||||
|
||||
// num * 1 = input
|
||||
cs.enforce(
|
||||
|| format!("packing constraint {}", i),
|
||||
|_| num.lc(E::Fr::one()),
|
||||
|lc| lc + CS::one(),
|
||||
|lc| lc + input
|
||||
);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn bytes_to_bits(bytes: &[u8]) -> Vec<bool>
|
||||
{
|
||||
bytes.iter()
|
||||
.flat_map(|&v| (0..8).rev().map(move |i| (v >> i) & 1 == 1))
|
||||
.collect()
|
||||
}
|
||||
|
||||
pub fn bytes_to_bits_le(bytes: &[u8]) -> Vec<bool>
|
||||
{
|
||||
bytes.iter()
|
||||
.flat_map(|&v| (0..8).map(move |i| (v >> i) & 1 == 1))
|
||||
.collect()
|
||||
}
|
||||
|
||||
pub fn compute_multipacking<E: Engine>(
|
||||
bits: &[bool]
|
||||
) -> Vec<E::Fr>
|
||||
{
|
||||
let mut result = vec![];
|
||||
|
||||
for bits in bits.chunks(E::Fr::CAPACITY as usize)
|
||||
{
|
||||
let mut cur = E::Fr::zero();
|
||||
let mut coeff = E::Fr::one();
|
||||
|
||||
for bit in bits {
|
||||
if *bit {
|
||||
cur.add_assign(&coeff);
|
||||
}
|
||||
|
||||
coeff.double();
|
||||
}
|
||||
|
||||
result.push(cur);
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multipacking() {
|
||||
use rand::{SeedableRng, Rng, XorShiftRng};
|
||||
use bellman::{ConstraintSystem};
|
||||
use pairing::bls12_381::{Bls12};
|
||||
use ::circuit::test::*;
|
||||
use super::boolean::{AllocatedBit, Boolean};
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for num_bits in 0..1500 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let bits: Vec<bool> = (0..num_bits).map(|_| rng.gen()).collect();
|
||||
|
||||
let circuit_bits = bits.iter().enumerate()
|
||||
.map(|(i, &b)| {
|
||||
Boolean::from(
|
||||
AllocatedBit::alloc(
|
||||
cs.namespace(|| format!("bit {}", i)),
|
||||
Some(b)
|
||||
).unwrap()
|
||||
)
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let expected_inputs = compute_multipacking::<Bls12>(&bits);
|
||||
|
||||
pack_into_inputs(cs.namespace(|| "pack"), &circuit_bits).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
assert!(cs.verify(&expected_inputs));
|
||||
}
|
||||
}
|
622
sapling-crypto/src/circuit/num.rs
Normal file
622
sapling-crypto/src/circuit/num.rs
Normal file
@ -0,0 +1,622 @@
|
||||
use pairing::{
|
||||
Engine,
|
||||
Field,
|
||||
PrimeField,
|
||||
PrimeFieldRepr,
|
||||
BitIterator
|
||||
};
|
||||
|
||||
use bellman::{
|
||||
SynthesisError,
|
||||
ConstraintSystem,
|
||||
LinearCombination,
|
||||
Variable
|
||||
};
|
||||
|
||||
use super::{
|
||||
Assignment
|
||||
};
|
||||
|
||||
use super::boolean::{
|
||||
self,
|
||||
Boolean,
|
||||
AllocatedBit
|
||||
};
|
||||
|
||||
pub struct AllocatedNum<E: Engine> {
|
||||
value: Option<E::Fr>,
|
||||
variable: Variable
|
||||
}
|
||||
|
||||
impl<E: Engine> Clone for AllocatedNum<E> {
|
||||
fn clone(&self) -> Self {
|
||||
AllocatedNum {
|
||||
value: self.value,
|
||||
variable: self.variable
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> AllocatedNum<E> {
|
||||
pub fn alloc<CS, F>(
|
||||
mut cs: CS,
|
||||
value: F,
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E>,
|
||||
F: FnOnce() -> Result<E::Fr, SynthesisError>
|
||||
{
|
||||
let mut new_value = None;
|
||||
let var = cs.alloc(|| "num", || {
|
||||
let tmp = value()?;
|
||||
|
||||
new_value = Some(tmp);
|
||||
|
||||
Ok(tmp)
|
||||
})?;
|
||||
|
||||
Ok(AllocatedNum {
|
||||
value: new_value,
|
||||
variable: var
|
||||
})
|
||||
}
|
||||
|
||||
pub fn inputize<CS>(
|
||||
&self,
|
||||
mut cs: CS
|
||||
) -> Result<(), SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let input = cs.alloc_input(
|
||||
|| "input variable",
|
||||
|| {
|
||||
Ok(*self.value.get()?)
|
||||
}
|
||||
)?;
|
||||
|
||||
cs.enforce(
|
||||
|| "enforce input is correct",
|
||||
|lc| lc + input,
|
||||
|lc| lc + CS::one(),
|
||||
|lc| lc + self.variable
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Deconstructs this allocated number into its
|
||||
/// boolean representation in little-endian bit
|
||||
/// order, requiring that the representation
|
||||
/// strictly exists "in the field" (i.e., a
|
||||
/// congruency is not allowed.)
|
||||
pub fn into_bits_le_strict<CS>(
|
||||
&self,
|
||||
mut cs: CS
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
pub fn kary_and<E, CS>(
|
||||
mut cs: CS,
|
||||
v: &[AllocatedBit]
|
||||
) -> Result<AllocatedBit, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
assert!(v.len() > 0);
|
||||
|
||||
// Let's keep this simple for now and just AND them all
|
||||
// manually
|
||||
let mut cur = None;
|
||||
|
||||
for (i, v) in v.iter().enumerate() {
|
||||
if cur.is_none() {
|
||||
cur = Some(v.clone());
|
||||
} else {
|
||||
cur = Some(AllocatedBit::and(
|
||||
cs.namespace(|| format!("and {}", i)),
|
||||
cur.as_ref().unwrap(),
|
||||
v
|
||||
)?);
|
||||
}
|
||||
}
|
||||
|
||||
Ok(cur.expect("v.len() > 0"))
|
||||
}
|
||||
|
||||
// We want to ensure that the bit representation of a is
|
||||
// less than or equal to r - 1.
|
||||
let mut a = self.value.map(|e| BitIterator::new(e.into_repr()));
|
||||
let mut b = E::Fr::char();
|
||||
b.sub_noborrow(&1.into());
|
||||
|
||||
let mut result = vec![];
|
||||
|
||||
// Runs of ones in r
|
||||
let mut last_run = None;
|
||||
let mut current_run = vec![];
|
||||
|
||||
let mut found_one = false;
|
||||
let mut i = 0;
|
||||
for b in BitIterator::new(b) {
|
||||
let a_bit = a.as_mut().map(|e| e.next().unwrap());
|
||||
|
||||
// Skip over unset bits at the beginning
|
||||
found_one |= b;
|
||||
if !found_one {
|
||||
// a_bit should also be false
|
||||
a_bit.map(|e| assert!(!e));
|
||||
continue;
|
||||
}
|
||||
|
||||
if b {
|
||||
// This is part of a run of ones. Let's just
|
||||
// allocate the boolean with the expected value.
|
||||
let a_bit = AllocatedBit::alloc(
|
||||
cs.namespace(|| format!("bit {}", i)),
|
||||
a_bit
|
||||
)?;
|
||||
// ... and add it to the current run of ones.
|
||||
current_run.push(a_bit.clone());
|
||||
result.push(a_bit);
|
||||
} else {
|
||||
if current_run.len() > 0 {
|
||||
// This is the start of a run of zeros, but we need
|
||||
// to k-ary AND against `last_run` first.
|
||||
|
||||
if last_run.is_some() {
|
||||
current_run.push(last_run.clone().unwrap());
|
||||
}
|
||||
last_run = Some(kary_and(
|
||||
cs.namespace(|| format!("run ending at {}", i)),
|
||||
¤t_run
|
||||
)?);
|
||||
current_run.truncate(0);
|
||||
}
|
||||
|
||||
// If `last_run` is true, `a` must be false, or it would
|
||||
// not be in the field.
|
||||
//
|
||||
// If `last_run` is false, `a` can be true or false.
|
||||
|
||||
let a_bit = AllocatedBit::alloc_conditionally(
|
||||
cs.namespace(|| format!("bit {}", i)),
|
||||
a_bit,
|
||||
&last_run.as_ref().expect("char always starts with a one")
|
||||
)?;
|
||||
result.push(a_bit);
|
||||
}
|
||||
|
||||
i += 1;
|
||||
}
|
||||
|
||||
// char is prime, so we'll always end on
|
||||
// a run of zeros.
|
||||
assert_eq!(current_run.len(), 0);
|
||||
|
||||
// Now, we have `result` in big-endian order.
|
||||
// However, now we have to unpack self!
|
||||
|
||||
let mut lc = LinearCombination::zero();
|
||||
let mut coeff = E::Fr::one();
|
||||
|
||||
for bit in result.iter().rev() {
|
||||
lc = lc + (coeff, bit.get_variable());
|
||||
|
||||
coeff.double();
|
||||
}
|
||||
|
||||
lc = lc - self.variable;
|
||||
|
||||
cs.enforce(
|
||||
|| "unpacking constraint",
|
||||
|lc| lc,
|
||||
|lc| lc,
|
||||
|_| lc
|
||||
);
|
||||
|
||||
// Convert into booleans, and reverse for little-endian bit order
|
||||
Ok(result.into_iter().map(|b| Boolean::from(b)).rev().collect())
|
||||
}
|
||||
|
||||
/// Convert the allocated number into its little-endian representation.
|
||||
/// Note that this does not strongly enforce that the commitment is
|
||||
/// "in the field."
|
||||
pub fn into_bits_le<CS>(
|
||||
&self,
|
||||
mut cs: CS
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let bits = boolean::field_into_allocated_bits_le(
|
||||
&mut cs,
|
||||
self.value
|
||||
)?;
|
||||
|
||||
let mut lc = LinearCombination::zero();
|
||||
let mut coeff = E::Fr::one();
|
||||
|
||||
for bit in bits.iter() {
|
||||
lc = lc + (coeff, bit.get_variable());
|
||||
|
||||
coeff.double();
|
||||
}
|
||||
|
||||
lc = lc - self.variable;
|
||||
|
||||
cs.enforce(
|
||||
|| "unpacking constraint",
|
||||
|lc| lc,
|
||||
|lc| lc,
|
||||
|_| lc
|
||||
);
|
||||
|
||||
Ok(bits.into_iter().map(|b| Boolean::from(b)).collect())
|
||||
}
|
||||
|
||||
pub fn mul<CS>(
|
||||
&self,
|
||||
mut cs: CS,
|
||||
other: &Self
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let mut value = None;
|
||||
|
||||
let var = cs.alloc(|| "product num", || {
|
||||
let mut tmp = *self.value.get()?;
|
||||
tmp.mul_assign(other.value.get()?);
|
||||
|
||||
value = Some(tmp);
|
||||
|
||||
Ok(tmp)
|
||||
})?;
|
||||
|
||||
// Constrain: a * b = ab
|
||||
cs.enforce(
|
||||
|| "multiplication constraint",
|
||||
|lc| lc + self.variable,
|
||||
|lc| lc + other.variable,
|
||||
|lc| lc + var
|
||||
);
|
||||
|
||||
Ok(AllocatedNum {
|
||||
value: value,
|
||||
variable: var
|
||||
})
|
||||
}
|
||||
|
||||
pub fn square<CS>(
|
||||
&self,
|
||||
mut cs: CS
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let mut value = None;
|
||||
|
||||
let var = cs.alloc(|| "squared num", || {
|
||||
let mut tmp = *self.value.get()?;
|
||||
tmp.square();
|
||||
|
||||
value = Some(tmp);
|
||||
|
||||
Ok(tmp)
|
||||
})?;
|
||||
|
||||
// Constrain: a * a = aa
|
||||
cs.enforce(
|
||||
|| "squaring constraint",
|
||||
|lc| lc + self.variable,
|
||||
|lc| lc + self.variable,
|
||||
|lc| lc + var
|
||||
);
|
||||
|
||||
Ok(AllocatedNum {
|
||||
value: value,
|
||||
variable: var
|
||||
})
|
||||
}
|
||||
|
||||
pub fn assert_nonzero<CS>(
|
||||
&self,
|
||||
mut cs: CS
|
||||
) -> Result<(), SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let inv = cs.alloc(|| "ephemeral inverse", || {
|
||||
let tmp = *self.value.get()?;
|
||||
|
||||
if tmp.is_zero() {
|
||||
Err(SynthesisError::DivisionByZero)
|
||||
} else {
|
||||
Ok(tmp.inverse().unwrap())
|
||||
}
|
||||
})?;
|
||||
|
||||
// Constrain a * inv = 1, which is only valid
|
||||
// iff a has a multiplicative inverse, untrue
|
||||
// for zero.
|
||||
cs.enforce(
|
||||
|| "nonzero assertion constraint",
|
||||
|lc| lc + self.variable,
|
||||
|lc| lc + inv,
|
||||
|lc| lc + CS::one()
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Takes two allocated numbers (a, b) and returns
|
||||
/// (b, a) if the condition is true, and (a, b)
|
||||
/// otherwise.
|
||||
pub fn conditionally_reverse<CS>(
|
||||
mut cs: CS,
|
||||
a: &Self,
|
||||
b: &Self,
|
||||
condition: &Boolean
|
||||
) -> Result<(Self, Self), SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let c = Self::alloc(
|
||||
cs.namespace(|| "conditional reversal result 1"),
|
||||
|| {
|
||||
if *condition.get_value().get()? {
|
||||
Ok(*b.value.get()?)
|
||||
} else {
|
||||
Ok(*a.value.get()?)
|
||||
}
|
||||
}
|
||||
)?;
|
||||
|
||||
cs.enforce(
|
||||
|| "first conditional reversal",
|
||||
|lc| lc + a.variable - b.variable,
|
||||
|_| condition.lc(CS::one(), E::Fr::one()),
|
||||
|lc| lc + a.variable - c.variable
|
||||
);
|
||||
|
||||
let d = Self::alloc(
|
||||
cs.namespace(|| "conditional reversal result 2"),
|
||||
|| {
|
||||
if *condition.get_value().get()? {
|
||||
Ok(*a.value.get()?)
|
||||
} else {
|
||||
Ok(*b.value.get()?)
|
||||
}
|
||||
}
|
||||
)?;
|
||||
|
||||
cs.enforce(
|
||||
|| "second conditional reversal",
|
||||
|lc| lc + b.variable - a.variable,
|
||||
|_| condition.lc(CS::one(), E::Fr::one()),
|
||||
|lc| lc + b.variable - d.variable
|
||||
);
|
||||
|
||||
Ok((c, d))
|
||||
}
|
||||
|
||||
pub fn get_value(&self) -> Option<E::Fr> {
|
||||
self.value
|
||||
}
|
||||
|
||||
pub fn get_variable(&self) -> Variable {
|
||||
self.variable
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Num<E: Engine> {
|
||||
value: Option<E::Fr>,
|
||||
lc: LinearCombination<E>
|
||||
}
|
||||
|
||||
impl<E: Engine> From<AllocatedNum<E>> for Num<E> {
|
||||
fn from(num: AllocatedNum<E>) -> Num<E> {
|
||||
Num {
|
||||
value: num.value,
|
||||
lc: LinearCombination::<E>::zero() + num.variable
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Num<E> {
|
||||
pub fn zero() -> Self {
|
||||
Num {
|
||||
value: Some(E::Fr::zero()),
|
||||
lc: LinearCombination::zero()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_value(&self) -> Option<E::Fr> {
|
||||
self.value
|
||||
}
|
||||
|
||||
pub fn lc(&self, coeff: E::Fr) -> LinearCombination<E> {
|
||||
LinearCombination::zero() + (coeff, &self.lc)
|
||||
}
|
||||
|
||||
pub fn add_bool_with_coeff(
|
||||
self,
|
||||
one: Variable,
|
||||
bit: &Boolean,
|
||||
coeff: E::Fr
|
||||
) -> Self
|
||||
{
|
||||
let newval = match (self.value, bit.get_value()) {
|
||||
(Some(mut curval), Some(bval)) => {
|
||||
if bval {
|
||||
curval.add_assign(&coeff);
|
||||
}
|
||||
|
||||
Some(curval)
|
||||
},
|
||||
_ => None
|
||||
};
|
||||
|
||||
Num {
|
||||
value: newval,
|
||||
lc: self.lc + &bit.lc(one, coeff)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use rand::{SeedableRng, Rand, Rng, XorShiftRng};
|
||||
use bellman::{ConstraintSystem};
|
||||
use pairing::bls12_381::{Bls12, Fr};
|
||||
use pairing::{Field, PrimeField, BitIterator};
|
||||
use ::circuit::test::*;
|
||||
use super::{AllocatedNum, Boolean};
|
||||
|
||||
#[test]
|
||||
fn test_allocated_num() {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
AllocatedNum::alloc(&mut cs, || Ok(Fr::one())).unwrap();
|
||||
|
||||
assert!(cs.get("num") == Fr::one());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_num_squaring() {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let n = AllocatedNum::alloc(&mut cs, || Ok(Fr::from_str("3").unwrap())).unwrap();
|
||||
let n2 = n.square(&mut cs).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
assert!(cs.get("squared num") == Fr::from_str("9").unwrap());
|
||||
assert!(n2.value.unwrap() == Fr::from_str("9").unwrap());
|
||||
cs.set("squared num", Fr::from_str("10").unwrap());
|
||||
assert!(!cs.is_satisfied());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_num_multiplication() {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::from_str("12").unwrap())).unwrap();
|
||||
let n2 = AllocatedNum::alloc(cs.namespace(|| "b"), || Ok(Fr::from_str("10").unwrap())).unwrap();
|
||||
let n3 = n.mul(&mut cs, &n2).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
assert!(cs.get("product num") == Fr::from_str("120").unwrap());
|
||||
assert!(n3.value.unwrap() == Fr::from_str("120").unwrap());
|
||||
cs.set("product num", Fr::from_str("121").unwrap());
|
||||
assert!(!cs.is_satisfied());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_num_conditional_reversal() {
|
||||
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
{
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(rng.gen())).unwrap();
|
||||
let b = AllocatedNum::alloc(cs.namespace(|| "b"), || Ok(rng.gen())).unwrap();
|
||||
let condition = Boolean::constant(false);
|
||||
let (c, d) = AllocatedNum::conditionally_reverse(&mut cs, &a, &b, &condition).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
assert_eq!(a.value.unwrap(), c.value.unwrap());
|
||||
assert_eq!(b.value.unwrap(), d.value.unwrap());
|
||||
}
|
||||
|
||||
{
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(rng.gen())).unwrap();
|
||||
let b = AllocatedNum::alloc(cs.namespace(|| "b"), || Ok(rng.gen())).unwrap();
|
||||
let condition = Boolean::constant(true);
|
||||
let (c, d) = AllocatedNum::conditionally_reverse(&mut cs, &a, &b, &condition).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
assert_eq!(a.value.unwrap(), d.value.unwrap());
|
||||
assert_eq!(b.value.unwrap(), c.value.unwrap());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_num_nonzero() {
|
||||
{
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let n = AllocatedNum::alloc(&mut cs, || Ok(Fr::from_str("3").unwrap())).unwrap();
|
||||
n.assert_nonzero(&mut cs).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
cs.set("ephemeral inverse", Fr::from_str("3").unwrap());
|
||||
assert!(cs.which_is_unsatisfied() == Some("nonzero assertion constraint"));
|
||||
}
|
||||
{
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let n = AllocatedNum::alloc(&mut cs, || Ok(Fr::zero())).unwrap();
|
||||
assert!(n.assert_nonzero(&mut cs).is_err());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_into_bits_strict() {
|
||||
let mut negone = Fr::one();
|
||||
negone.negate();
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let n = AllocatedNum::alloc(&mut cs, || Ok(negone)).unwrap();
|
||||
n.into_bits_le_strict(&mut cs).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
// make the bit representation the characteristic
|
||||
cs.set("bit 254/boolean", Fr::one());
|
||||
|
||||
// this makes the conditional boolean constraint fail
|
||||
assert_eq!(cs.which_is_unsatisfied().unwrap(), "bit 254/boolean constraint");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_into_bits() {
|
||||
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for i in 0..200 {
|
||||
let r = Fr::rand(&mut rng);
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let n = AllocatedNum::alloc(&mut cs, || Ok(r)).unwrap();
|
||||
|
||||
let bits = if i % 2 == 0 {
|
||||
n.into_bits_le(&mut cs).unwrap()
|
||||
} else {
|
||||
n.into_bits_le_strict(&mut cs).unwrap()
|
||||
};
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
for (b, a) in BitIterator::new(r.into_repr()).skip(1).zip(bits.iter().rev()) {
|
||||
if let &Boolean::Is(ref a) = a {
|
||||
assert_eq!(b, a.get_value().unwrap());
|
||||
} else {
|
||||
unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
cs.set("num", Fr::rand(&mut rng));
|
||||
assert!(!cs.is_satisfied());
|
||||
cs.set("num", r);
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
for i in 0..Fr::NUM_BITS {
|
||||
let name = format!("bit {}/boolean", i);
|
||||
let cur = cs.get(&name);
|
||||
let mut tmp = Fr::one();
|
||||
tmp.sub_assign(&cur);
|
||||
cs.set(&name, tmp);
|
||||
assert!(!cs.is_satisfied());
|
||||
cs.set(&name, cur);
|
||||
assert!(cs.is_satisfied());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
194
sapling-crypto/src/circuit/pedersen_hash.rs
Normal file
194
sapling-crypto/src/circuit/pedersen_hash.rs
Normal file
@ -0,0 +1,194 @@
|
||||
use super::*;
|
||||
use super::ecc::{
|
||||
MontgomeryPoint,
|
||||
EdwardsPoint
|
||||
};
|
||||
use super::boolean::Boolean;
|
||||
use ::jubjub::*;
|
||||
use bellman::{
|
||||
ConstraintSystem
|
||||
};
|
||||
use super::lookup::*;
|
||||
pub use pedersen_hash::Personalization;
|
||||
|
||||
impl Personalization {
|
||||
fn get_constant_bools(&self) -> Vec<Boolean> {
|
||||
self.get_bits()
|
||||
.into_iter()
|
||||
.map(|e| Boolean::constant(e))
|
||||
.collect()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn pedersen_hash<E: JubjubEngine, CS>(
|
||||
mut cs: CS,
|
||||
personalization: Personalization,
|
||||
bits: &[Boolean],
|
||||
params: &E::Params
|
||||
) -> Result<EdwardsPoint<E>, SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let personalization = personalization.get_constant_bools();
|
||||
assert_eq!(personalization.len(), 6);
|
||||
|
||||
let mut edwards_result = None;
|
||||
let mut bits = personalization.iter().chain(bits.iter());
|
||||
let mut segment_generators = params.pedersen_circuit_generators().iter();
|
||||
let boolean_false = Boolean::constant(false);
|
||||
|
||||
let mut segment_i = 0;
|
||||
loop {
|
||||
let mut segment_result = None;
|
||||
let mut segment_windows = &segment_generators.next()
|
||||
.expect("enough segments")[..];
|
||||
|
||||
let mut window_i = 0;
|
||||
while let Some(a) = bits.next() {
|
||||
let b = bits.next().unwrap_or(&boolean_false);
|
||||
let c = bits.next().unwrap_or(&boolean_false);
|
||||
|
||||
let tmp = lookup3_xy_with_conditional_negation(
|
||||
cs.namespace(|| format!("segment {}, window {}", segment_i, window_i)),
|
||||
&[a.clone(), b.clone(), c.clone()],
|
||||
&segment_windows[0]
|
||||
)?;
|
||||
|
||||
let tmp = MontgomeryPoint::interpret_unchecked(tmp.0, tmp.1);
|
||||
|
||||
match segment_result {
|
||||
None => {
|
||||
segment_result = Some(tmp);
|
||||
},
|
||||
Some(ref mut segment_result) => {
|
||||
*segment_result = tmp.add(
|
||||
cs.namespace(|| format!("addition of segment {}, window {}", segment_i, window_i)),
|
||||
segment_result,
|
||||
params
|
||||
)?;
|
||||
}
|
||||
}
|
||||
|
||||
segment_windows = &segment_windows[1..];
|
||||
|
||||
if segment_windows.len() == 0 {
|
||||
break;
|
||||
}
|
||||
|
||||
window_i += 1;
|
||||
}
|
||||
|
||||
match segment_result {
|
||||
Some(segment_result) => {
|
||||
// Convert this segment into twisted Edwards form.
|
||||
let segment_result = segment_result.into_edwards(
|
||||
cs.namespace(|| format!("conversion of segment {} into edwards", segment_i)),
|
||||
params
|
||||
)?;
|
||||
|
||||
match edwards_result {
|
||||
Some(ref mut edwards_result) => {
|
||||
*edwards_result = segment_result.add(
|
||||
cs.namespace(|| format!("addition of segment {} to accumulator", segment_i)),
|
||||
edwards_result,
|
||||
params
|
||||
)?;
|
||||
},
|
||||
None => {
|
||||
edwards_result = Some(segment_result);
|
||||
}
|
||||
}
|
||||
},
|
||||
None => {
|
||||
// We didn't process any new bits.
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
segment_i += 1;
|
||||
}
|
||||
|
||||
Ok(edwards_result.unwrap())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use rand::{SeedableRng, Rng, XorShiftRng};
|
||||
use super::*;
|
||||
use ::circuit::test::*;
|
||||
use ::circuit::boolean::{Boolean, AllocatedBit};
|
||||
use pairing::bls12_381::{Bls12, Fr};
|
||||
use pairing::PrimeField;
|
||||
|
||||
#[test]
|
||||
fn test_pedersen_hash_constraints() {
|
||||
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
let params = &JubjubBls12::new();
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let input: Vec<bool> = (0..(Fr::NUM_BITS * 2)).map(|_| rng.gen()).collect();
|
||||
|
||||
let input_bools: Vec<Boolean> = input.iter().enumerate().map(|(i, b)| {
|
||||
Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| format!("input {}", i)), Some(*b)).unwrap()
|
||||
)
|
||||
}).collect();
|
||||
|
||||
pedersen_hash(
|
||||
cs.namespace(|| "pedersen hash"),
|
||||
Personalization::NoteCommitment,
|
||||
&input_bools,
|
||||
params
|
||||
).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 1377);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_pedersen_hash() {
|
||||
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
let params = &JubjubBls12::new();
|
||||
|
||||
for length in 0..751 {
|
||||
for _ in 0..5 {
|
||||
let mut input: Vec<bool> = (0..length).map(|_| rng.gen()).collect();
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let input_bools: Vec<Boolean> = input.iter().enumerate().map(|(i, b)| {
|
||||
Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| format!("input {}", i)), Some(*b)).unwrap()
|
||||
)
|
||||
}).collect();
|
||||
|
||||
let res = pedersen_hash(
|
||||
cs.namespace(|| "pedersen hash"),
|
||||
Personalization::MerkleTree(1),
|
||||
&input_bools,
|
||||
params
|
||||
).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
let expected = ::pedersen_hash::pedersen_hash::<Bls12, _>(
|
||||
Personalization::MerkleTree(1),
|
||||
input.clone().into_iter(),
|
||||
params
|
||||
).into_xy();
|
||||
|
||||
assert_eq!(res.get_x().get_value().unwrap(), expected.0);
|
||||
assert_eq!(res.get_y().get_value().unwrap(), expected.1);
|
||||
|
||||
// Test against the output of a different personalization
|
||||
let unexpected = ::pedersen_hash::pedersen_hash::<Bls12, _>(
|
||||
Personalization::MerkleTree(0),
|
||||
input.into_iter(),
|
||||
params
|
||||
).into_xy();
|
||||
|
||||
assert!(res.get_x().get_value().unwrap() != unexpected.0);
|
||||
assert!(res.get_y().get_value().unwrap() != unexpected.1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
815
sapling-crypto/src/circuit/sapling/mod.rs
Normal file
815
sapling-crypto/src/circuit/sapling/mod.rs
Normal file
@ -0,0 +1,815 @@
|
||||
use pairing::{
|
||||
PrimeField,
|
||||
PrimeFieldRepr,
|
||||
Field,
|
||||
};
|
||||
|
||||
use bellman::{
|
||||
SynthesisError,
|
||||
ConstraintSystem,
|
||||
Circuit
|
||||
};
|
||||
|
||||
use jubjub::{
|
||||
JubjubEngine,
|
||||
FixedGenerators
|
||||
};
|
||||
|
||||
use constants;
|
||||
|
||||
use primitives::{
|
||||
ValueCommitment,
|
||||
ProofGenerationKey,
|
||||
PaymentAddress
|
||||
};
|
||||
|
||||
use super::Assignment;
|
||||
use super::boolean;
|
||||
use super::ecc;
|
||||
use super::pedersen_hash;
|
||||
use super::blake2s;
|
||||
use super::num;
|
||||
use super::multipack;
|
||||
|
||||
/// This is an instance of the `Spend` circuit.
|
||||
pub struct Spend<'a, E: JubjubEngine> {
|
||||
pub params: &'a E::Params,
|
||||
|
||||
/// Pedersen commitment to the value being spent
|
||||
pub value_commitment: Option<ValueCommitment<E>>,
|
||||
|
||||
/// Key required to construct proofs for spending notes
|
||||
/// for a particular spending key
|
||||
pub proof_generation_key: Option<ProofGenerationKey<E>>,
|
||||
|
||||
/// The payment address associated with the note
|
||||
pub payment_address: Option<PaymentAddress<E>>,
|
||||
|
||||
/// The randomness of the note commitment
|
||||
pub commitment_randomness: Option<E::Fs>,
|
||||
|
||||
/// Re-randomization of the public key
|
||||
pub ar: Option<E::Fs>,
|
||||
|
||||
/// The authentication path of the commitment in the tree
|
||||
pub auth_path: Vec<Option<(E::Fr, bool)>>,
|
||||
|
||||
/// The anchor; the root of the tree. If the note being
|
||||
/// spent is zero-value, this can be anything.
|
||||
pub anchor: Option<E::Fr>
|
||||
}
|
||||
|
||||
/// This is an output circuit instance.
|
||||
pub struct Output<'a, E: JubjubEngine> {
|
||||
pub params: &'a E::Params,
|
||||
|
||||
/// Pedersen commitment to the value being spent
|
||||
pub value_commitment: Option<ValueCommitment<E>>,
|
||||
|
||||
/// The payment address of the recipient
|
||||
pub payment_address: Option<PaymentAddress<E>>,
|
||||
|
||||
/// The randomness used to hide the note commitment data
|
||||
pub commitment_randomness: Option<E::Fs>,
|
||||
|
||||
/// The ephemeral secret key for DH with recipient
|
||||
pub esk: Option<E::Fs>
|
||||
}
|
||||
|
||||
/// Exposes a Pedersen commitment to the value as an
|
||||
/// input to the circuit
|
||||
fn expose_value_commitment<E, CS>(
|
||||
mut cs: CS,
|
||||
value_commitment: Option<ValueCommitment<E>>,
|
||||
params: &E::Params
|
||||
) -> Result<Vec<boolean::Boolean>, SynthesisError>
|
||||
where E: JubjubEngine,
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
// Booleanize the value into little-endian bit order
|
||||
let value_bits = boolean::u64_into_boolean_vec_le(
|
||||
cs.namespace(|| "value"),
|
||||
value_commitment.as_ref().map(|c| c.value)
|
||||
)?;
|
||||
|
||||
// Compute the note value in the exponent
|
||||
let value = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "compute the value in the exponent"),
|
||||
FixedGenerators::ValueCommitmentValue,
|
||||
&value_bits,
|
||||
params
|
||||
)?;
|
||||
|
||||
// Booleanize the randomness. This does not ensure
|
||||
// the bit representation is "in the field" because
|
||||
// it doesn't matter for security.
|
||||
let rcv = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "rcv"),
|
||||
value_commitment.as_ref().map(|c| c.randomness)
|
||||
)?;
|
||||
|
||||
// Compute the randomness in the exponent
|
||||
let rcv = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "computation of rcv"),
|
||||
FixedGenerators::ValueCommitmentRandomness,
|
||||
&rcv,
|
||||
params
|
||||
)?;
|
||||
|
||||
// Compute the Pedersen commitment to the value
|
||||
let cv = value.add(
|
||||
cs.namespace(|| "computation of cv"),
|
||||
&rcv,
|
||||
params
|
||||
)?;
|
||||
|
||||
// Expose the commitment as an input to the circuit
|
||||
cv.inputize(cs.namespace(|| "commitment point"))?;
|
||||
|
||||
Ok(value_bits)
|
||||
}
|
||||
|
||||
impl<'a, E: JubjubEngine> Circuit<E> for Spend<'a, E> {
|
||||
fn synthesize<CS: ConstraintSystem<E>>(self, cs: &mut CS) -> Result<(), SynthesisError>
|
||||
{
|
||||
// Prover witnesses ak (ensures that it's on the curve)
|
||||
let ak = ecc::EdwardsPoint::witness(
|
||||
cs.namespace(|| "ak"),
|
||||
self.proof_generation_key.as_ref().map(|k| k.ak.clone()),
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// There are no sensible attacks on small order points
|
||||
// of ak (that we're aware of!) but it's a cheap check,
|
||||
// so we do it.
|
||||
ak.assert_not_small_order(
|
||||
cs.namespace(|| "ak not small order"),
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Rerandomize ak and expose it as an input to the circuit
|
||||
{
|
||||
let ar = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "ar"),
|
||||
self.ar
|
||||
)?;
|
||||
|
||||
// Compute the randomness in the exponent
|
||||
let ar = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "computation of randomization for the signing key"),
|
||||
FixedGenerators::SpendingKeyGenerator,
|
||||
&ar,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
let rk = ak.add(
|
||||
cs.namespace(|| "computation of rk"),
|
||||
&ar,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
rk.inputize(cs.namespace(|| "rk"))?;
|
||||
}
|
||||
|
||||
// Compute nk = [nsk] ProofGenerationKey
|
||||
let nk;
|
||||
{
|
||||
// Witness nsk as bits
|
||||
let nsk = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "nsk"),
|
||||
self.proof_generation_key.as_ref().map(|k| k.nsk.clone())
|
||||
)?;
|
||||
|
||||
// NB: We don't ensure that the bit representation of nsk
|
||||
// is "in the field" (Fs) because it's not used except to
|
||||
// demonstrate the prover knows it. If they know a
|
||||
// congruency then that's equivalent.
|
||||
|
||||
// Compute nk = [nsk] ProvingPublicKey
|
||||
nk = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "computation of nk"),
|
||||
FixedGenerators::ProofGenerationKey,
|
||||
&nsk,
|
||||
self.params
|
||||
)?;
|
||||
}
|
||||
|
||||
// This is the "viewing key" preimage for CRH^ivk
|
||||
let mut ivk_preimage = vec![];
|
||||
|
||||
// Place ak in the preimage for CRH^ivk
|
||||
ivk_preimage.extend(
|
||||
ak.repr(cs.namespace(|| "representation of ak"))?
|
||||
);
|
||||
|
||||
// This is the nullifier preimage for PRF^nf
|
||||
let mut nf_preimage = vec![];
|
||||
|
||||
// Extend ivk and nf preimages with the representation of
|
||||
// nk.
|
||||
{
|
||||
let repr_nk = nk.repr(
|
||||
cs.namespace(|| "representation of nk")
|
||||
)?;
|
||||
|
||||
ivk_preimage.extend(repr_nk.iter().cloned());
|
||||
nf_preimage.extend(repr_nk);
|
||||
}
|
||||
|
||||
assert_eq!(ivk_preimage.len(), 512);
|
||||
assert_eq!(nf_preimage.len(), 256);
|
||||
|
||||
// Compute the incoming viewing key ivk
|
||||
let mut ivk = blake2s::blake2s(
|
||||
cs.namespace(|| "computation of ivk"),
|
||||
&ivk_preimage,
|
||||
constants::CRH_IVK_PERSONALIZATION
|
||||
)?;
|
||||
|
||||
// drop_5 to ensure it's in the field
|
||||
ivk.truncate(E::Fs::CAPACITY as usize);
|
||||
|
||||
// Witness g_d, checking that it's on the curve.
|
||||
let g_d = {
|
||||
// This binding is to avoid a weird edge case in Rust's
|
||||
// ownership/borrowing rules. self is partially moved
|
||||
// above, but the closure for and_then will have to
|
||||
// move self (or a reference to self) to reference
|
||||
// self.params, so we have to copy self.params here.
|
||||
let params = self.params;
|
||||
|
||||
ecc::EdwardsPoint::witness(
|
||||
cs.namespace(|| "witness g_d"),
|
||||
self.payment_address.as_ref().and_then(|a| a.g_d(params)),
|
||||
self.params
|
||||
)?
|
||||
};
|
||||
|
||||
// Check that g_d is not small order. Technically, this check
|
||||
// is already done in the Output circuit, and this proof ensures
|
||||
// g_d is bound to a product of that check, but for defense in
|
||||
// depth let's check it anyway. It's cheap.
|
||||
g_d.assert_not_small_order(
|
||||
cs.namespace(|| "g_d not small order"),
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Compute pk_d = g_d^ivk
|
||||
let pk_d = g_d.mul(
|
||||
cs.namespace(|| "compute pk_d"),
|
||||
&ivk,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Compute note contents:
|
||||
// value (in big endian) followed by g_d and pk_d
|
||||
let mut note_contents = vec![];
|
||||
|
||||
// Handle the value; we'll need it later for the
|
||||
// dummy input check.
|
||||
let mut value_num = num::Num::zero();
|
||||
{
|
||||
// Get the value in little-endian bit order
|
||||
let value_bits = expose_value_commitment(
|
||||
cs.namespace(|| "value commitment"),
|
||||
self.value_commitment,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Compute the note's value as a linear combination
|
||||
// of the bits.
|
||||
let mut coeff = E::Fr::one();
|
||||
for bit in &value_bits {
|
||||
value_num = value_num.add_bool_with_coeff(
|
||||
CS::one(),
|
||||
bit,
|
||||
coeff
|
||||
);
|
||||
coeff.double();
|
||||
}
|
||||
|
||||
// Place the value in the note
|
||||
note_contents.extend(value_bits);
|
||||
}
|
||||
|
||||
// Place g_d in the note
|
||||
note_contents.extend(
|
||||
g_d.repr(cs.namespace(|| "representation of g_d"))?
|
||||
);
|
||||
|
||||
// Place pk_d in the note
|
||||
note_contents.extend(
|
||||
pk_d.repr(cs.namespace(|| "representation of pk_d"))?
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
note_contents.len(),
|
||||
64 + // value
|
||||
256 + // g_d
|
||||
256 // p_d
|
||||
);
|
||||
|
||||
// Compute the hash of the note contents
|
||||
let mut cm = pedersen_hash::pedersen_hash(
|
||||
cs.namespace(|| "note content hash"),
|
||||
pedersen_hash::Personalization::NoteCommitment,
|
||||
¬e_contents,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
{
|
||||
// Booleanize the randomness for the note commitment
|
||||
let rcm = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "rcm"),
|
||||
self.commitment_randomness
|
||||
)?;
|
||||
|
||||
// Compute the note commitment randomness in the exponent
|
||||
let rcm = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "computation of commitment randomness"),
|
||||
FixedGenerators::NoteCommitmentRandomness,
|
||||
&rcm,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Randomize the note commitment. Pedersen hashes are not
|
||||
// themselves hiding commitments.
|
||||
cm = cm.add(
|
||||
cs.namespace(|| "randomization of note commitment"),
|
||||
&rcm,
|
||||
self.params
|
||||
)?;
|
||||
}
|
||||
|
||||
// This will store (least significant bit first)
|
||||
// the position of the note in the tree, for use
|
||||
// in nullifier computation.
|
||||
let mut position_bits = vec![];
|
||||
|
||||
// This is an injective encoding, as cur is a
|
||||
// point in the prime order subgroup.
|
||||
let mut cur = cm.get_x().clone();
|
||||
|
||||
// Ascend the merkle tree authentication path
|
||||
for (i, e) in self.auth_path.into_iter().enumerate() {
|
||||
let cs = &mut cs.namespace(|| format!("merkle tree hash {}", i));
|
||||
|
||||
// Determines if the current subtree is the "right" leaf at this
|
||||
// depth of the tree.
|
||||
let cur_is_right = boolean::Boolean::from(boolean::AllocatedBit::alloc(
|
||||
cs.namespace(|| "position bit"),
|
||||
e.map(|e| e.1)
|
||||
)?);
|
||||
|
||||
// Push this boolean for nullifier computation later
|
||||
position_bits.push(cur_is_right.clone());
|
||||
|
||||
// Witness the authentication path element adjacent
|
||||
// at this depth.
|
||||
let path_element = num::AllocatedNum::alloc(
|
||||
cs.namespace(|| "path element"),
|
||||
|| {
|
||||
Ok(e.get()?.0)
|
||||
}
|
||||
)?;
|
||||
|
||||
// Swap the two if the current subtree is on the right
|
||||
let (xl, xr) = num::AllocatedNum::conditionally_reverse(
|
||||
cs.namespace(|| "conditional reversal of preimage"),
|
||||
&cur,
|
||||
&path_element,
|
||||
&cur_is_right
|
||||
)?;
|
||||
|
||||
// We don't need to be strict, because the function is
|
||||
// collision-resistant. If the prover witnesses a congruency,
|
||||
// they will be unable to find an authentication path in the
|
||||
// tree with high probability.
|
||||
let mut preimage = vec![];
|
||||
preimage.extend(xl.into_bits_le(cs.namespace(|| "xl into bits"))?);
|
||||
preimage.extend(xr.into_bits_le(cs.namespace(|| "xr into bits"))?);
|
||||
|
||||
// Compute the new subtree value
|
||||
cur = pedersen_hash::pedersen_hash(
|
||||
cs.namespace(|| "computation of pedersen hash"),
|
||||
pedersen_hash::Personalization::MerkleTree(i),
|
||||
&preimage,
|
||||
self.params
|
||||
)?.get_x().clone(); // Injective encoding
|
||||
}
|
||||
|
||||
{
|
||||
let real_anchor_value = self.anchor;
|
||||
|
||||
// Allocate the "real" anchor that will be exposed.
|
||||
let rt = num::AllocatedNum::alloc(
|
||||
cs.namespace(|| "conditional anchor"),
|
||||
|| {
|
||||
Ok(*real_anchor_value.get()?)
|
||||
}
|
||||
)?;
|
||||
|
||||
// (cur - rt) * value = 0
|
||||
// if value is zero, cur and rt can be different
|
||||
// if value is nonzero, they must be equal
|
||||
cs.enforce(
|
||||
|| "conditionally enforce correct root",
|
||||
|lc| lc + cur.get_variable() - rt.get_variable(),
|
||||
|lc| lc + &value_num.lc(E::Fr::one()),
|
||||
|lc| lc
|
||||
);
|
||||
|
||||
// Expose the anchor
|
||||
rt.inputize(cs.namespace(|| "anchor"))?;
|
||||
}
|
||||
|
||||
// Compute the cm + g^position for preventing
|
||||
// faerie gold attacks
|
||||
let mut rho = cm;
|
||||
{
|
||||
// Compute the position in the exponent
|
||||
let position = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "g^position"),
|
||||
FixedGenerators::NullifierPosition,
|
||||
&position_bits,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Add the position to the commitment
|
||||
rho = rho.add(
|
||||
cs.namespace(|| "faerie gold prevention"),
|
||||
&position,
|
||||
self.params
|
||||
)?;
|
||||
}
|
||||
|
||||
// Let's compute nf = BLAKE2s(nk || rho)
|
||||
nf_preimage.extend(
|
||||
rho.repr(cs.namespace(|| "representation of rho"))?
|
||||
);
|
||||
|
||||
assert_eq!(nf_preimage.len(), 512);
|
||||
|
||||
// Compute nf
|
||||
let nf = blake2s::blake2s(
|
||||
cs.namespace(|| "nf computation"),
|
||||
&nf_preimage,
|
||||
constants::PRF_NF_PERSONALIZATION
|
||||
)?;
|
||||
|
||||
multipack::pack_into_inputs(cs.namespace(|| "pack nullifier"), &nf)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, E: JubjubEngine> Circuit<E> for Output<'a, E> {
|
||||
fn synthesize<CS: ConstraintSystem<E>>(self, cs: &mut CS) -> Result<(), SynthesisError>
|
||||
{
|
||||
// Let's start to construct our note, which contains
|
||||
// value (big endian)
|
||||
let mut note_contents = vec![];
|
||||
|
||||
// Expose the value commitment and place the value
|
||||
// in the note.
|
||||
note_contents.extend(expose_value_commitment(
|
||||
cs.namespace(|| "value commitment"),
|
||||
self.value_commitment,
|
||||
self.params
|
||||
)?);
|
||||
|
||||
// Let's deal with g_d
|
||||
{
|
||||
let params = self.params;
|
||||
|
||||
// Prover witnesses g_d, ensuring it's on the
|
||||
// curve.
|
||||
let g_d = ecc::EdwardsPoint::witness(
|
||||
cs.namespace(|| "witness g_d"),
|
||||
self.payment_address.as_ref().and_then(|a| a.g_d(params)),
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// g_d is ensured to be large order. The relationship
|
||||
// between g_d and pk_d ultimately binds ivk to the
|
||||
// note. If this were a small order point, it would
|
||||
// not do this correctly, and the prover could
|
||||
// double-spend by finding random ivk's that satisfy
|
||||
// the relationship.
|
||||
//
|
||||
// Further, if it were small order, epk would be
|
||||
// small order too!
|
||||
g_d.assert_not_small_order(
|
||||
cs.namespace(|| "g_d not small order"),
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Extend our note contents with the representation of
|
||||
// g_d.
|
||||
note_contents.extend(
|
||||
g_d.repr(cs.namespace(|| "representation of g_d"))?
|
||||
);
|
||||
|
||||
// Booleanize our ephemeral secret key
|
||||
let esk = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "esk"),
|
||||
self.esk
|
||||
)?;
|
||||
|
||||
// Create the ephemeral public key from g_d.
|
||||
let epk = g_d.mul(
|
||||
cs.namespace(|| "epk computation"),
|
||||
&esk,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Expose epk publicly.
|
||||
epk.inputize(cs.namespace(|| "epk"))?;
|
||||
}
|
||||
|
||||
// Now let's deal with pk_d. We don't do any checks and
|
||||
// essentially allow the prover to witness any 256 bits
|
||||
// they would like.
|
||||
{
|
||||
// Just grab pk_d from the witness
|
||||
let pk_d = self.payment_address.as_ref().map(|e| e.pk_d.into_xy());
|
||||
|
||||
// Witness the y-coordinate, encoded as little
|
||||
// endian bits (to match the representation)
|
||||
let y_contents = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "pk_d bits of y"),
|
||||
pk_d.map(|e| e.1)
|
||||
)?;
|
||||
|
||||
// Witness the sign bit
|
||||
let sign_bit = boolean::Boolean::from(boolean::AllocatedBit::alloc(
|
||||
cs.namespace(|| "pk_d bit of x"),
|
||||
pk_d.map(|e| e.0.into_repr().is_odd())
|
||||
)?);
|
||||
|
||||
// Extend the note with pk_d representation
|
||||
note_contents.extend(y_contents);
|
||||
note_contents.push(sign_bit);
|
||||
}
|
||||
|
||||
assert_eq!(
|
||||
note_contents.len(),
|
||||
64 + // value
|
||||
256 + // g_d
|
||||
256 // pk_d
|
||||
);
|
||||
|
||||
// Compute the hash of the note contents
|
||||
let mut cm = pedersen_hash::pedersen_hash(
|
||||
cs.namespace(|| "note content hash"),
|
||||
pedersen_hash::Personalization::NoteCommitment,
|
||||
¬e_contents,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
{
|
||||
// Booleanize the randomness
|
||||
let rcm = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "rcm"),
|
||||
self.commitment_randomness
|
||||
)?;
|
||||
|
||||
// Compute the note commitment randomness in the exponent
|
||||
let rcm = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "computation of commitment randomness"),
|
||||
FixedGenerators::NoteCommitmentRandomness,
|
||||
&rcm,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Randomize our note commitment
|
||||
cm = cm.add(
|
||||
cs.namespace(|| "randomization of note commitment"),
|
||||
&rcm,
|
||||
self.params
|
||||
)?;
|
||||
}
|
||||
|
||||
// Only the x-coordinate of the output is revealed,
|
||||
// since we know it is prime order, and we know that
|
||||
// the x-coordinate is an injective encoding for
|
||||
// prime-order elements.
|
||||
cm.get_x().inputize(cs.namespace(|| "commitment"))?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_input_circuit_with_bls12_381() {
|
||||
use pairing::{Field, BitIterator};
|
||||
use pairing::bls12_381::*;
|
||||
use rand::{SeedableRng, Rng, XorShiftRng};
|
||||
use ::circuit::test::*;
|
||||
use jubjub::{JubjubBls12, fs, edwards};
|
||||
|
||||
let params = &JubjubBls12::new();
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let tree_depth = 32;
|
||||
|
||||
for _ in 0..10 {
|
||||
let value_commitment = ValueCommitment {
|
||||
value: rng.gen(),
|
||||
randomness: rng.gen()
|
||||
};
|
||||
|
||||
let nsk: fs::Fs = rng.gen();
|
||||
let ak = edwards::Point::rand(rng, params).mul_by_cofactor(params);
|
||||
|
||||
let proof_generation_key = ::primitives::ProofGenerationKey {
|
||||
ak: ak.clone(),
|
||||
nsk: nsk.clone()
|
||||
};
|
||||
|
||||
let viewing_key = proof_generation_key.into_viewing_key(params);
|
||||
|
||||
let payment_address;
|
||||
|
||||
loop {
|
||||
let diversifier = ::primitives::Diversifier(rng.gen());
|
||||
|
||||
if let Some(p) = viewing_key.into_payment_address(
|
||||
diversifier,
|
||||
params
|
||||
)
|
||||
{
|
||||
payment_address = p;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
let g_d = payment_address.diversifier.g_d(params).unwrap();
|
||||
let commitment_randomness: fs::Fs = rng.gen();
|
||||
let auth_path = vec![Some((rng.gen(), rng.gen())); tree_depth];
|
||||
let ar: fs::Fs = rng.gen();
|
||||
|
||||
{
|
||||
let rk = viewing_key.rk(ar, params).into_xy();
|
||||
let expected_value_cm = value_commitment.cm(params).into_xy();
|
||||
let note = ::primitives::Note {
|
||||
value: value_commitment.value,
|
||||
g_d: g_d.clone(),
|
||||
pk_d: payment_address.pk_d.clone(),
|
||||
r: commitment_randomness.clone()
|
||||
};
|
||||
|
||||
let mut position = 0u64;
|
||||
let cm: Fr = note.cm(params);
|
||||
let mut cur = cm.clone();
|
||||
|
||||
for (i, val) in auth_path.clone().into_iter().enumerate()
|
||||
{
|
||||
let (uncle, b) = val.unwrap();
|
||||
|
||||
let mut lhs = cur;
|
||||
let mut rhs = uncle;
|
||||
|
||||
if b {
|
||||
::std::mem::swap(&mut lhs, &mut rhs);
|
||||
}
|
||||
|
||||
let mut lhs: Vec<bool> = BitIterator::new(lhs.into_repr()).collect();
|
||||
let mut rhs: Vec<bool> = BitIterator::new(rhs.into_repr()).collect();
|
||||
|
||||
lhs.reverse();
|
||||
rhs.reverse();
|
||||
|
||||
cur = ::pedersen_hash::pedersen_hash::<Bls12, _>(
|
||||
::pedersen_hash::Personalization::MerkleTree(i),
|
||||
lhs.into_iter()
|
||||
.take(Fr::NUM_BITS as usize)
|
||||
.chain(rhs.into_iter().take(Fr::NUM_BITS as usize)),
|
||||
params
|
||||
).into_xy().0;
|
||||
|
||||
if b {
|
||||
position |= 1 << i;
|
||||
}
|
||||
}
|
||||
|
||||
let expected_nf = note.nf(&viewing_key, position, params);
|
||||
let expected_nf = multipack::bytes_to_bits_le(&expected_nf);
|
||||
let expected_nf = multipack::compute_multipacking::<Bls12>(&expected_nf);
|
||||
assert_eq!(expected_nf.len(), 2);
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let instance = Spend {
|
||||
params: params,
|
||||
value_commitment: Some(value_commitment.clone()),
|
||||
proof_generation_key: Some(proof_generation_key.clone()),
|
||||
payment_address: Some(payment_address.clone()),
|
||||
commitment_randomness: Some(commitment_randomness),
|
||||
ar: Some(ar),
|
||||
auth_path: auth_path.clone(),
|
||||
anchor: Some(cur)
|
||||
};
|
||||
|
||||
instance.synthesize(&mut cs).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 98777);
|
||||
assert_eq!(cs.hash(), "d37c738e83df5d9b0bb6495ac96abf21bcb2697477e2c15c2c7916ff7a3b6a89");
|
||||
|
||||
assert_eq!(cs.get("randomization of note commitment/x3/num"), cm);
|
||||
|
||||
assert_eq!(cs.num_inputs(), 8);
|
||||
assert_eq!(cs.get_input(0, "ONE"), Fr::one());
|
||||
assert_eq!(cs.get_input(1, "rk/x/input variable"), rk.0);
|
||||
assert_eq!(cs.get_input(2, "rk/y/input variable"), rk.1);
|
||||
assert_eq!(cs.get_input(3, "value commitment/commitment point/x/input variable"), expected_value_cm.0);
|
||||
assert_eq!(cs.get_input(4, "value commitment/commitment point/y/input variable"), expected_value_cm.1);
|
||||
assert_eq!(cs.get_input(5, "anchor/input variable"), cur);
|
||||
assert_eq!(cs.get_input(6, "pack nullifier/input 0"), expected_nf[0]);
|
||||
assert_eq!(cs.get_input(7, "pack nullifier/input 1"), expected_nf[1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_output_circuit_with_bls12_381() {
|
||||
use pairing::{Field};
|
||||
use pairing::bls12_381::*;
|
||||
use rand::{SeedableRng, Rng, XorShiftRng};
|
||||
use ::circuit::test::*;
|
||||
use jubjub::{JubjubBls12, fs, edwards};
|
||||
|
||||
let params = &JubjubBls12::new();
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6258, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..100 {
|
||||
let value_commitment = ValueCommitment {
|
||||
value: rng.gen(),
|
||||
randomness: rng.gen()
|
||||
};
|
||||
|
||||
let nsk: fs::Fs = rng.gen();
|
||||
let ak = edwards::Point::rand(rng, params).mul_by_cofactor(params);
|
||||
|
||||
let proof_generation_key = ::primitives::ProofGenerationKey {
|
||||
ak: ak.clone(),
|
||||
nsk: nsk.clone()
|
||||
};
|
||||
|
||||
let viewing_key = proof_generation_key.into_viewing_key(params);
|
||||
|
||||
let payment_address;
|
||||
|
||||
loop {
|
||||
let diversifier = ::primitives::Diversifier(rng.gen());
|
||||
|
||||
if let Some(p) = viewing_key.into_payment_address(
|
||||
diversifier,
|
||||
params
|
||||
)
|
||||
{
|
||||
payment_address = p;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
let commitment_randomness: fs::Fs = rng.gen();
|
||||
let esk: fs::Fs = rng.gen();
|
||||
|
||||
{
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let instance = Output {
|
||||
params: params,
|
||||
value_commitment: Some(value_commitment.clone()),
|
||||
payment_address: Some(payment_address.clone()),
|
||||
commitment_randomness: Some(commitment_randomness),
|
||||
esk: Some(esk.clone())
|
||||
};
|
||||
|
||||
instance.synthesize(&mut cs).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 7827);
|
||||
assert_eq!(cs.hash(), "c26d5cdfe6ccd65c03390902c02e11393ea6bb96aae32a7f2ecb12eb9103faee");
|
||||
|
||||
let expected_cm = payment_address.create_note(
|
||||
value_commitment.value,
|
||||
commitment_randomness,
|
||||
params
|
||||
).expect("should be valid").cm(params);
|
||||
|
||||
let expected_value_cm = value_commitment.cm(params).into_xy();
|
||||
|
||||
let expected_epk = payment_address.g_d(params).expect("should be valid").mul(esk, params);
|
||||
let expected_epk_xy = expected_epk.into_xy();
|
||||
|
||||
assert_eq!(cs.num_inputs(), 6);
|
||||
assert_eq!(cs.get_input(0, "ONE"), Fr::one());
|
||||
assert_eq!(cs.get_input(1, "value commitment/commitment point/x/input variable"), expected_value_cm.0);
|
||||
assert_eq!(cs.get_input(2, "value commitment/commitment point/y/input variable"), expected_value_cm.1);
|
||||
assert_eq!(cs.get_input(3, "epk/x/input variable"), expected_epk_xy.0);
|
||||
assert_eq!(cs.get_input(4, "epk/y/input variable"), expected_epk_xy.1);
|
||||
assert_eq!(cs.get_input(5, "commitment/input variable"), expected_cm);
|
||||
}
|
||||
}
|
||||
}
|
417
sapling-crypto/src/circuit/sha256.rs
Normal file
417
sapling-crypto/src/circuit/sha256.rs
Normal file
@ -0,0 +1,417 @@
|
||||
use super::uint32::UInt32;
|
||||
use super::multieq::MultiEq;
|
||||
use super::boolean::Boolean;
|
||||
use bellman::{ConstraintSystem, SynthesisError};
|
||||
use pairing::Engine;
|
||||
|
||||
const ROUND_CONSTANTS: [u32; 64] = [
|
||||
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
||||
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
||||
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
||||
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
||||
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
||||
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
||||
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
||||
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
||||
];
|
||||
|
||||
const IV: [u32; 8] = [
|
||||
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
|
||||
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
|
||||
];
|
||||
|
||||
pub fn sha256_block_no_padding<E, CS>(
|
||||
mut cs: CS,
|
||||
input: &[Boolean]
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
assert_eq!(input.len(), 512);
|
||||
|
||||
Ok(sha256_compression_function(
|
||||
&mut cs,
|
||||
&input,
|
||||
&get_sha256_iv()
|
||||
)?
|
||||
.into_iter()
|
||||
.flat_map(|e| e.into_bits_be())
|
||||
.collect())
|
||||
}
|
||||
|
||||
pub fn sha256<E, CS>(
|
||||
mut cs: CS,
|
||||
input: &[Boolean]
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
assert!(input.len() % 8 == 0);
|
||||
|
||||
let mut padded = input.to_vec();
|
||||
let plen = padded.len() as u64;
|
||||
// append a single '1' bit
|
||||
padded.push(Boolean::constant(true));
|
||||
// append K '0' bits, where K is the minimum number >= 0 such that L + 1 + K + 64 is a multiple of 512
|
||||
while (padded.len() + 64) % 512 != 0 {
|
||||
padded.push(Boolean::constant(false));
|
||||
}
|
||||
// append L as a 64-bit big-endian integer, making the total post-processed length a multiple of 512 bits
|
||||
for b in (0..64).rev().map(|i| (plen >> i) & 1 == 1) {
|
||||
padded.push(Boolean::constant(b));
|
||||
}
|
||||
assert!(padded.len() % 512 == 0);
|
||||
|
||||
let mut cur = get_sha256_iv();
|
||||
for (i, block) in padded.chunks(512).enumerate() {
|
||||
cur = sha256_compression_function(
|
||||
cs.namespace(|| format!("block {}", i)),
|
||||
block,
|
||||
&cur
|
||||
)?;
|
||||
}
|
||||
|
||||
Ok(cur.into_iter()
|
||||
.flat_map(|e| e.into_bits_be())
|
||||
.collect())
|
||||
}
|
||||
|
||||
fn get_sha256_iv() -> Vec<UInt32> {
|
||||
IV.iter().map(|&v| UInt32::constant(v)).collect()
|
||||
}
|
||||
|
||||
fn sha256_compression_function<E, CS>(
|
||||
cs: CS,
|
||||
input: &[Boolean],
|
||||
current_hash_value: &[UInt32]
|
||||
) -> Result<Vec<UInt32>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
assert_eq!(input.len(), 512);
|
||||
assert_eq!(current_hash_value.len(), 8);
|
||||
|
||||
let mut w = input.chunks(32)
|
||||
.map(|e| UInt32::from_bits_be(e))
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// We can save some constraints by combining some of
|
||||
// the constraints in different u32 additions
|
||||
let mut cs = MultiEq::new(cs);
|
||||
|
||||
for i in 16..64 {
|
||||
let cs = &mut cs.namespace(|| format!("w extension {}", i));
|
||||
|
||||
// s0 := (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18) xor (w[i-15] rightshift 3)
|
||||
let mut s0 = w[i-15].rotr(7);
|
||||
s0 = s0.xor(
|
||||
cs.namespace(|| "first xor for s0"),
|
||||
&w[i-15].rotr(18)
|
||||
)?;
|
||||
s0 = s0.xor(
|
||||
cs.namespace(|| "second xor for s0"),
|
||||
&w[i-15].shr(3)
|
||||
)?;
|
||||
|
||||
// s1 := (w[i-2] rightrotate 17) xor (w[i-2] rightrotate 19) xor (w[i-2] rightshift 10)
|
||||
let mut s1 = w[i-2].rotr(17);
|
||||
s1 = s1.xor(
|
||||
cs.namespace(|| "first xor for s1"),
|
||||
&w[i-2].rotr(19)
|
||||
)?;
|
||||
s1 = s1.xor(
|
||||
cs.namespace(|| "second xor for s1"),
|
||||
&w[i-2].shr(10)
|
||||
)?;
|
||||
|
||||
let tmp = UInt32::addmany(
|
||||
cs.namespace(|| "computation of w[i]"),
|
||||
&[w[i-16].clone(), s0, w[i-7].clone(), s1]
|
||||
)?;
|
||||
|
||||
// w[i] := w[i-16] + s0 + w[i-7] + s1
|
||||
w.push(tmp);
|
||||
}
|
||||
|
||||
assert_eq!(w.len(), 64);
|
||||
|
||||
enum Maybe {
|
||||
Deferred(Vec<UInt32>),
|
||||
Concrete(UInt32)
|
||||
}
|
||||
|
||||
impl Maybe {
|
||||
fn compute<E, CS, M>(
|
||||
self,
|
||||
cs: M,
|
||||
others: &[UInt32]
|
||||
) -> Result<UInt32, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E>,
|
||||
M: ConstraintSystem<E, Root=MultiEq<E, CS>>
|
||||
{
|
||||
Ok(match self {
|
||||
Maybe::Concrete(ref v) => {
|
||||
return Ok(v.clone())
|
||||
},
|
||||
Maybe::Deferred(mut v) => {
|
||||
v.extend(others.into_iter().cloned());
|
||||
UInt32::addmany(
|
||||
cs,
|
||||
&v
|
||||
)?
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
let mut a = Maybe::Concrete(current_hash_value[0].clone());
|
||||
let mut b = current_hash_value[1].clone();
|
||||
let mut c = current_hash_value[2].clone();
|
||||
let mut d = current_hash_value[3].clone();
|
||||
let mut e = Maybe::Concrete(current_hash_value[4].clone());
|
||||
let mut f = current_hash_value[5].clone();
|
||||
let mut g = current_hash_value[6].clone();
|
||||
let mut h = current_hash_value[7].clone();
|
||||
|
||||
for i in 0..64 {
|
||||
let cs = &mut cs.namespace(|| format!("compression round {}", i));
|
||||
|
||||
// S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25)
|
||||
let new_e = e.compute(cs.namespace(|| "deferred e computation"), &[])?;
|
||||
let mut s1 = new_e.rotr(6);
|
||||
s1 = s1.xor(
|
||||
cs.namespace(|| "first xor for s1"),
|
||||
&new_e.rotr(11)
|
||||
)?;
|
||||
s1 = s1.xor(
|
||||
cs.namespace(|| "second xor for s1"),
|
||||
&new_e.rotr(25)
|
||||
)?;
|
||||
|
||||
// ch := (e and f) xor ((not e) and g)
|
||||
let ch = UInt32::sha256_ch(
|
||||
cs.namespace(|| "ch"),
|
||||
&new_e,
|
||||
&f,
|
||||
&g
|
||||
)?;
|
||||
|
||||
// temp1 := h + S1 + ch + k[i] + w[i]
|
||||
let temp1 = vec![
|
||||
h.clone(),
|
||||
s1,
|
||||
ch,
|
||||
UInt32::constant(ROUND_CONSTANTS[i]),
|
||||
w[i].clone()
|
||||
];
|
||||
|
||||
// S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22)
|
||||
let new_a = a.compute(cs.namespace(|| "deferred a computation"), &[])?;
|
||||
let mut s0 = new_a.rotr(2);
|
||||
s0 = s0.xor(
|
||||
cs.namespace(|| "first xor for s0"),
|
||||
&new_a.rotr(13)
|
||||
)?;
|
||||
s0 = s0.xor(
|
||||
cs.namespace(|| "second xor for s0"),
|
||||
&new_a.rotr(22)
|
||||
)?;
|
||||
|
||||
// maj := (a and b) xor (a and c) xor (b and c)
|
||||
let maj = UInt32::sha256_maj(
|
||||
cs.namespace(|| "maj"),
|
||||
&new_a,
|
||||
&b,
|
||||
&c
|
||||
)?;
|
||||
|
||||
// temp2 := S0 + maj
|
||||
let temp2 = vec![s0, maj];
|
||||
|
||||
/*
|
||||
h := g
|
||||
g := f
|
||||
f := e
|
||||
e := d + temp1
|
||||
d := c
|
||||
c := b
|
||||
b := a
|
||||
a := temp1 + temp2
|
||||
*/
|
||||
|
||||
h = g;
|
||||
g = f;
|
||||
f = new_e;
|
||||
e = Maybe::Deferred(temp1.iter().cloned().chain(Some(d)).collect::<Vec<_>>());
|
||||
d = c;
|
||||
c = b;
|
||||
b = new_a;
|
||||
a = Maybe::Deferred(temp1.iter().cloned().chain(temp2.iter().cloned()).collect::<Vec<_>>());
|
||||
}
|
||||
|
||||
/*
|
||||
Add the compressed chunk to the current hash value:
|
||||
h0 := h0 + a
|
||||
h1 := h1 + b
|
||||
h2 := h2 + c
|
||||
h3 := h3 + d
|
||||
h4 := h4 + e
|
||||
h5 := h5 + f
|
||||
h6 := h6 + g
|
||||
h7 := h7 + h
|
||||
*/
|
||||
|
||||
let h0 = a.compute(
|
||||
cs.namespace(|| "deferred h0 computation"),
|
||||
&[current_hash_value[0].clone()]
|
||||
)?;
|
||||
|
||||
let h1 = UInt32::addmany(
|
||||
cs.namespace(|| "new h1"),
|
||||
&[current_hash_value[1].clone(), b]
|
||||
)?;
|
||||
|
||||
let h2 = UInt32::addmany(
|
||||
cs.namespace(|| "new h2"),
|
||||
&[current_hash_value[2].clone(), c]
|
||||
)?;
|
||||
|
||||
let h3 = UInt32::addmany(
|
||||
cs.namespace(|| "new h3"),
|
||||
&[current_hash_value[3].clone(), d]
|
||||
)?;
|
||||
|
||||
let h4 = e.compute(
|
||||
cs.namespace(|| "deferred h4 computation"),
|
||||
&[current_hash_value[4].clone()]
|
||||
)?;
|
||||
|
||||
let h5 = UInt32::addmany(
|
||||
cs.namespace(|| "new h5"),
|
||||
&[current_hash_value[5].clone(), f]
|
||||
)?;
|
||||
|
||||
let h6 = UInt32::addmany(
|
||||
cs.namespace(|| "new h6"),
|
||||
&[current_hash_value[6].clone(), g]
|
||||
)?;
|
||||
|
||||
let h7 = UInt32::addmany(
|
||||
cs.namespace(|| "new h7"),
|
||||
&[current_hash_value[7].clone(), h]
|
||||
)?;
|
||||
|
||||
Ok(vec![h0, h1, h2, h3, h4, h5, h6, h7])
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
use circuit::boolean::AllocatedBit;
|
||||
use pairing::bls12_381::Bls12;
|
||||
use circuit::test::TestConstraintSystem;
|
||||
use rand::{XorShiftRng, SeedableRng, Rng};
|
||||
|
||||
#[test]
|
||||
fn test_blank_hash() {
|
||||
let iv = get_sha256_iv();
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
let mut input_bits: Vec<_> = (0..512).map(|_| Boolean::Constant(false)).collect();
|
||||
input_bits[0] = Boolean::Constant(true);
|
||||
let out = sha256_compression_function(
|
||||
&mut cs,
|
||||
&input_bits,
|
||||
&iv
|
||||
).unwrap();
|
||||
let out_bits: Vec<_> = out.into_iter().flat_map(|e| e.into_bits_be()).collect();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 0);
|
||||
|
||||
let expected = hex!("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855");
|
||||
|
||||
let mut out = out_bits.into_iter();
|
||||
for b in expected.into_iter() {
|
||||
for i in (0..8).rev() {
|
||||
let c = out.next().unwrap().get_value().unwrap();
|
||||
|
||||
assert_eq!(c, (b >> i) & 1u8 == 1u8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_full_block() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let iv = get_sha256_iv();
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
let input_bits: Vec<_> = (0..512).map(|i| {
|
||||
Boolean::from(
|
||||
AllocatedBit::alloc(
|
||||
cs.namespace(|| format!("input bit {}", i)),
|
||||
Some(rng.gen())
|
||||
).unwrap()
|
||||
)
|
||||
}).collect();
|
||||
|
||||
sha256_compression_function(
|
||||
cs.namespace(|| "sha256"),
|
||||
&input_bits,
|
||||
&iv
|
||||
).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints() - 512, 25840);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_against_vectors() {
|
||||
use crypto::sha2::Sha256;
|
||||
use crypto::digest::Digest;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for input_len in (0..32).chain((32..256).filter(|a| a % 8 == 0))
|
||||
{
|
||||
let mut h = Sha256::new();
|
||||
let data: Vec<u8> = (0..input_len).map(|_| rng.gen()).collect();
|
||||
h.input(&data);
|
||||
let mut hash_result = [0u8; 32];
|
||||
h.result(&mut hash_result[..]);
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
let mut input_bits = vec![];
|
||||
|
||||
for (byte_i, input_byte) in data.into_iter().enumerate() {
|
||||
for bit_i in (0..8).rev() {
|
||||
let cs = cs.namespace(|| format!("input bit {} {}", byte_i, bit_i));
|
||||
|
||||
input_bits.push(AllocatedBit::alloc(cs, Some((input_byte >> bit_i) & 1u8 == 1u8)).unwrap().into());
|
||||
}
|
||||
}
|
||||
|
||||
let r = sha256(&mut cs, &input_bits).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
let mut s = hash_result.as_ref().iter()
|
||||
.flat_map(|&byte| (0..8).rev().map(move |i| (byte >> i) & 1u8 == 1u8));
|
||||
|
||||
for b in r {
|
||||
match b {
|
||||
Boolean::Is(b) => {
|
||||
assert!(s.next().unwrap() == b.get_value().unwrap());
|
||||
},
|
||||
Boolean::Not(b) => {
|
||||
assert!(s.next().unwrap() != b.get_value().unwrap());
|
||||
},
|
||||
Boolean::Constant(b) => {
|
||||
assert!(input_len == 0);
|
||||
assert!(s.next().unwrap() == b);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
42
sapling-crypto/src/circuit/sprout/commitment.rs
Normal file
42
sapling-crypto/src/circuit/sprout/commitment.rs
Normal file
@ -0,0 +1,42 @@
|
||||
use pairing::{Engine};
|
||||
use bellman::{ConstraintSystem, SynthesisError};
|
||||
use circuit::sha256::{
|
||||
sha256
|
||||
};
|
||||
use circuit::boolean::{
|
||||
Boolean
|
||||
};
|
||||
|
||||
pub fn note_comm<E, CS>(
|
||||
cs: CS,
|
||||
a_pk: &[Boolean],
|
||||
value: &[Boolean],
|
||||
rho: &[Boolean],
|
||||
r: &[Boolean]
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
assert_eq!(a_pk.len(), 256);
|
||||
assert_eq!(value.len(), 64);
|
||||
assert_eq!(rho.len(), 256);
|
||||
assert_eq!(r.len(), 256);
|
||||
|
||||
let mut image = vec![];
|
||||
image.push(Boolean::constant(true));
|
||||
image.push(Boolean::constant(false));
|
||||
image.push(Boolean::constant(true));
|
||||
image.push(Boolean::constant(true));
|
||||
image.push(Boolean::constant(false));
|
||||
image.push(Boolean::constant(false));
|
||||
image.push(Boolean::constant(false));
|
||||
image.push(Boolean::constant(false));
|
||||
image.extend(a_pk.iter().cloned());
|
||||
image.extend(value.iter().cloned());
|
||||
image.extend(rho.iter().cloned());
|
||||
image.extend(r.iter().cloned());
|
||||
|
||||
sha256(
|
||||
cs,
|
||||
&image
|
||||
)
|
||||
}
|
226
sapling-crypto/src/circuit/sprout/input.rs
Normal file
226
sapling-crypto/src/circuit/sprout/input.rs
Normal file
@ -0,0 +1,226 @@
|
||||
use pairing::{Engine};
|
||||
use bellman::{ConstraintSystem, SynthesisError};
|
||||
use circuit::sha256::{
|
||||
sha256_block_no_padding
|
||||
};
|
||||
use circuit::boolean::{
|
||||
AllocatedBit,
|
||||
Boolean
|
||||
};
|
||||
|
||||
use super::*;
|
||||
use super::prfs::*;
|
||||
use super::commitment::note_comm;
|
||||
|
||||
pub struct InputNote {
|
||||
pub nf: Vec<Boolean>,
|
||||
pub mac: Vec<Boolean>,
|
||||
}
|
||||
|
||||
impl InputNote {
|
||||
pub fn compute<E, CS>(
|
||||
mut cs: CS,
|
||||
a_sk: Option<SpendingKey>,
|
||||
rho: Option<UniqueRandomness>,
|
||||
r: Option<CommitmentRandomness>,
|
||||
value: &NoteValue,
|
||||
h_sig: &[Boolean],
|
||||
nonce: bool,
|
||||
auth_path: [Option<([u8; 32], bool)>; TREE_DEPTH],
|
||||
rt: &[Boolean]
|
||||
) -> Result<InputNote, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
let a_sk = witness_u252(
|
||||
cs.namespace(|| "a_sk"),
|
||||
a_sk.as_ref().map(|a_sk| &a_sk.0[..])
|
||||
)?;
|
||||
|
||||
let rho = witness_u256(
|
||||
cs.namespace(|| "rho"),
|
||||
rho.as_ref().map(|rho| &rho.0[..])
|
||||
)?;
|
||||
|
||||
let r = witness_u256(
|
||||
cs.namespace(|| "r"),
|
||||
r.as_ref().map(|r| &r.0[..])
|
||||
)?;
|
||||
|
||||
let a_pk = prf_a_pk(
|
||||
cs.namespace(|| "a_pk computation"),
|
||||
&a_sk
|
||||
)?;
|
||||
|
||||
let nf = prf_nf(
|
||||
cs.namespace(|| "nf computation"),
|
||||
&a_sk,
|
||||
&rho
|
||||
)?;
|
||||
|
||||
let mac = prf_pk(
|
||||
cs.namespace(|| "mac computation"),
|
||||
&a_sk,
|
||||
h_sig,
|
||||
nonce
|
||||
)?;
|
||||
|
||||
let cm = note_comm(
|
||||
cs.namespace(|| "cm computation"),
|
||||
&a_pk,
|
||||
&value.bits_le(),
|
||||
&rho,
|
||||
&r
|
||||
)?;
|
||||
|
||||
// Witness into the merkle tree
|
||||
let mut cur = cm.clone();
|
||||
|
||||
for (i, layer) in auth_path.into_iter().enumerate() {
|
||||
let cs = &mut cs.namespace(|| format!("layer {}", i));
|
||||
|
||||
let cur_is_right = AllocatedBit::alloc(
|
||||
cs.namespace(|| "cur is right"),
|
||||
layer.as_ref().map(|&(_, p)| p)
|
||||
)?;
|
||||
|
||||
let lhs = cur;
|
||||
let rhs = witness_u256(
|
||||
cs.namespace(|| "sibling"),
|
||||
layer.as_ref().map(|&(ref sibling, _)| &sibling[..])
|
||||
)?;
|
||||
|
||||
// Conditionally swap if cur is right
|
||||
let preimage = conditionally_swap_u256(
|
||||
cs.namespace(|| "conditional swap"),
|
||||
&lhs[..],
|
||||
&rhs[..],
|
||||
&cur_is_right
|
||||
)?;
|
||||
|
||||
cur = sha256_block_no_padding(
|
||||
cs.namespace(|| "hash of this layer"),
|
||||
&preimage
|
||||
)?;
|
||||
}
|
||||
|
||||
// enforce must be true if the value is nonzero
|
||||
let enforce = AllocatedBit::alloc(
|
||||
cs.namespace(|| "enforce"),
|
||||
value.get_value().map(|n| n != 0)
|
||||
)?;
|
||||
|
||||
// value * (1 - enforce) = 0
|
||||
// If `value` is zero, `enforce` _can_ be zero.
|
||||
// If `value` is nonzero, `enforce` _must_ be one.
|
||||
cs.enforce(
|
||||
|| "enforce validity",
|
||||
|_| value.lc(),
|
||||
|lc| lc + CS::one() - enforce.get_variable(),
|
||||
|lc| lc
|
||||
);
|
||||
|
||||
assert_eq!(cur.len(), rt.len());
|
||||
|
||||
// Check that the anchor (exposed as a public input)
|
||||
// is equal to the merkle tree root that we calculated
|
||||
// for this note
|
||||
for (i, (cur, rt)) in cur.into_iter().zip(rt.iter()).enumerate() {
|
||||
// (cur - rt) * enforce = 0
|
||||
// if enforce is zero, cur and rt can be different
|
||||
// if enforce is one, they must be equal
|
||||
cs.enforce(
|
||||
|| format!("conditionally enforce correct root for bit {}", i),
|
||||
|_| cur.lc(CS::one(), E::Fr::one()) - &rt.lc(CS::one(), E::Fr::one()),
|
||||
|lc| lc + enforce.get_variable(),
|
||||
|lc| lc
|
||||
);
|
||||
}
|
||||
|
||||
Ok(InputNote {
|
||||
mac: mac,
|
||||
nf: nf
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Swaps two 256-bit blobs conditionally, returning the
|
||||
/// 512-bit concatenation.
|
||||
pub fn conditionally_swap_u256<E, CS>(
|
||||
mut cs: CS,
|
||||
lhs: &[Boolean],
|
||||
rhs: &[Boolean],
|
||||
condition: &AllocatedBit
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>,
|
||||
{
|
||||
assert_eq!(lhs.len(), 256);
|
||||
assert_eq!(rhs.len(), 256);
|
||||
|
||||
let mut new_lhs = vec![];
|
||||
let mut new_rhs = vec![];
|
||||
|
||||
for (i, (lhs, rhs)) in lhs.iter().zip(rhs.iter()).enumerate() {
|
||||
let cs = &mut cs.namespace(|| format!("bit {}", i));
|
||||
|
||||
let x = Boolean::from(AllocatedBit::alloc(
|
||||
cs.namespace(|| "x"),
|
||||
condition.get_value().and_then(|v| {
|
||||
if v {
|
||||
rhs.get_value()
|
||||
} else {
|
||||
lhs.get_value()
|
||||
}
|
||||
})
|
||||
)?);
|
||||
|
||||
// x = (1-condition)lhs + (condition)rhs
|
||||
// x = lhs - lhs(condition) + rhs(condition)
|
||||
// x - lhs = condition (rhs - lhs)
|
||||
// if condition is zero, we don't swap, so
|
||||
// x - lhs = 0
|
||||
// x = lhs
|
||||
// if condition is one, we do swap, so
|
||||
// x - lhs = rhs - lhs
|
||||
// x = rhs
|
||||
cs.enforce(
|
||||
|| "conditional swap for x",
|
||||
|lc| lc + &rhs.lc(CS::one(), E::Fr::one())
|
||||
- &lhs.lc(CS::one(), E::Fr::one()),
|
||||
|lc| lc + condition.get_variable(),
|
||||
|lc| lc + &x.lc(CS::one(), E::Fr::one())
|
||||
- &lhs.lc(CS::one(), E::Fr::one())
|
||||
);
|
||||
|
||||
let y = Boolean::from(AllocatedBit::alloc(
|
||||
cs.namespace(|| "y"),
|
||||
condition.get_value().and_then(|v| {
|
||||
if v {
|
||||
lhs.get_value()
|
||||
} else {
|
||||
rhs.get_value()
|
||||
}
|
||||
})
|
||||
)?);
|
||||
|
||||
// y = (1-condition)rhs + (condition)lhs
|
||||
// y - rhs = condition (lhs - rhs)
|
||||
cs.enforce(
|
||||
|| "conditional swap for y",
|
||||
|lc| lc + &lhs.lc(CS::one(), E::Fr::one())
|
||||
- &rhs.lc(CS::one(), E::Fr::one()),
|
||||
|lc| lc + condition.get_variable(),
|
||||
|lc| lc + &y.lc(CS::one(), E::Fr::one())
|
||||
- &rhs.lc(CS::one(), E::Fr::one())
|
||||
);
|
||||
|
||||
new_lhs.push(x);
|
||||
new_rhs.push(y);
|
||||
}
|
||||
|
||||
let mut f = new_lhs;
|
||||
f.extend(new_rhs);
|
||||
|
||||
assert_eq!(f.len(), 512);
|
||||
|
||||
Ok(f)
|
||||
}
|
488
sapling-crypto/src/circuit/sprout/mod.rs
Normal file
488
sapling-crypto/src/circuit/sprout/mod.rs
Normal file
@ -0,0 +1,488 @@
|
||||
use pairing::{Engine, Field};
|
||||
use bellman::{ConstraintSystem, SynthesisError, Circuit, LinearCombination};
|
||||
use circuit::boolean::{
|
||||
AllocatedBit,
|
||||
Boolean
|
||||
};
|
||||
use circuit::multipack::pack_into_inputs;
|
||||
|
||||
mod prfs;
|
||||
mod commitment;
|
||||
mod input;
|
||||
mod output;
|
||||
|
||||
use self::input::*;
|
||||
use self::output::*;
|
||||
|
||||
pub const TREE_DEPTH: usize = 29;
|
||||
|
||||
pub struct SpendingKey(pub [u8; 32]);
|
||||
pub struct PayingKey(pub [u8; 32]);
|
||||
pub struct UniqueRandomness(pub [u8; 32]);
|
||||
pub struct CommitmentRandomness(pub [u8; 32]);
|
||||
|
||||
pub struct JoinSplit {
|
||||
pub vpub_old: Option<u64>,
|
||||
pub vpub_new: Option<u64>,
|
||||
pub h_sig: Option<[u8; 32]>,
|
||||
pub phi: Option<[u8; 32]>,
|
||||
pub inputs: Vec<JSInput>,
|
||||
pub outputs: Vec<JSOutput>,
|
||||
pub rt: Option<[u8; 32]>,
|
||||
}
|
||||
|
||||
pub struct JSInput {
|
||||
pub value: Option<u64>,
|
||||
pub a_sk: Option<SpendingKey>,
|
||||
pub rho: Option<UniqueRandomness>,
|
||||
pub r: Option<CommitmentRandomness>,
|
||||
pub auth_path: [Option<([u8; 32], bool)>; TREE_DEPTH]
|
||||
}
|
||||
|
||||
pub struct JSOutput {
|
||||
pub value: Option<u64>,
|
||||
pub a_pk: Option<PayingKey>,
|
||||
pub r: Option<CommitmentRandomness>
|
||||
}
|
||||
|
||||
impl<E: Engine> Circuit<E> for JoinSplit {
|
||||
fn synthesize<CS: ConstraintSystem<E>>(
|
||||
self,
|
||||
cs: &mut CS
|
||||
) -> Result<(), SynthesisError>
|
||||
{
|
||||
assert_eq!(self.inputs.len(), 2);
|
||||
assert_eq!(self.outputs.len(), 2);
|
||||
|
||||
// vpub_old is the value entering the
|
||||
// JoinSplit from the "outside" value
|
||||
// pool
|
||||
let vpub_old = NoteValue::new(
|
||||
cs.namespace(|| "vpub_old"),
|
||||
self.vpub_old
|
||||
)?;
|
||||
|
||||
// vpub_new is the value leaving the
|
||||
// JoinSplit into the "outside" value
|
||||
// pool
|
||||
let vpub_new = NoteValue::new(
|
||||
cs.namespace(|| "vpub_new"),
|
||||
self.vpub_new
|
||||
)?;
|
||||
|
||||
// The left hand side of the balance equation
|
||||
// vpub_old + inputs[0].value + inputs[1].value
|
||||
let mut lhs = vpub_old.lc();
|
||||
|
||||
// The right hand side of the balance equation
|
||||
// vpub_old + inputs[0].value + inputs[1].value
|
||||
let mut rhs = vpub_new.lc();
|
||||
|
||||
// Witness rt (merkle tree root)
|
||||
let rt = witness_u256(
|
||||
cs.namespace(|| "rt"),
|
||||
self.rt.as_ref().map(|v| &v[..])
|
||||
).unwrap();
|
||||
|
||||
// Witness h_sig
|
||||
let h_sig = witness_u256(
|
||||
cs.namespace(|| "h_sig"),
|
||||
self.h_sig.as_ref().map(|v| &v[..])
|
||||
).unwrap();
|
||||
|
||||
// Witness phi
|
||||
let phi = witness_u252(
|
||||
cs.namespace(|| "phi"),
|
||||
self.phi.as_ref().map(|v| &v[..])
|
||||
).unwrap();
|
||||
|
||||
let mut input_notes = vec![];
|
||||
let mut lhs_total = self.vpub_old;
|
||||
|
||||
// Iterate over the JoinSplit inputs
|
||||
for (i, input) in self.inputs.into_iter().enumerate() {
|
||||
let cs = &mut cs.namespace(|| format!("input {}", i));
|
||||
|
||||
// Accumulate the value of the left hand side
|
||||
if let Some(value) = input.value {
|
||||
lhs_total = lhs_total.map(|v| v.wrapping_add(value));
|
||||
}
|
||||
|
||||
// Allocate the value of the note
|
||||
let value = NoteValue::new(
|
||||
cs.namespace(|| "value"),
|
||||
input.value
|
||||
)?;
|
||||
|
||||
// Compute the nonce (for PRF inputs) which is false
|
||||
// for the first input, and true for the second input.
|
||||
let nonce = match i {
|
||||
0 => false,
|
||||
1 => true,
|
||||
_ => unreachable!()
|
||||
};
|
||||
|
||||
// Perform input note computations
|
||||
input_notes.push(InputNote::compute(
|
||||
cs.namespace(|| "note"),
|
||||
input.a_sk,
|
||||
input.rho,
|
||||
input.r,
|
||||
&value,
|
||||
&h_sig,
|
||||
nonce,
|
||||
input.auth_path,
|
||||
&rt
|
||||
)?);
|
||||
|
||||
// Add the note value to the left hand side of
|
||||
// the balance equation
|
||||
lhs = lhs + &value.lc();
|
||||
}
|
||||
|
||||
// Rebind lhs so that it isn't mutable anymore
|
||||
let lhs = lhs;
|
||||
|
||||
// See zcash/zcash/issues/854
|
||||
{
|
||||
// Expected sum of the left hand side of the balance
|
||||
// equation, expressed as a 64-bit unsigned integer
|
||||
let lhs_total = NoteValue::new(
|
||||
cs.namespace(|| "total value of left hand side"),
|
||||
lhs_total
|
||||
)?;
|
||||
|
||||
// Enforce that the left hand side can be expressed as a 64-bit
|
||||
// integer
|
||||
cs.enforce(
|
||||
|| "left hand side can be expressed as a 64-bit unsigned integer",
|
||||
|_| lhs.clone(),
|
||||
|lc| lc + CS::one(),
|
||||
|_| lhs_total.lc()
|
||||
);
|
||||
}
|
||||
|
||||
let mut output_notes = vec![];
|
||||
|
||||
// Iterate over the JoinSplit outputs
|
||||
for (i, output) in self.outputs.into_iter().enumerate() {
|
||||
let cs = &mut cs.namespace(|| format!("output {}", i));
|
||||
|
||||
let value = NoteValue::new(
|
||||
cs.namespace(|| "value"),
|
||||
output.value
|
||||
)?;
|
||||
|
||||
// Compute the nonce (for PRF inputs) which is false
|
||||
// for the first output, and true for the second output.
|
||||
let nonce = match i {
|
||||
0 => false,
|
||||
1 => true,
|
||||
_ => unreachable!()
|
||||
};
|
||||
|
||||
// Perform output note computations
|
||||
output_notes.push(OutputNote::compute(
|
||||
cs.namespace(|| "note"),
|
||||
output.a_pk,
|
||||
&value,
|
||||
output.r,
|
||||
&phi,
|
||||
&h_sig,
|
||||
nonce
|
||||
)?);
|
||||
|
||||
// Add the note value to the right hand side of
|
||||
// the balance equation
|
||||
rhs = rhs + &value.lc();
|
||||
}
|
||||
|
||||
// Enforce that balance is equal
|
||||
cs.enforce(
|
||||
|| "balance equation",
|
||||
|_| lhs.clone(),
|
||||
|lc| lc + CS::one(),
|
||||
|_| rhs
|
||||
);
|
||||
|
||||
let mut public_inputs = vec![];
|
||||
public_inputs.extend(rt);
|
||||
public_inputs.extend(h_sig);
|
||||
|
||||
for note in input_notes {
|
||||
public_inputs.extend(note.nf);
|
||||
public_inputs.extend(note.mac);
|
||||
}
|
||||
|
||||
for note in output_notes {
|
||||
public_inputs.extend(note.cm);
|
||||
}
|
||||
|
||||
public_inputs.extend(vpub_old.bits_le());
|
||||
public_inputs.extend(vpub_new.bits_le());
|
||||
|
||||
pack_into_inputs(cs.namespace(|| "input packing"), &public_inputs)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct NoteValue {
|
||||
value: Option<u64>,
|
||||
// Least significant digit first
|
||||
bits: Vec<AllocatedBit>
|
||||
}
|
||||
|
||||
impl NoteValue {
|
||||
fn new<E, CS>(
|
||||
mut cs: CS,
|
||||
value: Option<u64>
|
||||
) -> Result<NoteValue, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>,
|
||||
{
|
||||
let mut values;
|
||||
match value {
|
||||
Some(mut val) => {
|
||||
values = vec![];
|
||||
for _ in 0..64 {
|
||||
values.push(Some(val & 1 == 1));
|
||||
val >>= 1;
|
||||
}
|
||||
},
|
||||
None => {
|
||||
values = vec![None; 64];
|
||||
}
|
||||
}
|
||||
|
||||
let mut bits = vec![];
|
||||
for (i, value) in values.into_iter().enumerate() {
|
||||
bits.push(
|
||||
AllocatedBit::alloc(
|
||||
cs.namespace(|| format!("bit {}", i)),
|
||||
value
|
||||
)?
|
||||
);
|
||||
}
|
||||
|
||||
Ok(NoteValue {
|
||||
value: value,
|
||||
bits: bits
|
||||
})
|
||||
}
|
||||
|
||||
/// Encodes the bits of the value into little-endian
|
||||
/// byte order.
|
||||
fn bits_le(&self) -> Vec<Boolean> {
|
||||
self.bits.chunks(8)
|
||||
.flat_map(|v| v.iter().rev())
|
||||
.cloned()
|
||||
.map(|e| Boolean::from(e))
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Computes this value as a linear combination of
|
||||
/// its bits.
|
||||
fn lc<E: Engine>(&self) -> LinearCombination<E> {
|
||||
let mut tmp = LinearCombination::zero();
|
||||
|
||||
let mut coeff = E::Fr::one();
|
||||
for b in &self.bits {
|
||||
tmp = tmp + (coeff, b.get_variable());
|
||||
coeff.double();
|
||||
}
|
||||
|
||||
tmp
|
||||
}
|
||||
|
||||
fn get_value(&self) -> Option<u64> {
|
||||
self.value
|
||||
}
|
||||
}
|
||||
|
||||
/// Witnesses some bytes in the constraint system,
|
||||
/// skipping the first `skip_bits`.
|
||||
fn witness_bits<E, CS>(
|
||||
mut cs: CS,
|
||||
value: Option<&[u8]>,
|
||||
num_bits: usize,
|
||||
skip_bits: usize
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>,
|
||||
{
|
||||
let bit_values = if let Some(value) = value {
|
||||
let mut tmp = vec![];
|
||||
for b in value.iter()
|
||||
.flat_map(|&m| (0..8).rev().map(move |i| m >> i & 1 == 1))
|
||||
.skip(skip_bits)
|
||||
{
|
||||
tmp.push(Some(b));
|
||||
}
|
||||
tmp
|
||||
} else {
|
||||
vec![None; num_bits]
|
||||
};
|
||||
assert_eq!(bit_values.len(), num_bits);
|
||||
|
||||
let mut bits = vec![];
|
||||
|
||||
for (i, value) in bit_values.into_iter().enumerate() {
|
||||
bits.push(Boolean::from(AllocatedBit::alloc(
|
||||
cs.namespace(|| format!("bit {}", i)),
|
||||
value
|
||||
)?));
|
||||
}
|
||||
|
||||
Ok(bits)
|
||||
}
|
||||
|
||||
fn witness_u256<E, CS>(
|
||||
cs: CS,
|
||||
value: Option<&[u8]>,
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>,
|
||||
{
|
||||
witness_bits(cs, value, 256, 0)
|
||||
}
|
||||
|
||||
fn witness_u252<E, CS>(
|
||||
cs: CS,
|
||||
value: Option<&[u8]>,
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>,
|
||||
{
|
||||
witness_bits(cs, value, 252, 4)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sprout_constraints() {
|
||||
use pairing::bls12_381::{Bls12};
|
||||
use ::circuit::test::*;
|
||||
|
||||
use byteorder::{WriteBytesExt, ReadBytesExt, LittleEndian};
|
||||
|
||||
let test_vector = include_bytes!("test_vectors.dat");
|
||||
let mut test_vector = &test_vector[..];
|
||||
|
||||
fn get_u256<R: ReadBytesExt>(mut reader: R) -> [u8; 32] {
|
||||
let mut result = [0u8; 32];
|
||||
|
||||
for i in 0..32 {
|
||||
result[i] = reader.read_u8().unwrap();
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
while test_vector.len() != 0 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let phi = Some(get_u256(&mut test_vector));
|
||||
let rt = Some(get_u256(&mut test_vector));
|
||||
let h_sig = Some(get_u256(&mut test_vector));
|
||||
|
||||
let mut inputs = vec![];
|
||||
for _ in 0..2 {
|
||||
test_vector.read_u8().unwrap();
|
||||
|
||||
let mut auth_path = [None; TREE_DEPTH];
|
||||
for i in (0..TREE_DEPTH).rev() {
|
||||
test_vector.read_u8().unwrap();
|
||||
|
||||
let sibling = get_u256(&mut test_vector);
|
||||
|
||||
auth_path[i] = Some((sibling, false));
|
||||
}
|
||||
let mut position = test_vector.read_u64::<LittleEndian>().unwrap();
|
||||
for i in 0..TREE_DEPTH {
|
||||
auth_path[i].as_mut().map(|p| {
|
||||
p.1 = (position & 1) == 1
|
||||
});
|
||||
|
||||
position >>= 1;
|
||||
}
|
||||
|
||||
// a_pk
|
||||
let _ = Some(SpendingKey(get_u256(&mut test_vector)));
|
||||
let value = Some(test_vector.read_u64::<LittleEndian>().unwrap());
|
||||
let rho = Some(UniqueRandomness(get_u256(&mut test_vector)));
|
||||
let r = Some(CommitmentRandomness(get_u256(&mut test_vector)));
|
||||
let a_sk = Some(SpendingKey(get_u256(&mut test_vector)));
|
||||
|
||||
inputs.push(
|
||||
JSInput {
|
||||
value: value,
|
||||
a_sk: a_sk,
|
||||
rho: rho,
|
||||
r: r,
|
||||
auth_path: auth_path
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
let mut outputs = vec![];
|
||||
|
||||
for _ in 0..2 {
|
||||
let a_pk = Some(PayingKey(get_u256(&mut test_vector)));
|
||||
let value = Some(test_vector.read_u64::<LittleEndian>().unwrap());
|
||||
get_u256(&mut test_vector);
|
||||
let r = Some(CommitmentRandomness(get_u256(&mut test_vector)));
|
||||
|
||||
outputs.push(
|
||||
JSOutput {
|
||||
value: value,
|
||||
a_pk: a_pk,
|
||||
r: r
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
let vpub_old = Some(test_vector.read_u64::<LittleEndian>().unwrap());
|
||||
let vpub_new = Some(test_vector.read_u64::<LittleEndian>().unwrap());
|
||||
|
||||
let nf1 = get_u256(&mut test_vector);
|
||||
let nf2 = get_u256(&mut test_vector);
|
||||
|
||||
let cm1 = get_u256(&mut test_vector);
|
||||
let cm2 = get_u256(&mut test_vector);
|
||||
|
||||
let mac1 = get_u256(&mut test_vector);
|
||||
let mac2 = get_u256(&mut test_vector);
|
||||
|
||||
let js = JoinSplit {
|
||||
vpub_old: vpub_old,
|
||||
vpub_new: vpub_new,
|
||||
h_sig: h_sig,
|
||||
phi: phi,
|
||||
inputs: inputs,
|
||||
outputs: outputs,
|
||||
rt: rt
|
||||
};
|
||||
|
||||
js.synthesize(&mut cs).unwrap();
|
||||
|
||||
if let Some(s) = cs.which_is_unsatisfied() {
|
||||
panic!("{:?}", s);
|
||||
}
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 1989085);
|
||||
assert_eq!(cs.num_inputs(), 10);
|
||||
assert_eq!(cs.hash(), "1a228d3c6377130d1778c7885811dc8b8864049cb5af8aff7e6cd46c5bc4b84c");
|
||||
|
||||
let mut expected_inputs = vec![];
|
||||
expected_inputs.extend(rt.unwrap().to_vec());
|
||||
expected_inputs.extend(h_sig.unwrap().to_vec());
|
||||
expected_inputs.extend(nf1.to_vec());
|
||||
expected_inputs.extend(mac1.to_vec());
|
||||
expected_inputs.extend(nf2.to_vec());
|
||||
expected_inputs.extend(mac2.to_vec());
|
||||
expected_inputs.extend(cm1.to_vec());
|
||||
expected_inputs.extend(cm2.to_vec());
|
||||
expected_inputs.write_u64::<LittleEndian>(vpub_old.unwrap()).unwrap();
|
||||
expected_inputs.write_u64::<LittleEndian>(vpub_new.unwrap()).unwrap();
|
||||
|
||||
use circuit::multipack;
|
||||
|
||||
let expected_inputs = multipack::bytes_to_bits(&expected_inputs);
|
||||
let expected_inputs = multipack::compute_multipacking::<Bls12>(&expected_inputs);
|
||||
|
||||
assert!(cs.verify(&expected_inputs));
|
||||
}
|
||||
}
|
54
sapling-crypto/src/circuit/sprout/output.rs
Normal file
54
sapling-crypto/src/circuit/sprout/output.rs
Normal file
@ -0,0 +1,54 @@
|
||||
use pairing::{Engine};
|
||||
use bellman::{ConstraintSystem, SynthesisError};
|
||||
use circuit::boolean::{Boolean};
|
||||
|
||||
use super::*;
|
||||
use super::prfs::*;
|
||||
use super::commitment::note_comm;
|
||||
|
||||
pub struct OutputNote {
|
||||
pub cm: Vec<Boolean>
|
||||
}
|
||||
|
||||
impl OutputNote {
|
||||
pub fn compute<'a, E, CS>(
|
||||
mut cs: CS,
|
||||
a_pk: Option<PayingKey>,
|
||||
value: &NoteValue,
|
||||
r: Option<CommitmentRandomness>,
|
||||
phi: &[Boolean],
|
||||
h_sig: &[Boolean],
|
||||
nonce: bool
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>,
|
||||
{
|
||||
let rho = prf_rho(
|
||||
cs.namespace(|| "rho"),
|
||||
phi,
|
||||
h_sig,
|
||||
nonce
|
||||
)?;
|
||||
|
||||
let a_pk = witness_u256(
|
||||
cs.namespace(|| "a_pk"),
|
||||
a_pk.as_ref().map(|a_pk| &a_pk.0[..])
|
||||
)?;
|
||||
|
||||
let r = witness_u256(
|
||||
cs.namespace(|| "r"),
|
||||
r.as_ref().map(|r| &r.0[..])
|
||||
)?;
|
||||
|
||||
let cm = note_comm(
|
||||
cs.namespace(|| "cm computation"),
|
||||
&a_pk,
|
||||
&value.bits_le(),
|
||||
&rho,
|
||||
&r
|
||||
)?;
|
||||
|
||||
Ok(OutputNote {
|
||||
cm: cm
|
||||
})
|
||||
}
|
||||
}
|
79
sapling-crypto/src/circuit/sprout/prfs.rs
Normal file
79
sapling-crypto/src/circuit/sprout/prfs.rs
Normal file
@ -0,0 +1,79 @@
|
||||
use pairing::{Engine};
|
||||
use bellman::{ConstraintSystem, SynthesisError};
|
||||
use circuit::sha256::{
|
||||
sha256_block_no_padding
|
||||
};
|
||||
use circuit::boolean::{
|
||||
Boolean
|
||||
};
|
||||
|
||||
fn prf<E, CS>(
|
||||
cs: CS,
|
||||
a: bool,
|
||||
b: bool,
|
||||
c: bool,
|
||||
d: bool,
|
||||
x: &[Boolean],
|
||||
y: &[Boolean]
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
assert_eq!(x.len(), 252);
|
||||
assert_eq!(y.len(), 256);
|
||||
|
||||
let mut image = vec![];
|
||||
image.push(Boolean::constant(a));
|
||||
image.push(Boolean::constant(b));
|
||||
image.push(Boolean::constant(c));
|
||||
image.push(Boolean::constant(d));
|
||||
image.extend(x.iter().cloned());
|
||||
image.extend(y.iter().cloned());
|
||||
|
||||
assert_eq!(image.len(), 512);
|
||||
|
||||
sha256_block_no_padding(
|
||||
cs,
|
||||
&image
|
||||
)
|
||||
}
|
||||
|
||||
pub fn prf_a_pk<E, CS>(
|
||||
cs: CS,
|
||||
a_sk: &[Boolean]
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
prf(cs, true, true, false, false, a_sk, &(0..256).map(|_| Boolean::constant(false)).collect::<Vec<_>>())
|
||||
}
|
||||
|
||||
pub fn prf_nf<E, CS>(
|
||||
cs: CS,
|
||||
a_sk: &[Boolean],
|
||||
rho: &[Boolean]
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
prf(cs, true, true, true, false, a_sk, rho)
|
||||
}
|
||||
|
||||
pub fn prf_pk<E, CS>(
|
||||
cs: CS,
|
||||
a_sk: &[Boolean],
|
||||
h_sig: &[Boolean],
|
||||
nonce: bool
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
prf(cs, false, nonce, false, false, a_sk, h_sig)
|
||||
}
|
||||
|
||||
pub fn prf_rho<E, CS>(
|
||||
cs: CS,
|
||||
phi: &[Boolean],
|
||||
h_sig: &[Boolean],
|
||||
nonce: bool
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
prf(cs, false, nonce, true, false, phi, h_sig)
|
||||
}
|
BIN
sapling-crypto/src/circuit/sprout/test_vectors.dat
Normal file
BIN
sapling-crypto/src/circuit/sprout/test_vectors.dat
Normal file
Binary file not shown.
492
sapling-crypto/src/circuit/test/mod.rs
Normal file
492
sapling-crypto/src/circuit/test/mod.rs
Normal file
@ -0,0 +1,492 @@
|
||||
use pairing::{
|
||||
Engine,
|
||||
Field,
|
||||
PrimeField,
|
||||
PrimeFieldRepr
|
||||
};
|
||||
|
||||
use bellman::{
|
||||
LinearCombination,
|
||||
SynthesisError,
|
||||
ConstraintSystem,
|
||||
Variable,
|
||||
Index
|
||||
};
|
||||
|
||||
use std::collections::HashMap;
|
||||
use std::fmt::Write;
|
||||
|
||||
use byteorder::{BigEndian, ByteOrder};
|
||||
use std::cmp::Ordering;
|
||||
use std::collections::BTreeMap;
|
||||
|
||||
use blake2_rfc::blake2s::Blake2s;
|
||||
|
||||
#[derive(Debug)]
|
||||
enum NamedObject {
|
||||
Constraint(usize),
|
||||
Var(Variable),
|
||||
Namespace
|
||||
}
|
||||
|
||||
/// Constraint system for testing purposes.
|
||||
pub struct TestConstraintSystem<E: Engine> {
|
||||
named_objects: HashMap<String, NamedObject>,
|
||||
current_namespace: Vec<String>,
|
||||
constraints: Vec<(
|
||||
LinearCombination<E>,
|
||||
LinearCombination<E>,
|
||||
LinearCombination<E>,
|
||||
String
|
||||
)>,
|
||||
inputs: Vec<(E::Fr, String)>,
|
||||
aux: Vec<(E::Fr, String)>
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
struct OrderedVariable(Variable);
|
||||
|
||||
impl Eq for OrderedVariable {}
|
||||
impl PartialEq for OrderedVariable {
|
||||
fn eq(&self, other: &OrderedVariable) -> bool {
|
||||
match (self.0.get_unchecked(), other.0.get_unchecked()) {
|
||||
(Index::Input(ref a), Index::Input(ref b)) => a == b,
|
||||
(Index::Aux(ref a), Index::Aux(ref b)) => a == b,
|
||||
_ => false
|
||||
}
|
||||
}
|
||||
}
|
||||
impl PartialOrd for OrderedVariable {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
impl Ord for OrderedVariable {
|
||||
fn cmp(&self, other: &Self) -> Ordering {
|
||||
match (self.0.get_unchecked(), other.0.get_unchecked()) {
|
||||
(Index::Input(ref a), Index::Input(ref b)) => a.cmp(b),
|
||||
(Index::Aux(ref a), Index::Aux(ref b)) => a.cmp(b),
|
||||
(Index::Input(_), Index::Aux(_)) => Ordering::Less,
|
||||
(Index::Aux(_), Index::Input(_)) => Ordering::Greater
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn proc_lc<E: Engine>(
|
||||
terms: &[(Variable, E::Fr)],
|
||||
) -> BTreeMap<OrderedVariable, E::Fr>
|
||||
{
|
||||
let mut map = BTreeMap::new();
|
||||
for &(var, coeff) in terms {
|
||||
map.entry(OrderedVariable(var))
|
||||
.or_insert(E::Fr::zero())
|
||||
.add_assign(&coeff);
|
||||
}
|
||||
|
||||
// Remove terms that have a zero coefficient to normalize
|
||||
let mut to_remove = vec![];
|
||||
for (var, coeff) in map.iter() {
|
||||
if coeff.is_zero() {
|
||||
to_remove.push(var.clone())
|
||||
}
|
||||
}
|
||||
|
||||
for var in to_remove {
|
||||
map.remove(&var);
|
||||
}
|
||||
|
||||
map
|
||||
}
|
||||
|
||||
fn hash_lc<E: Engine>(
|
||||
terms: &[(Variable, E::Fr)],
|
||||
h: &mut Blake2s
|
||||
)
|
||||
{
|
||||
let map = proc_lc::<E>(terms);
|
||||
|
||||
let mut buf = [0u8; 9 + 32];
|
||||
BigEndian::write_u64(&mut buf[0..8], map.len() as u64);
|
||||
h.update(&buf[0..8]);
|
||||
|
||||
for (var, coeff) in map {
|
||||
match var.0.get_unchecked() {
|
||||
Index::Input(i) => {
|
||||
buf[0] = b'I';
|
||||
BigEndian::write_u64(&mut buf[1..9], i as u64);
|
||||
},
|
||||
Index::Aux(i) => {
|
||||
buf[0] = b'A';
|
||||
BigEndian::write_u64(&mut buf[1..9], i as u64);
|
||||
}
|
||||
}
|
||||
|
||||
coeff.into_repr().write_be(&mut buf[9..]).unwrap();
|
||||
|
||||
h.update(&buf);
|
||||
}
|
||||
}
|
||||
|
||||
fn eval_lc<E: Engine>(
|
||||
terms: &[(Variable, E::Fr)],
|
||||
inputs: &[(E::Fr, String)],
|
||||
aux: &[(E::Fr, String)]
|
||||
) -> E::Fr
|
||||
{
|
||||
let mut acc = E::Fr::zero();
|
||||
|
||||
for &(var, ref coeff) in terms {
|
||||
let mut tmp = match var.get_unchecked() {
|
||||
Index::Input(index) => inputs[index].0,
|
||||
Index::Aux(index) => aux[index].0
|
||||
};
|
||||
|
||||
tmp.mul_assign(&coeff);
|
||||
acc.add_assign(&tmp);
|
||||
}
|
||||
|
||||
acc
|
||||
}
|
||||
|
||||
impl<E: Engine> TestConstraintSystem<E> {
|
||||
pub fn new() -> TestConstraintSystem<E> {
|
||||
let mut map = HashMap::new();
|
||||
map.insert("ONE".into(), NamedObject::Var(TestConstraintSystem::<E>::one()));
|
||||
|
||||
TestConstraintSystem {
|
||||
named_objects: map,
|
||||
current_namespace: vec![],
|
||||
constraints: vec![],
|
||||
inputs: vec![(E::Fr::one(), "ONE".into())],
|
||||
aux: vec![]
|
||||
}
|
||||
}
|
||||
|
||||
pub fn pretty_print(&self) -> String {
|
||||
let mut s = String::new();
|
||||
|
||||
let negone = {
|
||||
let mut tmp = E::Fr::one();
|
||||
tmp.negate();
|
||||
tmp
|
||||
};
|
||||
|
||||
let powers_of_two = (0..E::Fr::NUM_BITS).map(|i| {
|
||||
E::Fr::from_str("2").unwrap().pow(&[i as u64])
|
||||
}).collect::<Vec<_>>();
|
||||
|
||||
let pp = |s: &mut String, lc: &LinearCombination<E>| {
|
||||
write!(s, "(").unwrap();
|
||||
let mut is_first = true;
|
||||
for (var, coeff) in proc_lc::<E>(lc.as_ref()) {
|
||||
if coeff == negone {
|
||||
write!(s, " - ").unwrap();
|
||||
} else if !is_first {
|
||||
write!(s, " + ").unwrap();
|
||||
}
|
||||
is_first = false;
|
||||
|
||||
if coeff != E::Fr::one() && coeff != negone {
|
||||
for (i, x) in powers_of_two.iter().enumerate() {
|
||||
if x == &coeff {
|
||||
write!(s, "2^{} . ", i).unwrap();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
write!(s, "{} . ", coeff).unwrap();
|
||||
}
|
||||
|
||||
match var.0.get_unchecked() {
|
||||
Index::Input(i) => {
|
||||
write!(s, "`{}`", &self.inputs[i].1).unwrap();
|
||||
},
|
||||
Index::Aux(i) => {
|
||||
write!(s, "`{}`", &self.aux[i].1).unwrap();
|
||||
}
|
||||
}
|
||||
}
|
||||
if is_first {
|
||||
// Nothing was visited, print 0.
|
||||
write!(s, "0").unwrap();
|
||||
}
|
||||
write!(s, ")").unwrap();
|
||||
};
|
||||
|
||||
for &(ref a, ref b, ref c, ref name) in &self.constraints {
|
||||
write!(&mut s, "\n").unwrap();
|
||||
|
||||
write!(&mut s, "{}: ", name).unwrap();
|
||||
pp(&mut s, a);
|
||||
write!(&mut s, " * ").unwrap();
|
||||
pp(&mut s, b);
|
||||
write!(&mut s, " = ").unwrap();
|
||||
pp(&mut s, c);
|
||||
}
|
||||
|
||||
write!(&mut s, "\n").unwrap();
|
||||
|
||||
s
|
||||
}
|
||||
|
||||
pub fn hash(&self) -> String {
|
||||
let mut h = Blake2s::new(32);
|
||||
{
|
||||
let mut buf = [0u8; 24];
|
||||
|
||||
BigEndian::write_u64(&mut buf[0..8], self.inputs.len() as u64);
|
||||
BigEndian::write_u64(&mut buf[8..16], self.aux.len() as u64);
|
||||
BigEndian::write_u64(&mut buf[16..24], self.constraints.len() as u64);
|
||||
h.update(&buf);
|
||||
}
|
||||
|
||||
for constraint in &self.constraints {
|
||||
hash_lc::<E>(constraint.0.as_ref(), &mut h);
|
||||
hash_lc::<E>(constraint.1.as_ref(), &mut h);
|
||||
hash_lc::<E>(constraint.2.as_ref(), &mut h);
|
||||
}
|
||||
|
||||
let mut s = String::new();
|
||||
for b in h.finalize().as_ref() {
|
||||
s += &format!("{:02x}", b);
|
||||
}
|
||||
|
||||
s
|
||||
}
|
||||
|
||||
pub fn which_is_unsatisfied(&self) -> Option<&str> {
|
||||
for &(ref a, ref b, ref c, ref path) in &self.constraints {
|
||||
let mut a = eval_lc::<E>(a.as_ref(), &self.inputs, &self.aux);
|
||||
let b = eval_lc::<E>(b.as_ref(), &self.inputs, &self.aux);
|
||||
let c = eval_lc::<E>(c.as_ref(), &self.inputs, &self.aux);
|
||||
|
||||
a.mul_assign(&b);
|
||||
|
||||
if a != c {
|
||||
return Some(&*path)
|
||||
}
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
|
||||
pub fn is_satisfied(&self) -> bool
|
||||
{
|
||||
self.which_is_unsatisfied().is_none()
|
||||
}
|
||||
|
||||
pub fn num_constraints(&self) -> usize
|
||||
{
|
||||
self.constraints.len()
|
||||
}
|
||||
|
||||
pub fn set(&mut self, path: &str, to: E::Fr)
|
||||
{
|
||||
match self.named_objects.get(path) {
|
||||
Some(&NamedObject::Var(ref v)) => {
|
||||
match v.get_unchecked() {
|
||||
Index::Input(index) => self.inputs[index].0 = to,
|
||||
Index::Aux(index) => self.aux[index].0 = to
|
||||
}
|
||||
}
|
||||
Some(e) => panic!("tried to set path `{}` to value, but `{:?}` already exists there.", path, e),
|
||||
_ => panic!("no variable exists at path: {}", path)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn verify(&self, expected: &[E::Fr]) -> bool
|
||||
{
|
||||
assert_eq!(expected.len() + 1, self.inputs.len());
|
||||
|
||||
for (a, b) in self.inputs.iter().skip(1).zip(expected.iter())
|
||||
{
|
||||
if &a.0 != b {
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
pub fn num_inputs(&self) -> usize {
|
||||
self.inputs.len()
|
||||
}
|
||||
|
||||
pub fn get_input(&mut self, index: usize, path: &str) -> E::Fr
|
||||
{
|
||||
let (assignment, name) = self.inputs[index].clone();
|
||||
|
||||
assert_eq!(path, name);
|
||||
|
||||
assignment
|
||||
}
|
||||
|
||||
pub fn get(&mut self, path: &str) -> E::Fr
|
||||
{
|
||||
match self.named_objects.get(path) {
|
||||
Some(&NamedObject::Var(ref v)) => {
|
||||
match v.get_unchecked() {
|
||||
Index::Input(index) => self.inputs[index].0,
|
||||
Index::Aux(index) => self.aux[index].0
|
||||
}
|
||||
}
|
||||
Some(e) => panic!("tried to get value of path `{}`, but `{:?}` exists there (not a variable)", path, e),
|
||||
_ => panic!("no variable exists at path: {}", path)
|
||||
}
|
||||
}
|
||||
|
||||
fn set_named_obj(&mut self, path: String, to: NamedObject) {
|
||||
if self.named_objects.contains_key(&path) {
|
||||
panic!("tried to create object at existing path: {}", path);
|
||||
}
|
||||
|
||||
self.named_objects.insert(path, to);
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_path(ns: &[String], this: String) -> String {
|
||||
if this.chars().any(|a| a == '/') {
|
||||
panic!("'/' is not allowed in names");
|
||||
}
|
||||
|
||||
let mut name = String::new();
|
||||
|
||||
let mut needs_separation = false;
|
||||
for ns in ns.iter().chain(Some(&this).into_iter())
|
||||
{
|
||||
if needs_separation {
|
||||
name += "/";
|
||||
}
|
||||
|
||||
name += ns;
|
||||
needs_separation = true;
|
||||
}
|
||||
|
||||
name
|
||||
}
|
||||
|
||||
impl<E: Engine> ConstraintSystem<E> for TestConstraintSystem<E> {
|
||||
type Root = Self;
|
||||
|
||||
fn alloc<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
let index = self.aux.len();
|
||||
let path = compute_path(&self.current_namespace, annotation().into());
|
||||
self.aux.push((f()?, path.clone()));
|
||||
let var = Variable::new_unchecked(Index::Aux(index));
|
||||
self.set_named_obj(path, NamedObject::Var(var));
|
||||
|
||||
Ok(var)
|
||||
}
|
||||
|
||||
fn alloc_input<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
let index = self.inputs.len();
|
||||
let path = compute_path(&self.current_namespace, annotation().into());
|
||||
self.inputs.push((f()?, path.clone()));
|
||||
let var = Variable::new_unchecked(Index::Input(index));
|
||||
self.set_named_obj(path, NamedObject::Var(var));
|
||||
|
||||
Ok(var)
|
||||
}
|
||||
|
||||
fn enforce<A, AR, LA, LB, LC>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
a: LA,
|
||||
b: LB,
|
||||
c: LC
|
||||
)
|
||||
where A: FnOnce() -> AR, AR: Into<String>,
|
||||
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
|
||||
{
|
||||
let path = compute_path(&self.current_namespace, annotation().into());
|
||||
let index = self.constraints.len();
|
||||
self.set_named_obj(path.clone(), NamedObject::Constraint(index));
|
||||
|
||||
let a = a(LinearCombination::zero());
|
||||
let b = b(LinearCombination::zero());
|
||||
let c = c(LinearCombination::zero());
|
||||
|
||||
self.constraints.push((a, b, c, path));
|
||||
}
|
||||
|
||||
fn push_namespace<NR, N>(&mut self, name_fn: N)
|
||||
where NR: Into<String>, N: FnOnce() -> NR
|
||||
{
|
||||
let name = name_fn().into();
|
||||
let path = compute_path(&self.current_namespace, name.clone());
|
||||
self.set_named_obj(path.clone(), NamedObject::Namespace);
|
||||
self.current_namespace.push(name);
|
||||
}
|
||||
|
||||
fn pop_namespace(&mut self)
|
||||
{
|
||||
assert!(self.current_namespace.pop().is_some());
|
||||
}
|
||||
|
||||
fn get_root(&mut self) -> &mut Self::Root
|
||||
{
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cs() {
|
||||
use pairing::bls12_381::{Bls12, Fr};
|
||||
use pairing::PrimeField;
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 0);
|
||||
let a = cs.namespace(|| "a").alloc(|| "var", || Ok(Fr::from_str("10").unwrap())).unwrap();
|
||||
let b = cs.namespace(|| "b").alloc(|| "var", || Ok(Fr::from_str("4").unwrap())).unwrap();
|
||||
let c = cs.alloc(|| "product", || Ok(Fr::from_str("40").unwrap())).unwrap();
|
||||
|
||||
cs.enforce(
|
||||
|| "mult",
|
||||
|lc| lc + a,
|
||||
|lc| lc + b,
|
||||
|lc| lc + c
|
||||
);
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 1);
|
||||
|
||||
cs.set("a/var", Fr::from_str("4").unwrap());
|
||||
|
||||
let one = TestConstraintSystem::<Bls12>::one();
|
||||
cs.enforce(
|
||||
|| "eq",
|
||||
|lc| lc + a,
|
||||
|lc| lc + one,
|
||||
|lc| lc + b
|
||||
);
|
||||
|
||||
assert!(!cs.is_satisfied());
|
||||
assert!(cs.which_is_unsatisfied() == Some("mult"));
|
||||
|
||||
assert!(cs.get("product") == Fr::from_str("40").unwrap());
|
||||
|
||||
cs.set("product", Fr::from_str("16").unwrap());
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
{
|
||||
let mut cs = cs.namespace(|| "test1");
|
||||
let mut cs = cs.namespace(|| "test2");
|
||||
cs.alloc(|| "hehe", || Ok(Fr::one())).unwrap();
|
||||
}
|
||||
|
||||
assert!(cs.get("test1/test2/hehe") == Fr::one());
|
||||
}
|
755
sapling-crypto/src/circuit/uint32.rs
Normal file
755
sapling-crypto/src/circuit/uint32.rs
Normal file
@ -0,0 +1,755 @@
|
||||
use pairing::{
|
||||
Engine,
|
||||
Field,
|
||||
PrimeField
|
||||
};
|
||||
|
||||
use bellman::{
|
||||
SynthesisError,
|
||||
ConstraintSystem,
|
||||
LinearCombination
|
||||
};
|
||||
|
||||
use super::boolean::{
|
||||
Boolean,
|
||||
AllocatedBit
|
||||
};
|
||||
|
||||
use super::multieq::MultiEq;
|
||||
|
||||
/// Represents an interpretation of 32 `Boolean` objects as an
|
||||
/// unsigned integer.
|
||||
#[derive(Clone)]
|
||||
pub struct UInt32 {
|
||||
// Least significant bit first
|
||||
bits: Vec<Boolean>,
|
||||
value: Option<u32>
|
||||
}
|
||||
|
||||
impl UInt32 {
|
||||
/// Construct a constant `UInt32` from a `u32`
|
||||
pub fn constant(value: u32) -> Self
|
||||
{
|
||||
let mut bits = Vec::with_capacity(32);
|
||||
|
||||
let mut tmp = value;
|
||||
for _ in 0..32 {
|
||||
if tmp & 1 == 1 {
|
||||
bits.push(Boolean::constant(true))
|
||||
} else {
|
||||
bits.push(Boolean::constant(false))
|
||||
}
|
||||
|
||||
tmp >>= 1;
|
||||
}
|
||||
|
||||
UInt32 {
|
||||
bits: bits,
|
||||
value: Some(value)
|
||||
}
|
||||
}
|
||||
|
||||
/// Allocate a `UInt32` in the constraint system
|
||||
pub fn alloc<E, CS>(
|
||||
mut cs: CS,
|
||||
value: Option<u32>
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
let values = match value {
|
||||
Some(mut val) => {
|
||||
let mut v = Vec::with_capacity(32);
|
||||
|
||||
for _ in 0..32 {
|
||||
v.push(Some(val & 1 == 1));
|
||||
val >>= 1;
|
||||
}
|
||||
|
||||
v
|
||||
},
|
||||
None => vec![None; 32]
|
||||
};
|
||||
|
||||
let bits = values.into_iter()
|
||||
.enumerate()
|
||||
.map(|(i, v)| {
|
||||
Ok(Boolean::from(AllocatedBit::alloc(
|
||||
cs.namespace(|| format!("allocated bit {}", i)),
|
||||
v
|
||||
)?))
|
||||
})
|
||||
.collect::<Result<Vec<_>, SynthesisError>>()?;
|
||||
|
||||
Ok(UInt32 {
|
||||
bits: bits,
|
||||
value: value
|
||||
})
|
||||
}
|
||||
|
||||
pub fn into_bits_be(&self) -> Vec<Boolean> {
|
||||
self.bits.iter().rev().cloned().collect()
|
||||
}
|
||||
|
||||
pub fn from_bits_be(bits: &[Boolean]) -> Self {
|
||||
assert_eq!(bits.len(), 32);
|
||||
|
||||
let mut value = Some(0u32);
|
||||
for b in bits {
|
||||
value.as_mut().map(|v| *v <<= 1);
|
||||
|
||||
match b.get_value() {
|
||||
Some(true) => { value.as_mut().map(|v| *v |= 1); },
|
||||
Some(false) => {},
|
||||
None => { value = None; }
|
||||
}
|
||||
}
|
||||
|
||||
UInt32 {
|
||||
value: value,
|
||||
bits: bits.iter().rev().cloned().collect()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Turns this `UInt32` into its little-endian byte order representation.
|
||||
pub fn into_bits(&self) -> Vec<Boolean> {
|
||||
self.bits.clone()
|
||||
}
|
||||
|
||||
/// Converts a little-endian byte order representation of bits into a
|
||||
/// `UInt32`.
|
||||
pub fn from_bits(bits: &[Boolean]) -> Self
|
||||
{
|
||||
assert_eq!(bits.len(), 32);
|
||||
|
||||
let new_bits = bits.to_vec();
|
||||
|
||||
let mut value = Some(0u32);
|
||||
for b in new_bits.iter().rev() {
|
||||
value.as_mut().map(|v| *v <<= 1);
|
||||
|
||||
match b {
|
||||
&Boolean::Constant(b) => {
|
||||
if b {
|
||||
value.as_mut().map(|v| *v |= 1);
|
||||
}
|
||||
},
|
||||
&Boolean::Is(ref b) => {
|
||||
match b.get_value() {
|
||||
Some(true) => { value.as_mut().map(|v| *v |= 1); },
|
||||
Some(false) => {},
|
||||
None => { value = None }
|
||||
}
|
||||
},
|
||||
&Boolean::Not(ref b) => {
|
||||
match b.get_value() {
|
||||
Some(false) => { value.as_mut().map(|v| *v |= 1); },
|
||||
Some(true) => {},
|
||||
None => { value = None }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
UInt32 {
|
||||
value: value,
|
||||
bits: new_bits
|
||||
}
|
||||
}
|
||||
|
||||
pub fn rotr(&self, by: usize) -> Self {
|
||||
let by = by % 32;
|
||||
|
||||
let new_bits = self.bits.iter()
|
||||
.skip(by)
|
||||
.chain(self.bits.iter())
|
||||
.take(32)
|
||||
.cloned()
|
||||
.collect();
|
||||
|
||||
UInt32 {
|
||||
bits: new_bits,
|
||||
value: self.value.map(|v| v.rotate_right(by as u32))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn shr(&self, by: usize) -> Self {
|
||||
let by = by % 32;
|
||||
|
||||
let fill = Boolean::constant(false);
|
||||
|
||||
let new_bits = self.bits
|
||||
.iter() // The bits are least significant first
|
||||
.skip(by) // Skip the bits that will be lost during the shift
|
||||
.chain(Some(&fill).into_iter().cycle()) // Rest will be zeros
|
||||
.take(32) // Only 32 bits needed!
|
||||
.cloned()
|
||||
.collect();
|
||||
|
||||
UInt32 {
|
||||
bits: new_bits,
|
||||
value: self.value.map(|v| v >> by as u32)
|
||||
}
|
||||
}
|
||||
|
||||
fn triop<E, CS, F, U>(
|
||||
mut cs: CS,
|
||||
a: &Self,
|
||||
b: &Self,
|
||||
c: &Self,
|
||||
tri_fn: F,
|
||||
circuit_fn: U
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E>,
|
||||
F: Fn(u32, u32, u32) -> u32,
|
||||
U: Fn(&mut CS, usize, &Boolean, &Boolean, &Boolean) -> Result<Boolean, SynthesisError>
|
||||
{
|
||||
let new_value = match (a.value, b.value, c.value) {
|
||||
(Some(a), Some(b), Some(c)) => {
|
||||
Some(tri_fn(a, b, c))
|
||||
},
|
||||
_ => None
|
||||
};
|
||||
|
||||
let bits = a.bits.iter()
|
||||
.zip(b.bits.iter())
|
||||
.zip(c.bits.iter())
|
||||
.enumerate()
|
||||
.map(|(i, ((a, b), c))| circuit_fn(&mut cs, i, a, b, c))
|
||||
.collect::<Result<_, _>>()?;
|
||||
|
||||
Ok(UInt32 {
|
||||
bits: bits,
|
||||
value: new_value
|
||||
})
|
||||
}
|
||||
|
||||
/// Compute the `maj` value (a and b) xor (a and c) xor (b and c)
|
||||
/// during SHA256.
|
||||
pub fn sha256_maj<E, CS>(
|
||||
cs: CS,
|
||||
a: &Self,
|
||||
b: &Self,
|
||||
c: &Self
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
Self::triop(cs, a, b, c, |a, b, c| (a & b) ^ (a & c) ^ (b & c),
|
||||
|cs, i, a, b, c| {
|
||||
Boolean::sha256_maj(
|
||||
cs.namespace(|| format!("maj {}", i)),
|
||||
a,
|
||||
b,
|
||||
c
|
||||
)
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
/// Compute the `ch` value `(a and b) xor ((not a) and c)`
|
||||
/// during SHA256.
|
||||
pub fn sha256_ch<E, CS>(
|
||||
cs: CS,
|
||||
a: &Self,
|
||||
b: &Self,
|
||||
c: &Self
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
Self::triop(cs, a, b, c, |a, b, c| (a & b) ^ ((!a) & c),
|
||||
|cs, i, a, b, c| {
|
||||
Boolean::sha256_ch(
|
||||
cs.namespace(|| format!("ch {}", i)),
|
||||
a,
|
||||
b,
|
||||
c
|
||||
)
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
/// XOR this `UInt32` with another `UInt32`
|
||||
pub fn xor<E, CS>(
|
||||
&self,
|
||||
mut cs: CS,
|
||||
other: &Self
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
let new_value = match (self.value, other.value) {
|
||||
(Some(a), Some(b)) => {
|
||||
Some(a ^ b)
|
||||
},
|
||||
_ => None
|
||||
};
|
||||
|
||||
let bits = self.bits.iter()
|
||||
.zip(other.bits.iter())
|
||||
.enumerate()
|
||||
.map(|(i, (a, b))| {
|
||||
Boolean::xor(
|
||||
cs.namespace(|| format!("xor of bit {}", i)),
|
||||
a,
|
||||
b
|
||||
)
|
||||
})
|
||||
.collect::<Result<_, _>>()?;
|
||||
|
||||
Ok(UInt32 {
|
||||
bits: bits,
|
||||
value: new_value
|
||||
})
|
||||
}
|
||||
|
||||
/// Perform modular addition of several `UInt32` objects.
|
||||
pub fn addmany<E, CS, M>(
|
||||
mut cs: M,
|
||||
operands: &[Self]
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E>,
|
||||
M: ConstraintSystem<E, Root=MultiEq<E, CS>>
|
||||
{
|
||||
// Make some arbitrary bounds for ourselves to avoid overflows
|
||||
// in the scalar field
|
||||
assert!(E::Fr::NUM_BITS >= 64);
|
||||
assert!(operands.len() >= 2); // Weird trivial cases that should never happen
|
||||
assert!(operands.len() <= 10);
|
||||
|
||||
// Compute the maximum value of the sum so we allocate enough bits for
|
||||
// the result
|
||||
let mut max_value = (operands.len() as u64) * (u32::max_value() as u64);
|
||||
|
||||
// Keep track of the resulting value
|
||||
let mut result_value = Some(0u64);
|
||||
|
||||
// This is a linear combination that we will enforce to equal the
|
||||
// output
|
||||
let mut lc = LinearCombination::zero();
|
||||
|
||||
let mut all_constants = true;
|
||||
|
||||
// Iterate over the operands
|
||||
for op in operands {
|
||||
// Accumulate the value
|
||||
match op.value {
|
||||
Some(val) => {
|
||||
result_value.as_mut().map(|v| *v += val as u64);
|
||||
},
|
||||
None => {
|
||||
// If any of our operands have unknown value, we won't
|
||||
// know the value of the result
|
||||
result_value = None;
|
||||
}
|
||||
}
|
||||
|
||||
// Iterate over each bit of the operand and add the operand to
|
||||
// the linear combination
|
||||
let mut coeff = E::Fr::one();
|
||||
for bit in &op.bits {
|
||||
lc = lc + &bit.lc(CS::one(), coeff);
|
||||
|
||||
all_constants &= bit.is_constant();
|
||||
|
||||
coeff.double();
|
||||
}
|
||||
}
|
||||
|
||||
// The value of the actual result is modulo 2^32
|
||||
let modular_value = result_value.map(|v| v as u32);
|
||||
|
||||
if all_constants && modular_value.is_some() {
|
||||
// We can just return a constant, rather than
|
||||
// unpacking the result into allocated bits.
|
||||
|
||||
return Ok(UInt32::constant(modular_value.unwrap()));
|
||||
}
|
||||
|
||||
// Storage area for the resulting bits
|
||||
let mut result_bits = vec![];
|
||||
|
||||
// Linear combination representing the output,
|
||||
// for comparison with the sum of the operands
|
||||
let mut result_lc = LinearCombination::zero();
|
||||
|
||||
// Allocate each bit of the result
|
||||
let mut coeff = E::Fr::one();
|
||||
let mut i = 0;
|
||||
while max_value != 0 {
|
||||
// Allocate the bit
|
||||
let b = AllocatedBit::alloc(
|
||||
cs.namespace(|| format!("result bit {}", i)),
|
||||
result_value.map(|v| (v >> i) & 1 == 1)
|
||||
)?;
|
||||
|
||||
// Add this bit to the result combination
|
||||
result_lc = result_lc + (coeff, b.get_variable());
|
||||
|
||||
result_bits.push(b.into());
|
||||
|
||||
max_value >>= 1;
|
||||
i += 1;
|
||||
coeff.double();
|
||||
}
|
||||
|
||||
// Enforce equality between the sum and result
|
||||
cs.get_root().enforce_equal(i, &lc, &result_lc);
|
||||
|
||||
// Discard carry bits that we don't care about
|
||||
result_bits.truncate(32);
|
||||
|
||||
Ok(UInt32 {
|
||||
bits: result_bits,
|
||||
value: modular_value
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use rand::{XorShiftRng, SeedableRng, Rng};
|
||||
use ::circuit::boolean::{Boolean};
|
||||
use super::{UInt32};
|
||||
use pairing::bls12_381::{Bls12};
|
||||
use pairing::{Field};
|
||||
use ::circuit::test::*;
|
||||
use bellman::{ConstraintSystem};
|
||||
use circuit::multieq::MultiEq;
|
||||
|
||||
#[test]
|
||||
fn test_uint32_from_bits_be() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0653]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut v = (0..32).map(|_| Boolean::constant(rng.gen())).collect::<Vec<_>>();
|
||||
|
||||
let b = UInt32::from_bits_be(&v);
|
||||
|
||||
for (i, bit) in b.bits.iter().enumerate() {
|
||||
match bit {
|
||||
&Boolean::Constant(bit) => {
|
||||
assert!(bit == ((b.value.unwrap() >> i) & 1 == 1));
|
||||
},
|
||||
_ => unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
let expected_to_be_same = b.into_bits_be();
|
||||
|
||||
for x in v.iter().zip(expected_to_be_same.iter())
|
||||
{
|
||||
match x {
|
||||
(&Boolean::Constant(true), &Boolean::Constant(true)) => {},
|
||||
(&Boolean::Constant(false), &Boolean::Constant(false)) => {},
|
||||
_ => unreachable!()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint32_from_bits() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0653]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut v = (0..32).map(|_| Boolean::constant(rng.gen())).collect::<Vec<_>>();
|
||||
|
||||
let b = UInt32::from_bits(&v);
|
||||
|
||||
for (i, bit) in b.bits.iter().enumerate() {
|
||||
match bit {
|
||||
&Boolean::Constant(bit) => {
|
||||
assert!(bit == ((b.value.unwrap() >> i) & 1 == 1));
|
||||
},
|
||||
_ => unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
let expected_to_be_same = b.into_bits();
|
||||
|
||||
for x in v.iter().zip(expected_to_be_same.iter())
|
||||
{
|
||||
match x {
|
||||
(&Boolean::Constant(true), &Boolean::Constant(true)) => {},
|
||||
(&Boolean::Constant(false), &Boolean::Constant(false)) => {},
|
||||
_ => unreachable!()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint32_xor() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0653]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a: u32 = rng.gen();
|
||||
let b: u32 = rng.gen();
|
||||
let c: u32 = rng.gen();
|
||||
|
||||
let mut expected = a ^ b ^ c;
|
||||
|
||||
let a_bit = UInt32::alloc(cs.namespace(|| "a_bit"), Some(a)).unwrap();
|
||||
let b_bit = UInt32::constant(b);
|
||||
let c_bit = UInt32::alloc(cs.namespace(|| "c_bit"), Some(c)).unwrap();
|
||||
|
||||
let r = a_bit.xor(cs.namespace(|| "first xor"), &b_bit).unwrap();
|
||||
let r = r.xor(cs.namespace(|| "second xor"), &c_bit).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
assert!(r.value == Some(expected));
|
||||
|
||||
for b in r.bits.iter() {
|
||||
match b {
|
||||
&Boolean::Is(ref b) => {
|
||||
assert!(b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Not(ref b) => {
|
||||
assert!(!b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Constant(b) => {
|
||||
assert!(b == (expected & 1 == 1));
|
||||
}
|
||||
}
|
||||
|
||||
expected >>= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint32_addmany_constants() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a: u32 = rng.gen();
|
||||
let b: u32 = rng.gen();
|
||||
let c: u32 = rng.gen();
|
||||
|
||||
let a_bit = UInt32::constant(a);
|
||||
let b_bit = UInt32::constant(b);
|
||||
let c_bit = UInt32::constant(c);
|
||||
|
||||
let mut expected = a.wrapping_add(b).wrapping_add(c);
|
||||
|
||||
let r = {
|
||||
let mut cs = MultiEq::new(&mut cs);
|
||||
let r = UInt32::addmany(cs.namespace(|| "addition"), &[a_bit, b_bit, c_bit]).unwrap();
|
||||
r
|
||||
};
|
||||
|
||||
assert!(r.value == Some(expected));
|
||||
|
||||
for b in r.bits.iter() {
|
||||
match b {
|
||||
&Boolean::Is(_) => panic!(),
|
||||
&Boolean::Not(_) => panic!(),
|
||||
&Boolean::Constant(b) => {
|
||||
assert!(b == (expected & 1 == 1));
|
||||
}
|
||||
}
|
||||
|
||||
expected >>= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint32_addmany() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a: u32 = rng.gen();
|
||||
let b: u32 = rng.gen();
|
||||
let c: u32 = rng.gen();
|
||||
let d: u32 = rng.gen();
|
||||
|
||||
let mut expected = (a ^ b).wrapping_add(c).wrapping_add(d);
|
||||
|
||||
let a_bit = UInt32::alloc(cs.namespace(|| "a_bit"), Some(a)).unwrap();
|
||||
let b_bit = UInt32::constant(b);
|
||||
let c_bit = UInt32::constant(c);
|
||||
let d_bit = UInt32::alloc(cs.namespace(|| "d_bit"), Some(d)).unwrap();
|
||||
|
||||
let r = a_bit.xor(cs.namespace(|| "xor"), &b_bit).unwrap();
|
||||
let r = {
|
||||
let mut cs = MultiEq::new(&mut cs);
|
||||
let r = UInt32::addmany(cs.namespace(|| "addition"), &[r, c_bit, d_bit]).unwrap();
|
||||
r
|
||||
};
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
assert!(r.value == Some(expected));
|
||||
|
||||
for b in r.bits.iter() {
|
||||
match b {
|
||||
&Boolean::Is(ref b) => {
|
||||
assert!(b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Not(ref b) => {
|
||||
assert!(!b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Constant(_) => {
|
||||
unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
expected >>= 1;
|
||||
}
|
||||
|
||||
// Flip a bit and see if the addition constraint still works
|
||||
if cs.get("addition/result bit 0/boolean").is_zero() {
|
||||
cs.set("addition/result bit 0/boolean", Field::one());
|
||||
} else {
|
||||
cs.set("addition/result bit 0/boolean", Field::zero());
|
||||
}
|
||||
|
||||
assert!(!cs.is_satisfied());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint32_rotr() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let mut num = rng.gen();
|
||||
|
||||
let a = UInt32::constant(num);
|
||||
|
||||
for i in 0..32 {
|
||||
let b = a.rotr(i);
|
||||
assert_eq!(a.bits.len(), b.bits.len());
|
||||
|
||||
assert!(b.value.unwrap() == num);
|
||||
|
||||
let mut tmp = num;
|
||||
for b in &b.bits {
|
||||
match b {
|
||||
&Boolean::Constant(b) => {
|
||||
assert_eq!(b, tmp & 1 == 1);
|
||||
},
|
||||
_ => unreachable!()
|
||||
}
|
||||
|
||||
tmp >>= 1;
|
||||
}
|
||||
|
||||
num = num.rotate_right(1);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint32_shr() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..50 {
|
||||
for i in 0..60 {
|
||||
let num = rng.gen();
|
||||
let a = UInt32::constant(num).shr(i);
|
||||
let b = UInt32::constant(num >> i);
|
||||
|
||||
assert_eq!(a.value.unwrap(), num >> i);
|
||||
|
||||
assert_eq!(a.bits.len(), b.bits.len());
|
||||
for (a, b) in a.bits.iter().zip(b.bits.iter()) {
|
||||
assert_eq!(a.get_value().unwrap(), b.get_value().unwrap());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint32_sha256_maj() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0653]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a: u32 = rng.gen();
|
||||
let b: u32 = rng.gen();
|
||||
let c: u32 = rng.gen();
|
||||
|
||||
let mut expected = (a & b) ^ (a & c) ^ (b & c);
|
||||
|
||||
let a_bit = UInt32::alloc(cs.namespace(|| "a_bit"), Some(a)).unwrap();
|
||||
let b_bit = UInt32::constant(b);
|
||||
let c_bit = UInt32::alloc(cs.namespace(|| "c_bit"), Some(c)).unwrap();
|
||||
|
||||
let r = UInt32::sha256_maj(&mut cs, &a_bit, &b_bit, &c_bit).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
assert!(r.value == Some(expected));
|
||||
|
||||
for b in r.bits.iter() {
|
||||
match b {
|
||||
&Boolean::Is(ref b) => {
|
||||
assert!(b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Not(ref b) => {
|
||||
assert!(!b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Constant(b) => {
|
||||
assert!(b == (expected & 1 == 1));
|
||||
}
|
||||
}
|
||||
|
||||
expected >>= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint32_sha256_ch() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0653]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a: u32 = rng.gen();
|
||||
let b: u32 = rng.gen();
|
||||
let c: u32 = rng.gen();
|
||||
|
||||
let mut expected = (a & b) ^ ((!a) & c);
|
||||
|
||||
let a_bit = UInt32::alloc(cs.namespace(|| "a_bit"), Some(a)).unwrap();
|
||||
let b_bit = UInt32::constant(b);
|
||||
let c_bit = UInt32::alloc(cs.namespace(|| "c_bit"), Some(c)).unwrap();
|
||||
|
||||
let r = UInt32::sha256_ch(&mut cs, &a_bit, &b_bit, &c_bit).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
assert!(r.value == Some(expected));
|
||||
|
||||
for b in r.bits.iter() {
|
||||
match b {
|
||||
&Boolean::Is(ref b) => {
|
||||
assert!(b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Not(ref b) => {
|
||||
assert!(!b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Constant(b) => {
|
||||
assert!(b == (expected & 1 == 1));
|
||||
}
|
||||
}
|
||||
|
||||
expected >>= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
40
sapling-crypto/src/constants.rs
Normal file
40
sapling-crypto/src/constants.rs
Normal file
@ -0,0 +1,40 @@
|
||||
/// First 64 bytes of the BLAKE2s input during group hash.
|
||||
/// This is chosen to be some random string that we couldn't have anticipated when we designed
|
||||
/// the algorithm, for rigidity purposes.
|
||||
/// We deliberately use an ASCII hex string of 32 bytes here.
|
||||
pub const GH_FIRST_BLOCK: &'static [u8; 64]
|
||||
= b"096b36a5804bfacef1691e173c366a47ff5ba84a44f26ddd7e8d9f79d5b42df0";
|
||||
|
||||
// BLAKE2s invocation personalizations
|
||||
/// BLAKE2s Personalization for CRH^ivk = BLAKE2s(ak | nk)
|
||||
pub const CRH_IVK_PERSONALIZATION: &'static [u8; 8]
|
||||
= b"Zcashivk";
|
||||
|
||||
/// BLAKE2s Personalization for PRF^nf = BLAKE2s(nk | rho)
|
||||
pub const PRF_NF_PERSONALIZATION: &'static [u8; 8]
|
||||
= b"Zcash_nf";
|
||||
|
||||
// Group hash personalizations
|
||||
/// BLAKE2s Personalization for Pedersen hash generators.
|
||||
pub const PEDERSEN_HASH_GENERATORS_PERSONALIZATION: &'static [u8; 8]
|
||||
= b"Zcash_PH";
|
||||
|
||||
/// BLAKE2s Personalization for the group hash for key diversification
|
||||
pub const KEY_DIVERSIFICATION_PERSONALIZATION: &'static [u8; 8]
|
||||
= b"Zcash_gd";
|
||||
|
||||
/// BLAKE2s Personalization for the spending key base point
|
||||
pub const SPENDING_KEY_GENERATOR_PERSONALIZATION: &'static [u8; 8]
|
||||
= b"Zcash_G_";
|
||||
|
||||
/// BLAKE2s Personalization for the proof generation key base point
|
||||
pub const PROOF_GENERATION_KEY_BASE_GENERATOR_PERSONALIZATION: &'static [u8; 8]
|
||||
= b"Zcash_H_";
|
||||
|
||||
/// BLAKE2s Personalization for the value commitment generator for the value
|
||||
pub const VALUE_COMMITMENT_GENERATOR_PERSONALIZATION: &'static [u8; 8]
|
||||
= b"Zcash_cv";
|
||||
|
||||
/// BLAKE2s Personalization for the nullifier position generator (for computing rho)
|
||||
pub const NULLIFIER_POSITION_IN_TREE_GENERATOR_PERSONALIZATION: &'static [u8; 8]
|
||||
= b"Zcash_J_";
|
46
sapling-crypto/src/group_hash.rs
Normal file
46
sapling-crypto/src/group_hash.rs
Normal file
@ -0,0 +1,46 @@
|
||||
use jubjub::{
|
||||
JubjubEngine,
|
||||
PrimeOrder,
|
||||
edwards
|
||||
};
|
||||
|
||||
use pairing::{
|
||||
PrimeField
|
||||
};
|
||||
|
||||
use blake2_rfc::blake2s::Blake2s;
|
||||
use constants;
|
||||
|
||||
/// Produces a random point in the Jubjub curve.
|
||||
/// The point is guaranteed to be prime order
|
||||
/// and not the identity.
|
||||
pub fn group_hash<E: JubjubEngine>(
|
||||
tag: &[u8],
|
||||
personalization: &[u8],
|
||||
params: &E::Params
|
||||
) -> Option<edwards::Point<E, PrimeOrder>>
|
||||
{
|
||||
assert_eq!(personalization.len(), 8);
|
||||
|
||||
// Check to see that scalar field is 255 bits
|
||||
assert!(E::Fr::NUM_BITS == 255);
|
||||
|
||||
let mut h = Blake2s::with_params(32, &[], &[], personalization);
|
||||
h.update(constants::GH_FIRST_BLOCK);
|
||||
h.update(tag);
|
||||
let h = h.finalize().as_ref().to_vec();
|
||||
assert!(h.len() == 32);
|
||||
|
||||
match edwards::Point::<E, _>::read(&h[..], params) {
|
||||
Ok(p) => {
|
||||
let p = p.mul_by_cofactor(params);
|
||||
|
||||
if p != edwards::Point::zero() {
|
||||
Some(p)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
},
|
||||
Err(_) => None
|
||||
}
|
||||
}
|
523
sapling-crypto/src/jubjub/edwards.rs
Normal file
523
sapling-crypto/src/jubjub/edwards.rs
Normal file
@ -0,0 +1,523 @@
|
||||
use pairing::{
|
||||
Field,
|
||||
SqrtField,
|
||||
PrimeField,
|
||||
PrimeFieldRepr,
|
||||
BitIterator
|
||||
};
|
||||
|
||||
use super::{
|
||||
JubjubEngine,
|
||||
JubjubParams,
|
||||
Unknown,
|
||||
PrimeOrder,
|
||||
montgomery
|
||||
};
|
||||
|
||||
use rand::{
|
||||
Rng
|
||||
};
|
||||
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use std::io::{
|
||||
self,
|
||||
Write,
|
||||
Read
|
||||
};
|
||||
|
||||
// Represents the affine point (X/Z, Y/Z) via the extended
|
||||
// twisted Edwards coordinates.
|
||||
//
|
||||
// See "Twisted Edwards Curves Revisited"
|
||||
// Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson
|
||||
pub struct Point<E: JubjubEngine, Subgroup> {
|
||||
x: E::Fr,
|
||||
y: E::Fr,
|
||||
t: E::Fr,
|
||||
z: E::Fr,
|
||||
_marker: PhantomData<Subgroup>
|
||||
}
|
||||
|
||||
fn convert_subgroup<E: JubjubEngine, S1, S2>(from: &Point<E, S1>) -> Point<E, S2>
|
||||
{
|
||||
Point {
|
||||
x: from.x,
|
||||
y: from.y,
|
||||
t: from.t,
|
||||
z: from.z,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> From<Point<E, PrimeOrder>> for Point<E, Unknown>
|
||||
{
|
||||
fn from(p: Point<E, PrimeOrder>) -> Point<E, Unknown>
|
||||
{
|
||||
convert_subgroup(&p)
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine, Subgroup> Clone for Point<E, Subgroup>
|
||||
{
|
||||
fn clone(&self) -> Self {
|
||||
convert_subgroup(self)
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine, Subgroup> PartialEq for Point<E, Subgroup> {
|
||||
fn eq(&self, other: &Point<E, Subgroup>) -> bool {
|
||||
// p1 = (x1/z1, y1/z1)
|
||||
// p2 = (x2/z2, y2/z2)
|
||||
// Deciding that these two points are equal is a matter of
|
||||
// determining that x1/z1 = x2/z2, or equivalently that
|
||||
// x1*z2 = x2*z1, and similarly for y.
|
||||
|
||||
let mut x1 = self.x;
|
||||
x1.mul_assign(&other.z);
|
||||
|
||||
let mut y1 = self.y;
|
||||
y1.mul_assign(&other.z);
|
||||
|
||||
let mut x2 = other.x;
|
||||
x2.mul_assign(&self.z);
|
||||
|
||||
let mut y2 = other.y;
|
||||
y2.mul_assign(&self.z);
|
||||
|
||||
x1 == x2 && y1 == y2
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> Point<E, Unknown> {
|
||||
pub fn read<R: Read>(
|
||||
reader: R,
|
||||
params: &E::Params
|
||||
) -> io::Result<Self>
|
||||
{
|
||||
let mut y_repr = <E::Fr as PrimeField>::Repr::default();
|
||||
y_repr.read_le(reader)?;
|
||||
|
||||
let x_sign = (y_repr.as_ref()[3] >> 63) == 1;
|
||||
y_repr.as_mut()[3] &= 0x7fffffffffffffff;
|
||||
|
||||
match E::Fr::from_repr(y_repr) {
|
||||
Ok(y) => {
|
||||
match Self::get_for_y(y, x_sign, params) {
|
||||
Some(p) => Ok(p),
|
||||
None => {
|
||||
Err(io::Error::new(io::ErrorKind::InvalidInput, "not on curve"))
|
||||
}
|
||||
}
|
||||
},
|
||||
Err(_) => {
|
||||
Err(io::Error::new(io::ErrorKind::InvalidInput, "y is not in field"))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_for_y(y: E::Fr, sign: bool, params: &E::Params) -> Option<Self>
|
||||
{
|
||||
// Given a y on the curve, x^2 = (y^2 - 1) / (dy^2 + 1)
|
||||
// This is defined for all valid y-coordinates,
|
||||
// as dy^2 + 1 = 0 has no solution in Fr.
|
||||
|
||||
// tmp1 = y^2
|
||||
let mut tmp1 = y;
|
||||
tmp1.square();
|
||||
|
||||
// tmp2 = (y^2 * d) + 1
|
||||
let mut tmp2 = tmp1;
|
||||
tmp2.mul_assign(params.edwards_d());
|
||||
tmp2.add_assign(&E::Fr::one());
|
||||
|
||||
// tmp1 = y^2 - 1
|
||||
tmp1.sub_assign(&E::Fr::one());
|
||||
|
||||
match tmp2.inverse() {
|
||||
Some(tmp2) => {
|
||||
// tmp1 = (y^2 - 1) / (dy^2 + 1)
|
||||
tmp1.mul_assign(&tmp2);
|
||||
|
||||
match tmp1.sqrt() {
|
||||
Some(mut x) => {
|
||||
if x.into_repr().is_odd() != sign {
|
||||
x.negate();
|
||||
}
|
||||
|
||||
let mut t = x;
|
||||
t.mul_assign(&y);
|
||||
|
||||
Some(Point {
|
||||
x: x,
|
||||
y: y,
|
||||
t: t,
|
||||
z: E::Fr::one(),
|
||||
_marker: PhantomData
|
||||
})
|
||||
},
|
||||
None => None
|
||||
}
|
||||
},
|
||||
None => None
|
||||
}
|
||||
}
|
||||
|
||||
/// This guarantees the point is in the prime order subgroup
|
||||
#[must_use]
|
||||
pub fn mul_by_cofactor(&self, params: &E::Params) -> Point<E, PrimeOrder>
|
||||
{
|
||||
let tmp = self.double(params)
|
||||
.double(params)
|
||||
.double(params);
|
||||
|
||||
convert_subgroup(&tmp)
|
||||
}
|
||||
|
||||
pub fn rand<R: Rng>(rng: &mut R, params: &E::Params) -> Self
|
||||
{
|
||||
loop {
|
||||
let y: E::Fr = rng.gen();
|
||||
|
||||
if let Some(p) = Self::get_for_y(y, rng.gen(), params) {
|
||||
return p;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
pub fn write<W: Write>(
|
||||
&self,
|
||||
writer: W
|
||||
) -> io::Result<()>
|
||||
{
|
||||
let (x, y) = self.into_xy();
|
||||
|
||||
assert_eq!(E::Fr::NUM_BITS, 255);
|
||||
|
||||
let x_repr = x.into_repr();
|
||||
let mut y_repr = y.into_repr();
|
||||
if x_repr.is_odd() {
|
||||
y_repr.as_mut()[3] |= 0x8000000000000000u64;
|
||||
}
|
||||
|
||||
y_repr.write_le(writer)
|
||||
}
|
||||
|
||||
/// Convert from a Montgomery point
|
||||
pub fn from_montgomery(
|
||||
m: &montgomery::Point<E, Subgroup>,
|
||||
params: &E::Params
|
||||
) -> Self
|
||||
{
|
||||
match m.into_xy() {
|
||||
None => {
|
||||
// Map the point at infinity to the neutral element.
|
||||
Point::zero()
|
||||
},
|
||||
Some((x, y)) => {
|
||||
// The map from a Montgomery curve is defined as:
|
||||
// (x, y) -> (u, v) where
|
||||
// u = x / y
|
||||
// v = (x - 1) / (x + 1)
|
||||
//
|
||||
// This map is not defined for y = 0 and x = -1.
|
||||
//
|
||||
// y = 0 is a valid point only for x = 0:
|
||||
// y^2 = x^3 + A.x^2 + x
|
||||
// 0 = x^3 + A.x^2 + x
|
||||
// 0 = x(x^2 + A.x + 1)
|
||||
// We have: x = 0 OR x^2 + A.x + 1 = 0
|
||||
// x^2 + A.x + 1 = 0
|
||||
// (2.x + A)^2 = A^2 - 4 (Complete the square.)
|
||||
// The left hand side is a square, and so if A^2 - 4
|
||||
// is nonsquare, there is no solution. Indeed, A^2 - 4
|
||||
// is nonsquare.
|
||||
//
|
||||
// (0, 0) is a point of order 2, and so we map it to
|
||||
// (0, -1) in the twisted Edwards curve, which is the
|
||||
// only point of order 2 that is not the neutral element.
|
||||
if y.is_zero() {
|
||||
// This must be the point (0, 0) as above.
|
||||
let mut neg1 = E::Fr::one();
|
||||
neg1.negate();
|
||||
|
||||
Point {
|
||||
x: E::Fr::zero(),
|
||||
y: neg1,
|
||||
t: E::Fr::zero(),
|
||||
z: E::Fr::one(),
|
||||
_marker: PhantomData
|
||||
}
|
||||
} else {
|
||||
// Otherwise, as stated above, the mapping is still
|
||||
// not defined at x = -1. However, x = -1 is not
|
||||
// on the curve when A - 2 is nonsquare:
|
||||
// y^2 = x^3 + A.x^2 + x
|
||||
// y^2 = (-1) + A + (-1)
|
||||
// y^2 = A - 2
|
||||
// Indeed, A - 2 is nonsquare.
|
||||
//
|
||||
// We need to map into (projective) extended twisted
|
||||
// Edwards coordinates (X, Y, T, Z) which represents
|
||||
// the point (X/Z, Y/Z) with Z nonzero and T = XY/Z.
|
||||
//
|
||||
// Thus, we compute...
|
||||
//
|
||||
// u = x(x + 1)
|
||||
// v = y(x - 1)
|
||||
// t = x(x - 1)
|
||||
// z = y(x + 1) (Cannot be nonzero, as above.)
|
||||
//
|
||||
// ... which represents the point ( x / y , (x - 1) / (x + 1) )
|
||||
// as required by the mapping and preserves the property of
|
||||
// the auxiliary coordinate t.
|
||||
//
|
||||
// We need to scale the coordinate, so u and t will have
|
||||
// an extra factor s.
|
||||
|
||||
// u = xs
|
||||
let mut u = x;
|
||||
u.mul_assign(params.scale());
|
||||
|
||||
// v = x - 1
|
||||
let mut v = x;
|
||||
v.sub_assign(&E::Fr::one());
|
||||
|
||||
// t = xs(x - 1)
|
||||
let mut t = u;
|
||||
t.mul_assign(&v);
|
||||
|
||||
// z = (x + 1)
|
||||
let mut z = x;
|
||||
z.add_assign(&E::Fr::one());
|
||||
|
||||
// u = xs(x + 1)
|
||||
u.mul_assign(&z);
|
||||
|
||||
// z = y(x + 1)
|
||||
z.mul_assign(&y);
|
||||
|
||||
// v = y(x - 1)
|
||||
v.mul_assign(&y);
|
||||
|
||||
Point {
|
||||
x: u,
|
||||
y: v,
|
||||
t: t,
|
||||
z: z,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Attempts to cast this as a prime order element, failing if it's
|
||||
/// not in the prime order subgroup.
|
||||
pub fn as_prime_order(&self, params: &E::Params) -> Option<Point<E, PrimeOrder>> {
|
||||
if self.mul(E::Fs::char(), params) == Point::zero() {
|
||||
Some(convert_subgroup(self))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
pub fn zero() -> Self {
|
||||
Point {
|
||||
x: E::Fr::zero(),
|
||||
y: E::Fr::one(),
|
||||
t: E::Fr::zero(),
|
||||
z: E::Fr::one(),
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
|
||||
pub fn into_xy(&self) -> (E::Fr, E::Fr)
|
||||
{
|
||||
let zinv = self.z.inverse().unwrap();
|
||||
|
||||
let mut x = self.x;
|
||||
x.mul_assign(&zinv);
|
||||
|
||||
let mut y = self.y;
|
||||
y.mul_assign(&zinv);
|
||||
|
||||
(x, y)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn negate(&self) -> Self {
|
||||
let mut p = self.clone();
|
||||
|
||||
p.x.negate();
|
||||
p.t.negate();
|
||||
|
||||
p
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn double(&self, _: &E::Params) -> Self {
|
||||
// See "Twisted Edwards Curves Revisited"
|
||||
// Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson
|
||||
// Section 3.3
|
||||
// http://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#doubling-dbl-2008-hwcd
|
||||
|
||||
// A = X1^2
|
||||
let mut a = self.x;
|
||||
a.square();
|
||||
|
||||
// B = Y1^2
|
||||
let mut b = self.y;
|
||||
b.square();
|
||||
|
||||
// C = 2*Z1^2
|
||||
let mut c = self.z;
|
||||
c.square();
|
||||
c.double();
|
||||
|
||||
// D = a*A
|
||||
// = -A
|
||||
let mut d = a;
|
||||
d.negate();
|
||||
|
||||
// E = (X1+Y1)^2 - A - B
|
||||
let mut e = self.x;
|
||||
e.add_assign(&self.y);
|
||||
e.square();
|
||||
e.add_assign(&d); // -A = D
|
||||
e.sub_assign(&b);
|
||||
|
||||
// G = D+B
|
||||
let mut g = d;
|
||||
g.add_assign(&b);
|
||||
|
||||
// F = G-C
|
||||
let mut f = g;
|
||||
f.sub_assign(&c);
|
||||
|
||||
// H = D-B
|
||||
let mut h = d;
|
||||
h.sub_assign(&b);
|
||||
|
||||
// X3 = E*F
|
||||
let mut x3 = e;
|
||||
x3.mul_assign(&f);
|
||||
|
||||
// Y3 = G*H
|
||||
let mut y3 = g;
|
||||
y3.mul_assign(&h);
|
||||
|
||||
// T3 = E*H
|
||||
let mut t3 = e;
|
||||
t3.mul_assign(&h);
|
||||
|
||||
// Z3 = F*G
|
||||
let mut z3 = f;
|
||||
z3.mul_assign(&g);
|
||||
|
||||
Point {
|
||||
x: x3,
|
||||
y: y3,
|
||||
t: t3,
|
||||
z: z3,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn add(&self, other: &Self, params: &E::Params) -> Self
|
||||
{
|
||||
// See "Twisted Edwards Curves Revisited"
|
||||
// Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson
|
||||
// 3.1 Unified Addition in E^e
|
||||
|
||||
// A = x1 * x2
|
||||
let mut a = self.x;
|
||||
a.mul_assign(&other.x);
|
||||
|
||||
// B = y1 * y2
|
||||
let mut b = self.y;
|
||||
b.mul_assign(&other.y);
|
||||
|
||||
// C = d * t1 * t2
|
||||
let mut c = params.edwards_d().clone();
|
||||
c.mul_assign(&self.t);
|
||||
c.mul_assign(&other.t);
|
||||
|
||||
// D = z1 * z2
|
||||
let mut d = self.z;
|
||||
d.mul_assign(&other.z);
|
||||
|
||||
// H = B - aA
|
||||
// = B + A
|
||||
let mut h = b;
|
||||
h.add_assign(&a);
|
||||
|
||||
// E = (x1 + y1) * (x2 + y2) - A - B
|
||||
// = (x1 + y1) * (x2 + y2) - H
|
||||
let mut e = self.x;
|
||||
e.add_assign(&self.y);
|
||||
{
|
||||
let mut tmp = other.x;
|
||||
tmp.add_assign(&other.y);
|
||||
e.mul_assign(&tmp);
|
||||
}
|
||||
e.sub_assign(&h);
|
||||
|
||||
// F = D - C
|
||||
let mut f = d;
|
||||
f.sub_assign(&c);
|
||||
|
||||
// G = D + C
|
||||
let mut g = d;
|
||||
g.add_assign(&c);
|
||||
|
||||
// x3 = E * F
|
||||
let mut x3 = e;
|
||||
x3.mul_assign(&f);
|
||||
|
||||
// y3 = G * H
|
||||
let mut y3 = g;
|
||||
y3.mul_assign(&h);
|
||||
|
||||
// t3 = E * H
|
||||
let mut t3 = e;
|
||||
t3.mul_assign(&h);
|
||||
|
||||
// z3 = F * G
|
||||
let mut z3 = f;
|
||||
z3.mul_assign(&g);
|
||||
|
||||
Point {
|
||||
x: x3,
|
||||
y: y3,
|
||||
t: t3,
|
||||
z: z3,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn mul<S: Into<<E::Fs as PrimeField>::Repr>>(
|
||||
&self,
|
||||
scalar: S,
|
||||
params: &E::Params
|
||||
) -> Self
|
||||
{
|
||||
// Standard double-and-add scalar multiplication
|
||||
|
||||
let mut res = Self::zero();
|
||||
|
||||
for b in BitIterator::new(scalar.into()) {
|
||||
res = res.double(params);
|
||||
|
||||
if b {
|
||||
res = res.add(self, params);
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
1232
sapling-crypto/src/jubjub/fs.rs
Normal file
1232
sapling-crypto/src/jubjub/fs.rs
Normal file
File diff suppressed because it is too large
Load Diff
435
sapling-crypto/src/jubjub/mod.rs
Normal file
435
sapling-crypto/src/jubjub/mod.rs
Normal file
@ -0,0 +1,435 @@
|
||||
//! Jubjub is a twisted Edwards curve defined over the BLS12-381 scalar
|
||||
//! field, Fr. It takes the form `-x^2 + y^2 = 1 + dx^2y^2` with
|
||||
//! `d = -(10240/10241)`. It is birationally equivalent to a Montgomery
|
||||
//! curve of the form `y^2 = x^3 + Ax^2 + x` with `A = 40962`. This
|
||||
//! value `A` is the smallest integer choice such that:
|
||||
//!
|
||||
//! * `(A - 2) / 4` is a small integer (`10240`).
|
||||
//! * `A^2 - 4` is quadratic nonresidue.
|
||||
//! * The group order of the curve and its quadratic twist has a large
|
||||
//! prime factor.
|
||||
//!
|
||||
//! Jubjub has `s = 0x0e7db4ea6533afa906673b0101343b00a6682093ccc81082d0970e5ed6f72cb7`
|
||||
//! as the prime subgroup order, with cofactor 8. (The twist has
|
||||
//! cofactor 4.)
|
||||
//!
|
||||
//! It is a complete twisted Edwards curve, so the equivalence with
|
||||
//! the Montgomery curve forms a group isomorphism, allowing points
|
||||
//! to be freely converted between the two forms.
|
||||
|
||||
use pairing::{
|
||||
Engine,
|
||||
Field,
|
||||
PrimeField,
|
||||
SqrtField
|
||||
};
|
||||
|
||||
use group_hash::group_hash;
|
||||
|
||||
use constants;
|
||||
|
||||
use pairing::bls12_381::{
|
||||
Bls12,
|
||||
Fr
|
||||
};
|
||||
|
||||
/// This is an implementation of the twisted Edwards Jubjub curve.
|
||||
pub mod edwards;
|
||||
|
||||
/// This is an implementation of the birationally equivalent
|
||||
/// Montgomery curve.
|
||||
pub mod montgomery;
|
||||
|
||||
/// This is an implementation of the scalar field for Jubjub.
|
||||
pub mod fs;
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod tests;
|
||||
|
||||
/// Point of unknown order.
|
||||
pub enum Unknown { }
|
||||
|
||||
/// Point of prime order.
|
||||
pub enum PrimeOrder { }
|
||||
|
||||
/// Fixed generators of the Jubjub curve of unknown
|
||||
/// exponent.
|
||||
#[derive(Copy, Clone)]
|
||||
pub enum FixedGenerators {
|
||||
/// The prover will demonstrate knowledge of discrete log
|
||||
/// with respect to this base when they are constructing
|
||||
/// a proof, in order to authorize proof construction.
|
||||
ProofGenerationKey = 0,
|
||||
|
||||
/// The note commitment is randomized over this generator.
|
||||
NoteCommitmentRandomness = 1,
|
||||
|
||||
/// The node commitment is randomized again by the position
|
||||
/// in order to supply the nullifier computation with a
|
||||
/// unique input w.r.t. the note being spent, to prevent
|
||||
/// Faerie gold attacks.
|
||||
NullifierPosition = 2,
|
||||
|
||||
/// The value commitment is used to check balance between
|
||||
/// inputs and outputs. The value is placed over this
|
||||
/// generator.
|
||||
ValueCommitmentValue = 3,
|
||||
/// The value commitment is randomized over this generator,
|
||||
/// for privacy.
|
||||
ValueCommitmentRandomness = 4,
|
||||
|
||||
/// The spender proves discrete log with respect to this
|
||||
/// base at spend time.
|
||||
SpendingKeyGenerator = 5,
|
||||
|
||||
Max = 6
|
||||
}
|
||||
|
||||
pub trait ToUniform {
|
||||
fn to_uniform(digest: &[u8]) -> Self;
|
||||
}
|
||||
|
||||
/// This is an extension to the pairing Engine trait which
|
||||
/// offers a scalar field for the embedded curve (Jubjub)
|
||||
/// and some pre-computed parameters.
|
||||
pub trait JubjubEngine: Engine {
|
||||
/// The scalar field of the Jubjub curve
|
||||
type Fs: PrimeField + SqrtField + ToUniform;
|
||||
/// The parameters of Jubjub and the Sapling protocol
|
||||
type Params: JubjubParams<Self>;
|
||||
}
|
||||
|
||||
/// The pre-computed parameters for Jubjub, including curve
|
||||
/// constants and various limits and window tables.
|
||||
pub trait JubjubParams<E: JubjubEngine>: Sized {
|
||||
/// The `d` constant of the twisted Edwards curve.
|
||||
fn edwards_d(&self) -> &E::Fr;
|
||||
/// The `A` constant of the birationally equivalent Montgomery curve.
|
||||
fn montgomery_a(&self) -> &E::Fr;
|
||||
/// The `A` constant, doubled.
|
||||
fn montgomery_2a(&self) -> &E::Fr;
|
||||
/// The scaling factor used for conversion from the Montgomery form.
|
||||
fn scale(&self) -> &E::Fr;
|
||||
/// Returns the generators (for each segment) used in all Pedersen commitments.
|
||||
fn pedersen_hash_generators(&self) -> &[edwards::Point<E, PrimeOrder>];
|
||||
/// Returns the exp table for Pedersen hashes.
|
||||
fn pedersen_hash_exp_table(&self) -> &[Vec<Vec<edwards::Point<E, PrimeOrder>>>];
|
||||
/// Returns the maximum number of chunks per segment of the Pedersen hash.
|
||||
fn pedersen_hash_chunks_per_generator(&self) -> usize;
|
||||
/// Returns the pre-computed window tables [-4, 3, 2, 1, 1, 2, 3, 4] of different
|
||||
/// magnitudes of the Pedersen hash segment generators.
|
||||
fn pedersen_circuit_generators(&self) -> &[Vec<Vec<(E::Fr, E::Fr)>>];
|
||||
|
||||
/// Returns the number of chunks needed to represent a full scalar during fixed-base
|
||||
/// exponentiation.
|
||||
fn fixed_base_chunks_per_generator(&self) -> usize;
|
||||
/// Returns a fixed generator.
|
||||
fn generator(&self, base: FixedGenerators) -> &edwards::Point<E, PrimeOrder>;
|
||||
/// Returns a window table [0, 1, ..., 8] for different magnitudes of some
|
||||
/// fixed generator.
|
||||
fn circuit_generators(&self, FixedGenerators) -> &[Vec<(E::Fr, E::Fr)>];
|
||||
/// Returns the window size for exponentiation of Pedersen hash generators
|
||||
/// outside the circuit
|
||||
fn pedersen_hash_exp_window_size() -> u32;
|
||||
}
|
||||
|
||||
impl JubjubEngine for Bls12 {
|
||||
type Fs = self::fs::Fs;
|
||||
type Params = JubjubBls12;
|
||||
}
|
||||
|
||||
pub struct JubjubBls12 {
|
||||
edwards_d: Fr,
|
||||
montgomery_a: Fr,
|
||||
montgomery_2a: Fr,
|
||||
scale: Fr,
|
||||
|
||||
pedersen_hash_generators: Vec<edwards::Point<Bls12, PrimeOrder>>,
|
||||
pedersen_hash_exp: Vec<Vec<Vec<edwards::Point<Bls12, PrimeOrder>>>>,
|
||||
pedersen_circuit_generators: Vec<Vec<Vec<(Fr, Fr)>>>,
|
||||
|
||||
fixed_base_generators: Vec<edwards::Point<Bls12, PrimeOrder>>,
|
||||
fixed_base_circuit_generators: Vec<Vec<Vec<(Fr, Fr)>>>,
|
||||
}
|
||||
|
||||
impl JubjubParams<Bls12> for JubjubBls12 {
|
||||
fn edwards_d(&self) -> &Fr { &self.edwards_d }
|
||||
fn montgomery_a(&self) -> &Fr { &self.montgomery_a }
|
||||
fn montgomery_2a(&self) -> &Fr { &self.montgomery_2a }
|
||||
fn scale(&self) -> &Fr { &self.scale }
|
||||
fn pedersen_hash_generators(&self) -> &[edwards::Point<Bls12, PrimeOrder>] {
|
||||
&self.pedersen_hash_generators
|
||||
}
|
||||
fn pedersen_hash_exp_table(&self) -> &[Vec<Vec<edwards::Point<Bls12, PrimeOrder>>>] {
|
||||
&self.pedersen_hash_exp
|
||||
}
|
||||
fn pedersen_hash_chunks_per_generator(&self) -> usize {
|
||||
63
|
||||
}
|
||||
fn fixed_base_chunks_per_generator(&self) -> usize {
|
||||
84
|
||||
}
|
||||
fn pedersen_circuit_generators(&self) -> &[Vec<Vec<(Fr, Fr)>>] {
|
||||
&self.pedersen_circuit_generators
|
||||
}
|
||||
fn generator(&self, base: FixedGenerators) -> &edwards::Point<Bls12, PrimeOrder>
|
||||
{
|
||||
&self.fixed_base_generators[base as usize]
|
||||
}
|
||||
fn circuit_generators(&self, base: FixedGenerators) -> &[Vec<(Fr, Fr)>]
|
||||
{
|
||||
&self.fixed_base_circuit_generators[base as usize][..]
|
||||
}
|
||||
fn pedersen_hash_exp_window_size() -> u32 {
|
||||
8
|
||||
}
|
||||
}
|
||||
|
||||
impl JubjubBls12 {
|
||||
pub fn new() -> Self {
|
||||
let montgomery_a = Fr::from_str("40962").unwrap();
|
||||
let mut montgomery_2a = montgomery_a;
|
||||
montgomery_2a.double();
|
||||
|
||||
let mut tmp_params = JubjubBls12 {
|
||||
// d = -(10240/10241)
|
||||
edwards_d: Fr::from_str("19257038036680949359750312669786877991949435402254120286184196891950884077233").unwrap(),
|
||||
// A = 40962
|
||||
montgomery_a: montgomery_a,
|
||||
// 2A = 2.A
|
||||
montgomery_2a: montgomery_2a,
|
||||
// scaling factor = sqrt(4 / (a - d))
|
||||
scale: Fr::from_str("17814886934372412843466061268024708274627479829237077604635722030778476050649").unwrap(),
|
||||
|
||||
// We'll initialize these below
|
||||
pedersen_hash_generators: vec![],
|
||||
pedersen_hash_exp: vec![],
|
||||
pedersen_circuit_generators: vec![],
|
||||
fixed_base_generators: vec![],
|
||||
fixed_base_circuit_generators: vec![],
|
||||
};
|
||||
|
||||
fn find_group_hash<E: JubjubEngine>(
|
||||
m: &[u8],
|
||||
personalization: &[u8; 8],
|
||||
params: &E::Params
|
||||
) -> edwards::Point<E, PrimeOrder>
|
||||
{
|
||||
let mut tag = m.to_vec();
|
||||
let i = tag.len();
|
||||
tag.push(0u8);
|
||||
|
||||
loop {
|
||||
let gh = group_hash(
|
||||
&tag,
|
||||
personalization,
|
||||
params
|
||||
);
|
||||
|
||||
// We don't want to overflow and start reusing generators
|
||||
assert!(tag[i] != u8::max_value());
|
||||
tag[i] += 1;
|
||||
|
||||
if let Some(gh) = gh {
|
||||
break gh;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Create the bases for the Pedersen hashes
|
||||
{
|
||||
let mut pedersen_hash_generators = vec![];
|
||||
|
||||
for m in 0..5 {
|
||||
use byteorder::{WriteBytesExt, LittleEndian};
|
||||
|
||||
let mut segment_number = [0u8; 4];
|
||||
(&mut segment_number[0..4]).write_u32::<LittleEndian>(m).unwrap();
|
||||
|
||||
pedersen_hash_generators.push(
|
||||
find_group_hash(
|
||||
&segment_number,
|
||||
constants::PEDERSEN_HASH_GENERATORS_PERSONALIZATION,
|
||||
&tmp_params
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
// Check for duplicates, far worse than spec inconsistencies!
|
||||
for (i, p1) in pedersen_hash_generators.iter().enumerate() {
|
||||
if p1 == &edwards::Point::zero() {
|
||||
panic!("Neutral element!");
|
||||
}
|
||||
|
||||
for p2 in pedersen_hash_generators.iter().skip(i+1) {
|
||||
if p1 == p2 {
|
||||
panic!("Duplicate generator!");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
tmp_params.pedersen_hash_generators = pedersen_hash_generators;
|
||||
}
|
||||
|
||||
// Create the exp table for the Pedersen hash generators
|
||||
{
|
||||
let mut pedersen_hash_exp = vec![];
|
||||
|
||||
for g in &tmp_params.pedersen_hash_generators {
|
||||
let mut g = g.clone();
|
||||
|
||||
let window = JubjubBls12::pedersen_hash_exp_window_size();
|
||||
|
||||
let mut tables = vec![];
|
||||
|
||||
let mut num_bits = 0;
|
||||
while num_bits <= fs::Fs::NUM_BITS {
|
||||
let mut table = Vec::with_capacity(1 << window);
|
||||
|
||||
let mut base = edwards::Point::zero();
|
||||
|
||||
for _ in 0..(1 << window) {
|
||||
table.push(base.clone());
|
||||
base = base.add(&g, &tmp_params);
|
||||
}
|
||||
|
||||
tables.push(table);
|
||||
num_bits += window;
|
||||
|
||||
for _ in 0..window {
|
||||
g = g.double(&tmp_params);
|
||||
}
|
||||
}
|
||||
|
||||
pedersen_hash_exp.push(tables);
|
||||
}
|
||||
|
||||
tmp_params.pedersen_hash_exp = pedersen_hash_exp;
|
||||
}
|
||||
|
||||
// Create the bases for other parts of the protocol
|
||||
{
|
||||
let mut fixed_base_generators = vec![edwards::Point::zero(); FixedGenerators::Max as usize];
|
||||
|
||||
fixed_base_generators[FixedGenerators::ProofGenerationKey as usize] =
|
||||
find_group_hash(&[], constants::PROOF_GENERATION_KEY_BASE_GENERATOR_PERSONALIZATION, &tmp_params);
|
||||
|
||||
fixed_base_generators[FixedGenerators::NoteCommitmentRandomness as usize] =
|
||||
find_group_hash(b"r", constants::PEDERSEN_HASH_GENERATORS_PERSONALIZATION, &tmp_params);
|
||||
|
||||
fixed_base_generators[FixedGenerators::NullifierPosition as usize] =
|
||||
find_group_hash(&[], constants::NULLIFIER_POSITION_IN_TREE_GENERATOR_PERSONALIZATION, &tmp_params);
|
||||
|
||||
fixed_base_generators[FixedGenerators::ValueCommitmentValue as usize] =
|
||||
find_group_hash(b"v", constants::VALUE_COMMITMENT_GENERATOR_PERSONALIZATION, &tmp_params);
|
||||
|
||||
fixed_base_generators[FixedGenerators::ValueCommitmentRandomness as usize] =
|
||||
find_group_hash(b"r", constants::VALUE_COMMITMENT_GENERATOR_PERSONALIZATION, &tmp_params);
|
||||
|
||||
fixed_base_generators[FixedGenerators::SpendingKeyGenerator as usize] =
|
||||
find_group_hash(&[], constants::SPENDING_KEY_GENERATOR_PERSONALIZATION, &tmp_params);
|
||||
|
||||
// Check for duplicates, far worse than spec inconsistencies!
|
||||
for (i, p1) in fixed_base_generators.iter().enumerate() {
|
||||
if p1 == &edwards::Point::zero() {
|
||||
panic!("Neutral element!");
|
||||
}
|
||||
|
||||
for p2 in fixed_base_generators.iter().skip(i+1) {
|
||||
if p1 == p2 {
|
||||
panic!("Duplicate generator!");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
tmp_params.fixed_base_generators = fixed_base_generators;
|
||||
}
|
||||
|
||||
// Create the 2-bit window table lookups for each 4-bit
|
||||
// "chunk" in each segment of the Pedersen hash
|
||||
{
|
||||
let mut pedersen_circuit_generators = vec![];
|
||||
|
||||
// Process each segment
|
||||
for mut gen in tmp_params.pedersen_hash_generators.iter().cloned() {
|
||||
let mut gen = montgomery::Point::from_edwards(&gen, &tmp_params);
|
||||
let mut windows = vec![];
|
||||
for _ in 0..tmp_params.pedersen_hash_chunks_per_generator() {
|
||||
// Create (x, y) coeffs for this chunk
|
||||
let mut coeffs = vec![];
|
||||
let mut g = gen.clone();
|
||||
|
||||
// coeffs = g, g*2, g*3, g*4
|
||||
for _ in 0..4 {
|
||||
coeffs.push(g.into_xy().expect("cannot produce O"));
|
||||
g = g.add(&gen, &tmp_params);
|
||||
}
|
||||
windows.push(coeffs);
|
||||
|
||||
// Our chunks are separated by 2 bits to prevent overlap.
|
||||
for _ in 0..4 {
|
||||
gen = gen.double(&tmp_params);
|
||||
}
|
||||
}
|
||||
pedersen_circuit_generators.push(windows);
|
||||
}
|
||||
|
||||
tmp_params.pedersen_circuit_generators = pedersen_circuit_generators;
|
||||
}
|
||||
|
||||
// Create the 3-bit window table lookups for fixed-base
|
||||
// exp of each base in the protocol.
|
||||
{
|
||||
let mut fixed_base_circuit_generators = vec![];
|
||||
|
||||
for mut gen in tmp_params.fixed_base_generators.iter().cloned() {
|
||||
let mut windows = vec![];
|
||||
for _ in 0..tmp_params.fixed_base_chunks_per_generator() {
|
||||
let mut coeffs = vec![(Fr::zero(), Fr::one())];
|
||||
let mut g = gen.clone();
|
||||
for _ in 0..7 {
|
||||
coeffs.push(g.into_xy());
|
||||
g = g.add(&gen, &tmp_params);
|
||||
}
|
||||
windows.push(coeffs);
|
||||
|
||||
// gen = gen * 8
|
||||
gen = g;
|
||||
}
|
||||
fixed_base_circuit_generators.push(windows);
|
||||
}
|
||||
|
||||
tmp_params.fixed_base_circuit_generators = fixed_base_circuit_generators;
|
||||
}
|
||||
|
||||
tmp_params
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_jubjub_bls12() {
|
||||
let params = JubjubBls12::new();
|
||||
|
||||
tests::test_suite::<Bls12>(¶ms);
|
||||
|
||||
let test_repr = hex!("9d12b88b08dcbef8a11ee0712d94cb236ee2f4ca17317075bfafc82ce3139d31");
|
||||
let p = edwards::Point::<Bls12, _>::read(&test_repr[..], ¶ms).unwrap();
|
||||
let q = edwards::Point::<Bls12, _>::get_for_y(
|
||||
Fr::from_str("22440861827555040311190986994816762244378363690614952020532787748720529117853").unwrap(),
|
||||
false,
|
||||
¶ms
|
||||
).unwrap();
|
||||
|
||||
assert!(p == q);
|
||||
|
||||
// Same thing, but sign bit set
|
||||
let test_repr = hex!("9d12b88b08dcbef8a11ee0712d94cb236ee2f4ca17317075bfafc82ce3139db1");
|
||||
let p = edwards::Point::<Bls12, _>::read(&test_repr[..], ¶ms).unwrap();
|
||||
let q = edwards::Point::<Bls12, _>::get_for_y(
|
||||
Fr::from_str("22440861827555040311190986994816762244378363690614952020532787748720529117853").unwrap(),
|
||||
true,
|
||||
¶ms
|
||||
).unwrap();
|
||||
|
||||
assert!(p == q);
|
||||
}
|
358
sapling-crypto/src/jubjub/montgomery.rs
Normal file
358
sapling-crypto/src/jubjub/montgomery.rs
Normal file
@ -0,0 +1,358 @@
|
||||
use pairing::{
|
||||
Field,
|
||||
SqrtField,
|
||||
PrimeField,
|
||||
PrimeFieldRepr,
|
||||
BitIterator
|
||||
};
|
||||
|
||||
use super::{
|
||||
JubjubEngine,
|
||||
JubjubParams,
|
||||
Unknown,
|
||||
PrimeOrder,
|
||||
edwards
|
||||
};
|
||||
|
||||
use rand::{
|
||||
Rng
|
||||
};
|
||||
|
||||
use std::marker::PhantomData;
|
||||
|
||||
// Represents the affine point (X, Y)
|
||||
pub struct Point<E: JubjubEngine, Subgroup> {
|
||||
x: E::Fr,
|
||||
y: E::Fr,
|
||||
infinity: bool,
|
||||
_marker: PhantomData<Subgroup>
|
||||
}
|
||||
|
||||
fn convert_subgroup<E: JubjubEngine, S1, S2>(from: &Point<E, S1>) -> Point<E, S2>
|
||||
{
|
||||
Point {
|
||||
x: from.x,
|
||||
y: from.y,
|
||||
infinity: from.infinity,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> From<Point<E, PrimeOrder>> for Point<E, Unknown>
|
||||
{
|
||||
fn from(p: Point<E, PrimeOrder>) -> Point<E, Unknown>
|
||||
{
|
||||
convert_subgroup(&p)
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine, Subgroup> Clone for Point<E, Subgroup>
|
||||
{
|
||||
fn clone(&self) -> Self {
|
||||
convert_subgroup(self)
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine, Subgroup> PartialEq for Point<E, Subgroup> {
|
||||
fn eq(&self, other: &Point<E, Subgroup>) -> bool {
|
||||
match (self.infinity, other.infinity) {
|
||||
(true, true) => true,
|
||||
(true, false) | (false, true) => false,
|
||||
(false, false) => {
|
||||
self.x == other.x && self.y == other.y
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> Point<E, Unknown> {
|
||||
pub fn get_for_x(x: E::Fr, sign: bool, params: &E::Params) -> Option<Self>
|
||||
{
|
||||
// Given an x on the curve, y = sqrt(x^3 + A*x^2 + x)
|
||||
|
||||
let mut x2 = x;
|
||||
x2.square();
|
||||
|
||||
let mut rhs = x2;
|
||||
rhs.mul_assign(params.montgomery_a());
|
||||
rhs.add_assign(&x);
|
||||
x2.mul_assign(&x);
|
||||
rhs.add_assign(&x2);
|
||||
|
||||
match rhs.sqrt() {
|
||||
Some(mut y) => {
|
||||
if y.into_repr().is_odd() != sign {
|
||||
y.negate();
|
||||
}
|
||||
|
||||
return Some(Point {
|
||||
x: x,
|
||||
y: y,
|
||||
infinity: false,
|
||||
_marker: PhantomData
|
||||
})
|
||||
},
|
||||
None => None
|
||||
}
|
||||
}
|
||||
|
||||
/// This guarantees the point is in the prime order subgroup
|
||||
#[must_use]
|
||||
pub fn mul_by_cofactor(&self, params: &E::Params) -> Point<E, PrimeOrder>
|
||||
{
|
||||
let tmp = self.double(params)
|
||||
.double(params)
|
||||
.double(params);
|
||||
|
||||
convert_subgroup(&tmp)
|
||||
}
|
||||
|
||||
pub fn rand<R: Rng>(rng: &mut R, params: &E::Params) -> Self
|
||||
{
|
||||
loop {
|
||||
let x: E::Fr = rng.gen();
|
||||
|
||||
match Self::get_for_x(x, rng.gen(), params) {
|
||||
Some(p) => {
|
||||
return p
|
||||
},
|
||||
None => {}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
/// Convert from an Edwards point
|
||||
pub fn from_edwards(
|
||||
e: &edwards::Point<E, Subgroup>,
|
||||
params: &E::Params
|
||||
) -> Self
|
||||
{
|
||||
let (x, y) = e.into_xy();
|
||||
|
||||
if y == E::Fr::one() {
|
||||
// The only solution for y = 1 is x = 0. (0, 1) is
|
||||
// the neutral element, so we map this to the point
|
||||
// at infinity.
|
||||
|
||||
Point::zero()
|
||||
} else {
|
||||
// The map from a twisted Edwards curve is defined as
|
||||
// (x, y) -> (u, v) where
|
||||
// u = (1 + y) / (1 - y)
|
||||
// v = u / x
|
||||
//
|
||||
// This mapping is not defined for y = 1 and for x = 0.
|
||||
//
|
||||
// We have that y != 1 above. If x = 0, the only
|
||||
// solutions for y are 1 (contradiction) or -1.
|
||||
if x.is_zero() {
|
||||
// (0, -1) is the point of order two which is not
|
||||
// the neutral element, so we map it to (0, 0) which is
|
||||
// the only affine point of order 2.
|
||||
|
||||
Point {
|
||||
x: E::Fr::zero(),
|
||||
y: E::Fr::zero(),
|
||||
infinity: false,
|
||||
_marker: PhantomData
|
||||
}
|
||||
} else {
|
||||
// The mapping is defined as above.
|
||||
//
|
||||
// (x, y) -> (u, v) where
|
||||
// u = (1 + y) / (1 - y)
|
||||
// v = u / x
|
||||
|
||||
let mut u = E::Fr::one();
|
||||
u.add_assign(&y);
|
||||
{
|
||||
let mut tmp = E::Fr::one();
|
||||
tmp.sub_assign(&y);
|
||||
u.mul_assign(&tmp.inverse().unwrap())
|
||||
}
|
||||
|
||||
let mut v = u;
|
||||
v.mul_assign(&x.inverse().unwrap());
|
||||
|
||||
// Scale it into the correct curve constants
|
||||
v.mul_assign(params.scale());
|
||||
|
||||
Point {
|
||||
x: u,
|
||||
y: v,
|
||||
infinity: false,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Attempts to cast this as a prime order element, failing if it's
|
||||
/// not in the prime order subgroup.
|
||||
pub fn as_prime_order(&self, params: &E::Params) -> Option<Point<E, PrimeOrder>> {
|
||||
if self.mul(E::Fs::char(), params) == Point::zero() {
|
||||
Some(convert_subgroup(self))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
pub fn zero() -> Self {
|
||||
Point {
|
||||
x: E::Fr::zero(),
|
||||
y: E::Fr::zero(),
|
||||
infinity: true,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
|
||||
pub fn into_xy(&self) -> Option<(E::Fr, E::Fr)>
|
||||
{
|
||||
if self.infinity {
|
||||
None
|
||||
} else {
|
||||
Some((self.x, self.y))
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn negate(&self) -> Self {
|
||||
let mut p = self.clone();
|
||||
|
||||
p.y.negate();
|
||||
|
||||
p
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn double(&self, params: &E::Params) -> Self {
|
||||
if self.infinity {
|
||||
return Point::zero();
|
||||
}
|
||||
|
||||
// (0, 0) is the point of order 2. Doubling
|
||||
// produces the point at infinity.
|
||||
if self.y == E::Fr::zero() {
|
||||
return Point::zero();
|
||||
}
|
||||
|
||||
// This is a standard affine point doubling formula
|
||||
// See 4.3.2 The group law for Weierstrass curves
|
||||
// Montgomery curves and the Montgomery Ladder
|
||||
// Daniel J. Bernstein and Tanja Lange
|
||||
|
||||
let mut delta = E::Fr::one();
|
||||
{
|
||||
let mut tmp = params.montgomery_a().clone();
|
||||
tmp.mul_assign(&self.x);
|
||||
tmp.double();
|
||||
delta.add_assign(&tmp);
|
||||
}
|
||||
{
|
||||
let mut tmp = self.x;
|
||||
tmp.square();
|
||||
delta.add_assign(&tmp);
|
||||
tmp.double();
|
||||
delta.add_assign(&tmp);
|
||||
}
|
||||
{
|
||||
let mut tmp = self.y;
|
||||
tmp.double();
|
||||
delta.mul_assign(&tmp.inverse().expect("y is nonzero so this must be nonzero"));
|
||||
}
|
||||
|
||||
let mut x3 = delta;
|
||||
x3.square();
|
||||
x3.sub_assign(params.montgomery_a());
|
||||
x3.sub_assign(&self.x);
|
||||
x3.sub_assign(&self.x);
|
||||
|
||||
let mut y3 = x3;
|
||||
y3.sub_assign(&self.x);
|
||||
y3.mul_assign(&delta);
|
||||
y3.add_assign(&self.y);
|
||||
y3.negate();
|
||||
|
||||
Point {
|
||||
x: x3,
|
||||
y: y3,
|
||||
infinity: false,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn add(&self, other: &Self, params: &E::Params) -> Self
|
||||
{
|
||||
// This is a standard affine point addition formula
|
||||
// See 4.3.2 The group law for Weierstrass curves
|
||||
// Montgomery curves and the Montgomery Ladder
|
||||
// Daniel J. Bernstein and Tanja Lange
|
||||
|
||||
match (self.infinity, other.infinity) {
|
||||
(true, true) => Point::zero(),
|
||||
(true, false) => other.clone(),
|
||||
(false, true) => self.clone(),
|
||||
(false, false) => {
|
||||
if self.x == other.x {
|
||||
if self.y == other.y {
|
||||
self.double(params)
|
||||
} else {
|
||||
Point::zero()
|
||||
}
|
||||
} else {
|
||||
let mut delta = other.y;
|
||||
delta.sub_assign(&self.y);
|
||||
{
|
||||
let mut tmp = other.x;
|
||||
tmp.sub_assign(&self.x);
|
||||
delta.mul_assign(&tmp.inverse().expect("self.x != other.x, so this must be nonzero"));
|
||||
}
|
||||
|
||||
let mut x3 = delta;
|
||||
x3.square();
|
||||
x3.sub_assign(params.montgomery_a());
|
||||
x3.sub_assign(&self.x);
|
||||
x3.sub_assign(&other.x);
|
||||
|
||||
let mut y3 = x3;
|
||||
y3.sub_assign(&self.x);
|
||||
y3.mul_assign(&delta);
|
||||
y3.add_assign(&self.y);
|
||||
y3.negate();
|
||||
|
||||
Point {
|
||||
x: x3,
|
||||
y: y3,
|
||||
infinity: false,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn mul<S: Into<<E::Fs as PrimeField>::Repr>>(
|
||||
&self,
|
||||
scalar: S,
|
||||
params: &E::Params
|
||||
) -> Self
|
||||
{
|
||||
// Standard double-and-add scalar multiplication
|
||||
|
||||
let mut res = Self::zero();
|
||||
|
||||
for b in BitIterator::new(scalar.into()) {
|
||||
res = res.double(params);
|
||||
|
||||
if b {
|
||||
res = res.add(self, params);
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
416
sapling-crypto/src/jubjub/tests.rs
Normal file
416
sapling-crypto/src/jubjub/tests.rs
Normal file
@ -0,0 +1,416 @@
|
||||
use super::{
|
||||
JubjubEngine,
|
||||
JubjubParams,
|
||||
PrimeOrder,
|
||||
montgomery,
|
||||
edwards
|
||||
};
|
||||
|
||||
use pairing::{
|
||||
Field,
|
||||
PrimeField,
|
||||
PrimeFieldRepr,
|
||||
SqrtField,
|
||||
LegendreSymbol
|
||||
};
|
||||
|
||||
use rand::{XorShiftRng, SeedableRng, Rand};
|
||||
|
||||
pub fn test_suite<E: JubjubEngine>(params: &E::Params) {
|
||||
test_back_and_forth::<E>(params);
|
||||
test_jubjub_params::<E>(params);
|
||||
test_rand::<E>(params);
|
||||
test_get_for::<E>(params);
|
||||
test_identities::<E>(params);
|
||||
test_addition_associativity::<E>(params);
|
||||
test_order::<E>(params);
|
||||
test_mul_associativity::<E>(params);
|
||||
test_loworder::<E>(params);
|
||||
test_read_write::<E>(params);
|
||||
}
|
||||
|
||||
fn is_on_mont_curve<E: JubjubEngine, P: JubjubParams<E>>(
|
||||
x: E::Fr,
|
||||
y: E::Fr,
|
||||
params: &P
|
||||
) -> bool
|
||||
{
|
||||
let mut lhs = y;
|
||||
lhs.square();
|
||||
|
||||
let mut x2 = x;
|
||||
x2.square();
|
||||
|
||||
let mut x3 = x2;
|
||||
x3.mul_assign(&x);
|
||||
|
||||
let mut rhs = x2;
|
||||
rhs.mul_assign(params.montgomery_a());
|
||||
rhs.add_assign(&x);
|
||||
rhs.add_assign(&x3);
|
||||
|
||||
lhs == rhs
|
||||
}
|
||||
|
||||
fn is_on_twisted_edwards_curve<E: JubjubEngine, P: JubjubParams<E>>(
|
||||
x: E::Fr,
|
||||
y: E::Fr,
|
||||
params: &P
|
||||
) -> bool
|
||||
{
|
||||
let mut x2 = x;
|
||||
x2.square();
|
||||
|
||||
let mut y2 = y;
|
||||
y2.square();
|
||||
|
||||
// -x^2 + y^2
|
||||
let mut lhs = y2;
|
||||
lhs.sub_assign(&x2);
|
||||
|
||||
// 1 + d x^2 y^2
|
||||
let mut rhs = y2;
|
||||
rhs.mul_assign(&x2);
|
||||
rhs.mul_assign(params.edwards_d());
|
||||
rhs.add_assign(&E::Fr::one());
|
||||
|
||||
lhs == rhs
|
||||
}
|
||||
|
||||
fn test_loworder<E: JubjubEngine>(params: &E::Params) {
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
let inf = montgomery::Point::zero();
|
||||
|
||||
// try to find a point of order 8
|
||||
let p = loop {
|
||||
let r = montgomery::Point::<E, _>::rand(rng, params).mul(E::Fs::char(), params);
|
||||
|
||||
let r2 = r.double(params);
|
||||
let r4 = r2.double(params);
|
||||
let r8 = r4.double(params);
|
||||
|
||||
if r2 != inf && r4 != inf && r8 == inf {
|
||||
break r;
|
||||
}
|
||||
};
|
||||
|
||||
let mut loworder_points = vec![];
|
||||
{
|
||||
let mut tmp = p.clone();
|
||||
|
||||
for _ in 0..8 {
|
||||
assert!(!loworder_points.contains(&tmp));
|
||||
loworder_points.push(tmp.clone());
|
||||
tmp = tmp.add(&p, params);
|
||||
}
|
||||
}
|
||||
assert!(loworder_points[7] == inf);
|
||||
}
|
||||
|
||||
fn test_mul_associativity<E: JubjubEngine>(params: &E::Params) {
|
||||
use self::edwards::Point;
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..100 {
|
||||
// Pick a random point and multiply it by the cofactor
|
||||
let base = Point::<E, _>::rand(rng, params).mul_by_cofactor(params);
|
||||
|
||||
let mut a = E::Fs::rand(rng);
|
||||
let b = E::Fs::rand(rng);
|
||||
let c = E::Fs::rand(rng);
|
||||
|
||||
let res1 = base.mul(a, params).mul(b, params).mul(c, params);
|
||||
let res2 = base.mul(b, params).mul(c, params).mul(a, params);
|
||||
let res3 = base.mul(c, params).mul(a, params).mul(b, params);
|
||||
a.mul_assign(&b);
|
||||
a.mul_assign(&c);
|
||||
let res4 = base.mul(a, params);
|
||||
|
||||
assert!(res1 == res2);
|
||||
assert!(res2 == res3);
|
||||
assert!(res3 == res4);
|
||||
|
||||
let (x, y) = res1.into_xy();
|
||||
assert!(is_on_twisted_edwards_curve(x, y, params));
|
||||
|
||||
let (x, y) = res2.into_xy();
|
||||
assert!(is_on_twisted_edwards_curve(x, y, params));
|
||||
|
||||
let (x, y) = res3.into_xy();
|
||||
assert!(is_on_twisted_edwards_curve(x, y, params));
|
||||
}
|
||||
}
|
||||
|
||||
fn test_order<E: JubjubEngine>(params: &E::Params) {
|
||||
use self::edwards::Point;
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
// The neutral element is in the prime order subgroup.
|
||||
assert!(Point::<E, PrimeOrder>::zero().as_prime_order(params).is_some());
|
||||
|
||||
for _ in 0..50 {
|
||||
// Pick a random point and multiply it by the cofactor
|
||||
let base = Point::<E, _>::rand(rng, params).mul_by_cofactor(params);
|
||||
|
||||
// Any point multiplied by the cofactor will be in the prime
|
||||
// order subgroup
|
||||
assert!(base.as_prime_order(params).is_some());
|
||||
}
|
||||
|
||||
// It's very likely that at least one out of 50 random points on the curve
|
||||
// is not in the prime order subgroup.
|
||||
let mut at_least_one_not_in_prime_order_subgroup = false;
|
||||
for _ in 0..50 {
|
||||
// Pick a random point.
|
||||
let base = Point::<E, _>::rand(rng, params);
|
||||
|
||||
at_least_one_not_in_prime_order_subgroup |= base.as_prime_order(params).is_none();
|
||||
}
|
||||
assert!(at_least_one_not_in_prime_order_subgroup);
|
||||
}
|
||||
|
||||
fn test_addition_associativity<E: JubjubEngine>(params: &E::Params) {
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
use self::montgomery::Point;
|
||||
|
||||
let a = Point::<E, _>::rand(rng, params);
|
||||
let b = Point::<E, _>::rand(rng, params);
|
||||
let c = Point::<E, _>::rand(rng, params);
|
||||
|
||||
assert!(a.add(&b, ¶ms).add(&c, ¶ms) == c.add(&a, ¶ms).add(&b, ¶ms));
|
||||
}
|
||||
|
||||
for _ in 0..1000 {
|
||||
use self::edwards::Point;
|
||||
|
||||
let a = Point::<E, _>::rand(rng, params);
|
||||
let b = Point::<E, _>::rand(rng, params);
|
||||
let c = Point::<E, _>::rand(rng, params);
|
||||
|
||||
assert!(a.add(&b, ¶ms).add(&c, ¶ms) == c.add(&a, ¶ms).add(&b, ¶ms));
|
||||
}
|
||||
}
|
||||
|
||||
fn test_identities<E: JubjubEngine>(params: &E::Params) {
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
{
|
||||
use self::edwards::Point;
|
||||
|
||||
let z = Point::<E, PrimeOrder>::zero();
|
||||
assert!(z.double(¶ms) == z);
|
||||
assert!(z.negate() == z);
|
||||
|
||||
for _ in 0..100 {
|
||||
let r = Point::<E, _>::rand(rng, params);
|
||||
|
||||
assert!(r.add(&Point::zero(), ¶ms) == r);
|
||||
assert!(r.add(&r.negate(), ¶ms) == Point::zero());
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
use self::montgomery::Point;
|
||||
|
||||
let z = Point::<E, PrimeOrder>::zero();
|
||||
assert!(z.double(¶ms) == z);
|
||||
assert!(z.negate() == z);
|
||||
|
||||
for _ in 0..100 {
|
||||
let r = Point::<E, _>::rand(rng, params);
|
||||
|
||||
assert!(r.add(&Point::zero(), ¶ms) == r);
|
||||
assert!(r.add(&r.negate(), ¶ms) == Point::zero());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_get_for<E: JubjubEngine>(params: &E::Params) {
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let y = E::Fr::rand(rng);
|
||||
let sign = bool::rand(rng);
|
||||
|
||||
if let Some(mut p) = edwards::Point::<E, _>::get_for_y(y, sign, params) {
|
||||
assert!(p.into_xy().0.into_repr().is_odd() == sign);
|
||||
p = p.negate();
|
||||
assert!(
|
||||
edwards::Point::<E, _>::get_for_y(y, !sign, params).unwrap()
|
||||
==
|
||||
p
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_read_write<E: JubjubEngine>(params: &E::Params) {
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let e = edwards::Point::<E, _>::rand(rng, params);
|
||||
|
||||
let mut v = vec![];
|
||||
e.write(&mut v).unwrap();
|
||||
|
||||
let e2 = edwards::Point::read(&v[..], params).unwrap();
|
||||
|
||||
assert!(e == e2);
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand<E: JubjubEngine>(params: &E::Params) {
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let p = montgomery::Point::<E, _>::rand(rng, params);
|
||||
let e = edwards::Point::<E, _>::rand(rng, params);
|
||||
|
||||
{
|
||||
let (x, y) = p.into_xy().unwrap();
|
||||
assert!(is_on_mont_curve(x, y, params));
|
||||
}
|
||||
|
||||
{
|
||||
let (x, y) = e.into_xy();
|
||||
assert!(is_on_twisted_edwards_curve(x, y, params));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_back_and_forth<E: JubjubEngine>(params: &E::Params) {
|
||||
let rng = &mut XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let s = E::Fs::rand(rng);
|
||||
let edwards_p1 = edwards::Point::<E, _>::rand(rng, params);
|
||||
let mont_p1 = montgomery::Point::from_edwards(&edwards_p1, params);
|
||||
let mont_p2 = montgomery::Point::<E, _>::rand(rng, params);
|
||||
let edwards_p2 = edwards::Point::from_montgomery(&mont_p2, params);
|
||||
|
||||
let mont = mont_p1.add(&mont_p2, params).mul(s, params);
|
||||
let edwards = edwards_p1.add(&edwards_p2, params).mul(s, params);
|
||||
|
||||
assert!(
|
||||
montgomery::Point::from_edwards(&edwards, params) == mont
|
||||
);
|
||||
|
||||
assert!(
|
||||
edwards::Point::from_montgomery(&mont, params) == edwards
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn test_jubjub_params<E: JubjubEngine>(params: &E::Params) {
|
||||
// a = -1
|
||||
let mut a = E::Fr::one();
|
||||
a.negate();
|
||||
|
||||
{
|
||||
// Check that 2A is consistent with A
|
||||
let mut tmp = *params.montgomery_a();
|
||||
tmp.double();
|
||||
|
||||
assert_eq!(&tmp, params.montgomery_2a());
|
||||
}
|
||||
|
||||
{
|
||||
// The twisted Edwards addition law is complete when d is nonsquare
|
||||
// and a is square.
|
||||
|
||||
assert!(params.edwards_d().legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
assert!(a.legendre() == LegendreSymbol::QuadraticResidue);
|
||||
}
|
||||
|
||||
{
|
||||
// Other convenient sanity checks regarding d
|
||||
|
||||
// tmp = d
|
||||
let mut tmp = *params.edwards_d();
|
||||
|
||||
// 1 / d is nonsquare
|
||||
assert!(tmp.inverse().unwrap().legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
|
||||
// tmp = -d
|
||||
tmp.negate();
|
||||
|
||||
// -d is nonsquare
|
||||
assert!(tmp.legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
|
||||
// 1 / -d is nonsquare
|
||||
assert!(tmp.inverse().unwrap().legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
}
|
||||
|
||||
{
|
||||
// Check that A^2 - 4 is nonsquare:
|
||||
let mut tmp = params.montgomery_a().clone();
|
||||
tmp.square();
|
||||
tmp.sub_assign(&E::Fr::from_str("4").unwrap());
|
||||
assert!(tmp.legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
}
|
||||
|
||||
{
|
||||
// Check that A - 2 is nonsquare:
|
||||
let mut tmp = params.montgomery_a().clone();
|
||||
tmp.sub_assign(&E::Fr::from_str("2").unwrap());
|
||||
assert!(tmp.legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
}
|
||||
|
||||
{
|
||||
// Check the validity of the scaling factor
|
||||
let mut tmp = a;
|
||||
tmp.sub_assign(¶ms.edwards_d());
|
||||
tmp = tmp.inverse().unwrap();
|
||||
tmp.mul_assign(&E::Fr::from_str("4").unwrap());
|
||||
tmp = tmp.sqrt().unwrap();
|
||||
assert_eq!(&tmp, params.scale());
|
||||
}
|
||||
|
||||
{
|
||||
// Check that the number of windows per generator
|
||||
// in the Pedersen hash does not allow for collisions
|
||||
|
||||
let mut cur = E::Fs::one().into_repr();
|
||||
|
||||
let mut max = E::Fs::char();
|
||||
{
|
||||
max.sub_noborrow(&E::Fs::one().into_repr());
|
||||
max.div2();
|
||||
}
|
||||
|
||||
let mut pacc = E::Fs::zero().into_repr();
|
||||
let mut nacc = E::Fs::char();
|
||||
|
||||
for _ in 0..params.pedersen_hash_chunks_per_generator()
|
||||
{
|
||||
// tmp = cur * 4
|
||||
let mut tmp = cur;
|
||||
tmp.mul2();
|
||||
tmp.mul2();
|
||||
|
||||
pacc.add_nocarry(&tmp);
|
||||
nacc.sub_noborrow(&tmp);
|
||||
|
||||
assert!(pacc < max);
|
||||
assert!(pacc < nacc);
|
||||
|
||||
// cur = cur * 16
|
||||
for _ in 0..4 {
|
||||
cur.mul2();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
// Check that the number of windows for fixed-base
|
||||
// scalar multiplication is sufficient for all scalars.
|
||||
|
||||
assert!(params.fixed_base_chunks_per_generator() * 3 >= E::Fs::NUM_BITS as usize);
|
||||
|
||||
// ... and that it's *just* efficient enough.
|
||||
|
||||
assert!((params.fixed_base_chunks_per_generator() - 1) * 3 < E::Fs::NUM_BITS as usize);
|
||||
}
|
||||
}
|
22
sapling-crypto/src/lib.rs
Normal file
22
sapling-crypto/src/lib.rs
Normal file
@ -0,0 +1,22 @@
|
||||
extern crate pairing;
|
||||
extern crate bellman;
|
||||
extern crate blake2_rfc;
|
||||
extern crate digest;
|
||||
extern crate rand;
|
||||
extern crate byteorder;
|
||||
|
||||
#[cfg(test)]
|
||||
#[macro_use]
|
||||
extern crate hex_literal;
|
||||
|
||||
#[cfg(test)]
|
||||
extern crate crypto;
|
||||
|
||||
pub mod jubjub;
|
||||
pub mod group_hash;
|
||||
pub mod circuit;
|
||||
pub mod pedersen_hash;
|
||||
pub mod primitives;
|
||||
pub mod constants;
|
||||
pub mod redjubjub;
|
||||
pub mod util;
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user