Merge pull request #190 from str4d/ff-more-ops

More ff::Field operator refactoring
This commit is contained in:
str4d 2019-12-13 18:53:07 +00:00 committed by GitHub
commit e85a9f309f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
41 changed files with 490 additions and 566 deletions

4
Cargo.lock generated
View File

@ -80,6 +80,7 @@ dependencies = [
"rand_core 0.5.1 (registry+https://github.com/rust-lang/crates.io-index)",
"rand_xorshift 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)",
"sha2 0.8.0 (registry+https://github.com/rust-lang/crates.io-index)",
"subtle 2.2.1 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
@ -395,6 +396,7 @@ dependencies = [
"byteorder 1.3.2 (registry+https://github.com/rust-lang/crates.io-index)",
"ff_derive 0.4.0",
"rand_core 0.5.1 (registry+https://github.com/rust-lang/crates.io-index)",
"subtle 2.2.1 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
@ -617,6 +619,7 @@ dependencies = [
"group 0.2.0",
"rand_core 0.5.1 (registry+https://github.com/rust-lang/crates.io-index)",
"rand_xorshift 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)",
"subtle 2.2.1 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
@ -1020,6 +1023,7 @@ dependencies = [
"ripemd160 0.8.0 (registry+https://github.com/rust-lang/crates.io-index)",
"secp256k1 0.15.0 (registry+https://github.com/rust-lang/crates.io-index)",
"sha2 0.8.0 (registry+https://github.com/rust-lang/crates.io-index)",
"subtle 2.2.1 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]

View File

@ -22,6 +22,7 @@ crossbeam = { version = "0.7", optional = true }
pairing = { version = "0.15.0", path = "../pairing", optional = true }
rand_core = "0.5"
byteorder = "1"
subtle = "2.2.1"
[dev-dependencies]
hex-literal = "0.2"

View File

@ -63,7 +63,7 @@ impl<E: ScalarEngine, G: Group<E>> EvaluationDomain<E, G> {
// Compute omega, the 2^exp primitive root of unity
let mut omega = E::Fr::root_of_unity();
for _ in exp..E::Fr::S {
omega.square();
omega = omega.square();
}
// Extend the coeffs vector with zeroes if necessary

View File

@ -1,7 +1,7 @@
//! Window table lookup gadgets.
use ff::{Field, ScalarEngine};
use std::ops::AddAssign;
use std::ops::{AddAssign, Neg};
use super::boolean::Boolean;
use super::num::{AllocatedNum, Num};
@ -16,8 +16,7 @@ where
assert_eq!(assignment.len(), 1 << window_size);
for (i, constant) in constants.into_iter().enumerate() {
let mut cur = assignment[i];
cur.negate();
let mut cur = assignment[i].neg();
cur.add_assign(constant);
assignment[i] = cur;
for (j, eval) in assignment.iter_mut().enumerate().skip(i + 1) {
@ -151,7 +150,7 @@ where
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
let mut tmp = coords[*i.get()?].1;
if *bits[2].get_value().get()? {
tmp.negate();
tmp = tmp.neg();
}
Ok(tmp)
})?;
@ -281,7 +280,7 @@ mod test {
assert_eq!(res.0.get_value().unwrap(), points[index].0);
let mut tmp = points[index].1;
if c_val {
tmp.negate()
tmp = tmp.neg()
}
assert_eq!(res.1.get_value().unwrap(), tmp);
}

View File

@ -20,7 +20,7 @@ where
for bit in bits {
num = num.add_bool_with_coeff(CS::one(), bit, coeff);
coeff.double();
coeff = coeff.double();
}
let input = cs.alloc_input(|| format!("input {}", i), || Ok(*num.get_value().get()?))?;
@ -63,7 +63,7 @@ pub fn compute_multipacking<E: ScalarEngine>(bits: &[bool]) -> Vec<E::Fr> {
cur.add_assign(&coeff);
}
coeff.double();
coeff = coeff.double();
}
result.push(cur);

View File

@ -177,7 +177,7 @@ impl<E: ScalarEngine> AllocatedNum<E> {
for bit in result.iter().rev() {
lc = lc + (coeff, bit.get_variable());
coeff.double();
coeff = coeff.double();
}
lc = lc - self.variable;
@ -203,7 +203,7 @@ impl<E: ScalarEngine> AllocatedNum<E> {
for bit in bits.iter() {
lc = lc + (coeff, bit.get_variable());
coeff.double();
coeff = coeff.double();
}
lc = lc - self.variable;
@ -254,8 +254,7 @@ impl<E: ScalarEngine> AllocatedNum<E> {
let var = cs.alloc(
|| "squared num",
|| {
let mut tmp = *self.value.get()?;
tmp.square();
let tmp = self.value.get()?.square();
value = Some(tmp);
@ -417,7 +416,7 @@ mod test {
use pairing::bls12_381::{Bls12, Fr};
use rand_core::SeedableRng;
use rand_xorshift::XorShiftRng;
use std::ops::SubAssign;
use std::ops::{Neg, SubAssign};
use super::{AllocatedNum, Boolean};
use crate::gadgets::test::*;
@ -519,8 +518,7 @@ mod test {
#[test]
fn test_into_bits_strict() {
let mut negone = Fr::one();
negone.negate();
let negone = Fr::one().neg();
let mut cs = TestConstraintSystem::<Bls12>::new();

View File

@ -6,7 +6,7 @@ use crate::{ConstraintSystem, Index, LinearCombination, SynthesisError, Variable
use std::collections::HashMap;
use std::fmt::Write;
use std::ops::{AddAssign, MulAssign};
use std::ops::{AddAssign, MulAssign, Neg};
use byteorder::{BigEndian, ByteOrder};
use std::cmp::Ordering;
@ -152,11 +152,7 @@ impl<E: ScalarEngine> TestConstraintSystem<E> {
pub fn pretty_print(&self) -> String {
let mut s = String::new();
let negone = {
let mut tmp = E::Fr::one();
tmp.negate();
tmp
};
let negone = E::Fr::one().neg();
let powers_of_two = (0..E::Fr::NUM_BITS)
.map(|i| E::Fr::from_str("2").unwrap().pow(&[u64::from(i)]))

View File

@ -330,7 +330,7 @@ impl UInt32 {
all_constants &= bit.is_constant();
coeff.double();
coeff = coeff.double();
}
}
@ -368,7 +368,7 @@ impl UInt32 {
max_value >>= 1;
i += 1;
coeff.double();
coeff = coeff.double();
}
// Enforce equality between the sum and result

View File

@ -9,7 +9,8 @@ use rand_core::RngCore;
use std::cmp::Ordering;
use std::fmt;
use std::num::Wrapping;
use std::ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign};
use std::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use subtle::{Choice, ConditionallySelectable};
const MODULUS_R: Wrapping<u32> = Wrapping(64513);
@ -22,6 +23,27 @@ impl fmt::Display for Fr {
}
}
impl ConditionallySelectable for Fr {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Fr(Wrapping(u32::conditional_select(
&(a.0).0,
&(b.0).0,
choice,
)))
}
}
impl Neg for Fr {
type Output = Self;
fn neg(mut self) -> Self {
if !<Fr as Field>::is_zero(&self) {
self.0 = MODULUS_R - self.0;
}
self
}
}
impl<'r> Add<&'r Fr> for Fr {
type Output = Self;
@ -129,18 +151,12 @@ impl Field for Fr {
(self.0).0 == 0
}
fn square(&mut self) {
self.0 = (self.0 * self.0) % MODULUS_R;
fn square(&self) -> Self {
Fr((self.0 * self.0) % MODULUS_R)
}
fn double(&mut self) {
self.0 = (self.0 << 1) % MODULUS_R;
}
fn negate(&mut self) {
if !<Fr as Field>::is_zero(self) {
self.0 = MODULUS_R - self.0;
}
fn double(&self) -> Self {
Fr((self.0 << 1) % MODULUS_R)
}
fn inverse(&self) -> Option<Self> {
@ -186,22 +202,21 @@ impl SqrtField for Fr {
while t != <Fr as Field>::one() {
let mut i = 1;
{
let mut t2i = t;
t2i.square();
let mut t2i = t.square();
loop {
if t2i == <Fr as Field>::one() {
break;
}
t2i.square();
t2i = t2i.square();
i += 1;
}
}
for _ in 0..(m - i - 1) {
c.square();
c = c.square();
}
MulAssign::mul_assign(&mut r, &c);
c.square();
c = c.square();
MulAssign::mul_assign(&mut t, &c);
m = i;
}
@ -401,7 +416,7 @@ impl CurveProjective for Fr {
}
fn double(&mut self) {
<Fr as Field>::double(self);
self.0 = <Fr as Field>::double(self).0;
}
fn add_assign(&mut self, other: &Self) {
@ -413,7 +428,7 @@ impl CurveProjective for Fr {
}
fn negate(&mut self) {
<Fr as Field>::negate(self);
self.0 = self.neg().0;
}
fn mul_assign<S: Into<<Self::Scalar as PrimeField>::Repr>>(&mut self, other: S) {
@ -495,7 +510,7 @@ impl CurveAffine for Fr {
}
fn negate(&mut self) {
<Fr as Field>::negate(self);
self.0 = self.neg().0;
}
fn mul<S: Into<<Self::Scalar as PrimeField>::Repr>>(&self, other: S) -> Self::Projective {

View File

@ -148,7 +148,7 @@ use std::error::Error;
use std::fmt;
use std::io;
use std::marker::PhantomData;
use std::ops::{Add, MulAssign, Sub};
use std::ops::{Add, MulAssign, Neg, Sub};
/// Computations are expressed in terms of arithmetic circuits, in particular
/// rank-1 quadratic constraint systems. The `Circuit` trait represents a
@ -216,10 +216,8 @@ impl<E: ScalarEngine> Sub<(E::Fr, Variable)> for LinearCombination<E> {
type Output = LinearCombination<E>;
#[allow(clippy::suspicious_arithmetic_impl)]
fn sub(self, (mut coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
coeff.negate();
self + (coeff, var)
fn sub(self, (coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
self + (coeff.neg(), var)
}
}

View File

@ -41,8 +41,7 @@ fn mimc<E: Engine>(mut xl: E::Fr, mut xr: E::Fr, constants: &[E::Fr]) -> E::Fr {
for i in 0..MIMC_ROUNDS {
let mut tmp1 = xl;
tmp1.add_assign(&constants[i]);
let mut tmp2 = tmp1;
tmp2.square();
let mut tmp2 = tmp1.square();
tmp2.mul_assign(&tmp1);
tmp2.add_assign(&xr);
xr = xl;
@ -88,8 +87,7 @@ impl<'a, E: Engine> Circuit<E> for MiMCDemo<'a, E> {
// tmp = (xL + Ci)^2
let tmp_value = xl_value.map(|mut e| {
e.add_assign(&self.constants[i]);
e.square();
e
e.square()
});
let tmp = cs.alloc(
|| "tmp",

View File

@ -14,6 +14,7 @@ edition = "2018"
byteorder = "1"
ff_derive = { version = "0.4.0", path = "ff_derive", optional = true }
rand_core = "0.5"
subtle = "2.2.1"
[features]
default = []

View File

@ -447,8 +447,7 @@ fn prime_field_constants_and_sqrt(
let mut a1 = self.pow(#mod_minus_3_over_4);
let mut a0 = a1;
a0.square();
let mut a0 = a1.square();
a0.mul_assign(self);
if a0.0 == #repr(#rneg) {
@ -484,22 +483,21 @@ fn prime_field_constants_and_sqrt(
while t != Self::one() {
let mut i = 1;
{
let mut t2i = t;
t2i.square();
let mut t2i = t.square();
loop {
if t2i == Self::one() {
break;
}
t2i.square();
t2i = t2i.square();
i += 1;
}
}
for _ in 0..(m - i - 1) {
c.square();
c = c.square();
}
r.mul_assign(&c);
c.square();
c = c.square();
t.mul_assign(&c);
m = i;
}
@ -715,7 +713,9 @@ fn prime_field_impl(
);
gen.extend(quote! {
self.mont_reduce(#mont_calling);
let mut ret = *self;
ret.mont_reduce(#mont_calling);
ret
});
gen
@ -833,6 +833,31 @@ fn prime_field_impl(
}
}
impl ::subtle::ConditionallySelectable for #name {
fn conditional_select(a: &#name, b: &#name, choice: ::subtle::Choice) -> #name {
let mut res = [0u64; #limbs];
for i in 0..#limbs {
res[i] = u64::conditional_select(&(a.0).0[i], &(b.0).0[i], choice);
}
#name(#repr(res))
}
}
impl ::std::ops::Neg for #name {
type Output = #name;
#[inline]
fn neg(self) -> #name {
let mut ret = self;
if !ret.is_zero() {
let mut tmp = MODULUS;
tmp.sub_noborrow(&ret.0);
ret.0 = tmp;
}
ret
}
}
impl<'r> ::std::ops::Add<&'r #name> for #name {
type Output = #name;
@ -1025,21 +1050,16 @@ fn prime_field_impl(
}
#[inline]
fn double(&mut self) {
fn double(&self) -> Self {
let mut ret = *self;
// This cannot exceed the backing capacity.
self.0.mul2();
ret.0.mul2();
// However, it may need to be reduced.
self.reduce();
}
ret.reduce();
#[inline]
fn negate(&mut self) {
if !self.is_zero() {
let mut tmp = MODULUS;
tmp.sub_noborrow(&self.0);
self.0 = tmp;
}
ret
}
fn inverse(&self) -> Option<Self> {
@ -1103,7 +1123,7 @@ fn prime_field_impl(
}
#[inline]
fn square(&mut self)
fn square(&self) -> Self
{
#squaring_impl
}

View File

@ -11,7 +11,8 @@ use rand_core::RngCore;
use std::error::Error;
use std::fmt;
use std::io::{self, Read, Write};
use std::ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign};
use std::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use subtle::ConditionallySelectable;
/// This trait represents an element of a field.
pub trait Field:
@ -24,9 +25,11 @@ pub trait Field:
+ fmt::Debug
+ fmt::Display
+ 'static
+ ConditionallySelectable
+ Add<Output = Self>
+ Sub<Output = Self>
+ Mul<Output = Self>
+ Neg<Output = Self>
+ for<'a> Add<&'a Self, Output = Self>
+ for<'a> Mul<&'a Self, Output = Self>
+ for<'a> Sub<&'a Self, Output = Self>
@ -50,13 +53,12 @@ pub trait Field:
fn is_zero(&self) -> bool;
/// Squares this element.
fn square(&mut self);
#[must_use]
fn square(&self) -> Self;
/// Doubles this element.
fn double(&mut self);
/// Negates this element.
fn negate(&mut self);
#[must_use]
fn double(&self) -> Self;
/// Computes the multiplicative inverse of this element, if nonzero.
fn inverse(&self) -> Option<Self>;
@ -74,7 +76,7 @@ pub trait Field:
for i in BitIterator::new(exp) {
if found_one {
res.square();
res = res.square();
} else {
found_one = i;
}

View File

@ -1,6 +1,7 @@
use ff::{Field, PrimeField};
use rand::SeedableRng;
use rand_xorshift::XorShiftRng;
use std::ops::Neg;
use crate::{CurveAffine, CurveProjective, EncodedPoint};
@ -199,8 +200,7 @@ fn random_negation_tests<G: CurveProjective>() {
let r = G::random(&mut rng);
let s = G::Scalar::random(&mut rng);
let mut sneg = s;
sneg.negate();
let sneg = s.neg();
let mut t1 = r;
t1.mul_assign(s);

View File

@ -21,6 +21,7 @@ byteorder = "1"
ff = { version = "0.5.0", path = "../ff", features = ["derive"] }
group = { version = "0.2.0", path = "../group" }
rand_core = "0.5"
subtle = "2.2.1"
[dev-dependencies]
rand_xorshift = "0.2"

View File

@ -1,6 +1,6 @@
use rand_core::SeedableRng;
use rand_xorshift::XorShiftRng;
use std::ops::{AddAssign, MulAssign, SubAssign};
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
use ff::{Field, PrimeField, PrimeFieldRepr, SqrtField};
use pairing::bls12_381::*;
@ -210,8 +210,7 @@ fn bench_fq_square(b: &mut ::test::Bencher) {
let mut count = 0;
b.iter(|| {
let mut tmp = v[count];
tmp.square();
let tmp = v[count].square();
count = (count + 1) % SAMPLES;
tmp
});
@ -236,7 +235,7 @@ fn bench_fq_inverse(b: &mut ::test::Bencher) {
}
#[bench]
fn bench_fq_negate(b: &mut ::test::Bencher) {
fn bench_fq_neg(b: &mut ::test::Bencher) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::from_seed([
@ -248,8 +247,7 @@ fn bench_fq_negate(b: &mut ::test::Bencher) {
let mut count = 0;
b.iter(|| {
let mut tmp = v[count];
tmp.negate();
let tmp = v[count].neg();
count = (count + 1) % SAMPLES;
tmp
});
@ -265,11 +263,7 @@ fn bench_fq_sqrt(b: &mut ::test::Bencher) {
]);
let v: Vec<Fq> = (0..SAMPLES)
.map(|_| {
let mut tmp = Fq::random(&mut rng);
tmp.square();
tmp
})
.map(|_| Fq::random(&mut rng).square())
.collect();
let mut count = 0;

View File

@ -84,8 +84,7 @@ fn bench_fq12_squaring(b: &mut ::test::Bencher) {
let mut count = 0;
b.iter(|| {
let mut tmp = v[count];
tmp.square();
let tmp = v[count].square();
count = (count + 1) % SAMPLES;
tmp
});

View File

@ -84,8 +84,7 @@ fn bench_fq2_squaring(b: &mut ::test::Bencher) {
let mut count = 0;
b.iter(|| {
let mut tmp = v[count];
tmp.square();
let tmp = v[count].square();
count = (count + 1) % SAMPLES;
tmp
});

View File

@ -1,6 +1,6 @@
use rand_core::SeedableRng;
use rand_xorshift::XorShiftRng;
use std::ops::{AddAssign, MulAssign, SubAssign};
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
use ff::{Field, PrimeField, PrimeFieldRepr, SqrtField};
use pairing::bls12_381::*;
@ -210,8 +210,7 @@ fn bench_fr_square(b: &mut ::test::Bencher) {
let mut count = 0;
b.iter(|| {
let mut tmp = v[count];
tmp.square();
let tmp = v[count].square();
count = (count + 1) % SAMPLES;
tmp
});
@ -236,7 +235,7 @@ fn bench_fr_inverse(b: &mut ::test::Bencher) {
}
#[bench]
fn bench_fr_negate(b: &mut ::test::Bencher) {
fn bench_fr_neg(b: &mut ::test::Bencher) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::from_seed([
@ -248,8 +247,7 @@ fn bench_fr_negate(b: &mut ::test::Bencher) {
let mut count = 0;
b.iter(|| {
let mut tmp = v[count];
tmp.negate();
let tmp = v[count].neg();
count = (count + 1) % SAMPLES;
tmp
});
@ -265,11 +263,7 @@ fn bench_fr_sqrt(b: &mut ::test::Bencher) {
]);
let v: Vec<Fr> = (0..SAMPLES)
.map(|_| {
let mut tmp = Fr::random(&mut rng);
tmp.square();
tmp
})
.map(|_| Fr::random(&mut rng).square())
.collect();
let mut count = 0;

View File

@ -54,10 +54,8 @@ macro_rules! curve_impl {
// are equal when (X * Z^2) = (X' * Z'^2)
// and (Y * Z^3) = (Y' * Z'^3).
let mut z1 = self.z;
z1.square();
let mut z2 = other.z;
z2.square();
let mut z1 = self.z.square();
let mut z2 = other.z.square();
let mut tmp1 = self.x;
tmp1.mul_assign(&z2);
@ -101,14 +99,12 @@ macro_rules! curve_impl {
/// largest y-coordinate be selected.
fn get_point_from_x(x: $basefield, greatest: bool) -> Option<$affine> {
// Compute x^3 + b
let mut x3b = x;
x3b.square();
let mut x3b = x.square();
x3b.mul_assign(&x);
x3b.add_assign(&$affine::get_coeff_b());
x3b.sqrt().map(|y| {
let mut negy = y;
negy.negate();
let negy = y.neg();
$affine {
x: x,
@ -123,11 +119,9 @@ macro_rules! curve_impl {
true
} else {
// Check that the point is on the curve
let mut y2 = self.y;
y2.square();
let y2 = self.y.square();
let mut x3b = self.x;
x3b.square();
let mut x3b = self.x.square();
x3b.mul_assign(&self.x);
x3b.add_assign(&Self::get_coeff_b());
@ -171,7 +165,7 @@ macro_rules! curve_impl {
fn negate(&mut self) {
if !self.is_zero() {
self.y.negate();
self.y = self.y.neg();
}
}
@ -284,8 +278,7 @@ macro_rules! curve_impl {
// Perform affine transformations
for g in v.iter_mut().filter(|g| !g.is_normalized()) {
let mut z = g.z; // 1/z
z.square(); // 1/z^2
let mut z = g.z.square(); // 1/z^2
g.x.mul_assign(&z); // x/z^2
z.mul_assign(&g.z); // 1/z^3
g.y.mul_assign(&z); // y/z^3
@ -306,37 +299,32 @@ macro_rules! curve_impl {
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
// A = X1^2
let mut a = self.x;
a.square();
let a = self.x.square();
// B = Y1^2
let mut b = self.y;
b.square();
let b = self.y.square();
// C = B^2
let mut c = b;
c.square();
let mut c = b.square();
// D = 2*((X1+B)2-A-C)
let mut d = self.x;
d.add_assign(&b);
d.square();
d = d.square();
d.sub_assign(&a);
d.sub_assign(&c);
d.double();
d = d.double();
// E = 3*A
let mut e = a;
e.double();
let mut e = a.double();
e.add_assign(&a);
// F = E^2
let mut f = e;
f.square();
let f = e.square();
// Z3 = 2*Y1*Z1
self.z.mul_assign(&self.y);
self.z.double();
self.z = self.z.double();
// X3 = F-2*D
self.x = f;
@ -347,9 +335,7 @@ macro_rules! curve_impl {
self.y = d;
self.y.sub_assign(&self.x);
self.y.mul_assign(&e);
c.double();
c.double();
c.double();
c = c.double().double().double();
self.y.sub_assign(&c);
}
@ -366,12 +352,10 @@ macro_rules! curve_impl {
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
// Z1Z1 = Z1^2
let mut z1z1 = self.z;
z1z1.square();
let z1z1 = self.z.square();
// Z2Z2 = Z2^2
let mut z2z2 = other.z;
z2z2.square();
let z2z2 = other.z.square();
// U1 = X1*Z2Z2
let mut u1 = self.x;
@ -402,9 +386,7 @@ macro_rules! curve_impl {
h.sub_assign(&u1);
// I = (2*H)^2
let mut i = h;
i.double();
i.square();
let i = h.double().square();
// J = H*I
let mut j = h;
@ -413,15 +395,14 @@ macro_rules! curve_impl {
// r = 2*(S2-S1)
let mut r = s2;
r.sub_assign(&s1);
r.double();
r = r.double();
// V = U1*I
let mut v = u1;
v.mul_assign(&i);
// X3 = r^2 - J - 2*V
self.x = r;
self.x.square();
self.x = r.square();
self.x.sub_assign(&j);
self.x.sub_assign(&v);
self.x.sub_assign(&v);
@ -431,12 +412,12 @@ macro_rules! curve_impl {
self.y.sub_assign(&self.x);
self.y.mul_assign(&r);
s1.mul_assign(&j); // S1 = S1 * J * 2
s1.double();
s1 = s1.double();
self.y.sub_assign(&s1);
// Z3 = ((Z1+Z2)^2 - Z1Z1 - Z2Z2)*H
self.z.add_assign(&other.z);
self.z.square();
self.z = self.z.square();
self.z.sub_assign(&z1z1);
self.z.sub_assign(&z2z2);
self.z.mul_assign(&h);
@ -458,8 +439,7 @@ macro_rules! curve_impl {
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl
// Z1Z1 = Z1^2
let mut z1z1 = self.z;
z1z1.square();
let z1z1 = self.z.square();
// U2 = X2*Z1Z1
let mut u2 = other.x;
@ -481,13 +461,10 @@ macro_rules! curve_impl {
h.sub_assign(&self.x);
// HH = H^2
let mut hh = h;
hh.square();
let hh = h.square();
// I = 4*HH
let mut i = hh;
i.double();
i.double();
let i = hh.double().double();
// J = H*I
let mut j = h;
@ -496,22 +473,21 @@ macro_rules! curve_impl {
// r = 2*(S2-Y1)
let mut r = s2;
r.sub_assign(&self.y);
r.double();
r = r.double();
// V = X1*I
let mut v = self.x;
v.mul_assign(&i);
// X3 = r^2 - J - 2*V
self.x = r;
self.x.square();
self.x = r.square();
self.x.sub_assign(&j);
self.x.sub_assign(&v);
self.x.sub_assign(&v);
// Y3 = r*(V-X3)-2*Y1*J
j.mul_assign(&self.y); // J = 2*Y1*J
j.double();
j = j.double();
self.y = v;
self.y.sub_assign(&self.x);
self.y.mul_assign(&r);
@ -519,7 +495,7 @@ macro_rules! curve_impl {
// Z3 = (Z1+H)^2-Z1Z1-HH
self.z.add_assign(&h);
self.z.square();
self.z = self.z.square();
self.z.sub_assign(&z1z1);
self.z.sub_assign(&hh);
}
@ -527,7 +503,7 @@ macro_rules! curve_impl {
fn negate(&mut self) {
if !self.is_zero() {
self.y.negate()
self.y = self.y.neg();
}
}
@ -596,8 +572,7 @@ macro_rules! curve_impl {
} else {
// Z is nonzero, so it must have an inverse in a field.
let zinv = p.z.inverse().unwrap();
let mut zinv_powered = zinv;
zinv_powered.square();
let mut zinv_powered = zinv.square();
// X/Z^2
let mut x = p.x;
@ -627,7 +602,7 @@ pub mod g1 {
use group::{CurveAffine, CurveProjective, EncodedPoint, GroupDecodingError};
use rand_core::RngCore;
use std::fmt;
use std::ops::{AddAssign, MulAssign, SubAssign};
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
curve_impl!(
"G1",
@ -849,8 +824,7 @@ pub mod g1 {
affine.x.into_repr().write_be(&mut writer).unwrap();
}
let mut negy = affine.y;
negy.negate();
let negy = affine.y.neg();
// Set the third most significant bit if the correct y-coordinate
// is lexicographically largest.
@ -941,15 +915,13 @@ pub mod g1 {
let mut i = 0;
loop {
// y^2 = x^3 + b
let mut rhs = x;
rhs.square();
let mut rhs = x.square();
rhs.mul_assign(&x);
rhs.add_assign(&G1Affine::get_coeff_b());
if let Some(y) = rhs.sqrt() {
let yrepr = y.into_repr();
let mut negy = y;
negy.negate();
let negy = y.neg();
let negyrepr = negy.into_repr();
let p = G1Affine {
@ -1297,7 +1269,7 @@ pub mod g2 {
use group::{CurveAffine, CurveProjective, EncodedPoint, GroupDecodingError};
use rand_core::RngCore;
use std::fmt;
use std::ops::{AddAssign, MulAssign, SubAssign};
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
curve_impl!(
"G2",
@ -1544,8 +1516,7 @@ pub mod g2 {
affine.x.c0.into_repr().write_be(&mut writer).unwrap();
}
let mut negy = affine.y;
negy.negate();
let negy = affine.y.neg();
// Set the third most significant bit if the correct y-coordinate
// is lexicographically largest.
@ -1648,14 +1619,12 @@ pub mod g2 {
let mut i = 0;
loop {
// y^2 = x^3 + b
let mut rhs = x;
rhs.square();
let mut rhs = x.square();
rhs.mul_assign(&x);
rhs.add_assign(&G2Affine::get_coeff_b());
if let Some(y) = rhs.sqrt() {
let mut negy = y;
negy.negate();
let negy = y.neg();
let p = G2Affine {
x,

View File

@ -2,6 +2,9 @@ use super::fq2::Fq2;
use ff::{Field, PrimeField, PrimeFieldDecodingError, PrimeFieldRepr};
use std::ops::{AddAssign, MulAssign, SubAssign};
#[cfg(test)]
use std::ops::Neg;
// B coefficient of BLS12-381 curve, 4.
pub const B_COEFF: Fq = Fq(FqRepr([
0xaa270000000cfff3,
@ -456,8 +459,7 @@ fn test_b_coeff() {
#[test]
fn test_frob_coeffs() {
let mut nqr = Fq::one();
nqr.negate();
let nqr = Fq::one().neg();
assert_eq!(FROBENIUS_COEFF_FQ2_C1[0], Fq::one());
assert_eq!(
@ -1167,8 +1169,7 @@ fn test_frob_coeffs() {
#[test]
fn test_neg_one() {
let mut o = Fq::one();
o.negate();
let o = Fq::one().neg();
assert_eq!(NEGATIVE_ONE, o);
}
@ -1929,7 +1930,7 @@ fn test_fq_mul_assign() {
#[test]
fn test_fq_squaring() {
let mut a = Fq(FqRepr([
let a = Fq(FqRepr([
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff,
@ -1938,9 +1939,8 @@ fn test_fq_squaring() {
0x19ffffffffffffff,
]));
assert!(a.is_valid());
a.square();
assert_eq!(
a,
a.square(),
Fq::from_repr(FqRepr([
0x1cfb28fe7dfbbb86,
0x24cbe1731577a59,
@ -1960,14 +1960,7 @@ fn test_fq_squaring() {
for _ in 0..1000000 {
// Ensure that (a * a) = a^2
let a = Fq::random(&mut rng);
let mut tmp = a;
tmp.square();
let mut tmp2 = a;
tmp2.mul_assign(&a);
assert_eq!(tmp, tmp2);
assert_eq!(a.square(), a * a);
}
}
@ -2000,19 +1993,15 @@ fn test_fq_double() {
for _ in 0..1000 {
// Ensure doubling a is equivalent to adding a to itself.
let mut a = Fq::random(&mut rng);
let mut b = a;
b.add_assign(&a);
a.double();
assert_eq!(a, b);
let a = Fq::random(&mut rng);
assert_eq!(a.double(), a + a);
}
}
#[test]
fn test_fq_negate() {
fn test_fq_neg() {
{
let mut a = Fq::zero();
a.negate();
let a = Fq::zero().neg();
assert!(a.is_zero());
}
@ -2025,8 +2014,7 @@ fn test_fq_negate() {
for _ in 0..1000 {
// Ensure (a - (-a)) = 0.
let mut a = Fq::random(&mut rng);
let mut b = a;
b.negate();
let b = a.neg();
a.add_assign(&b);
assert!(a.is_zero());
@ -2074,10 +2062,8 @@ fn test_fq_sqrt() {
for _ in 0..1000 {
// Ensure sqrt(a^2) = a or -a
let a = Fq::random(&mut rng);
let mut nega = a;
nega.negate();
let mut b = a;
b.square();
let nega = a.neg();
let b = a.square();
let b = b.sqrt().unwrap();
@ -2088,10 +2074,8 @@ fn test_fq_sqrt() {
// Ensure sqrt(a)^2 = a for random a
let a = Fq::random(&mut rng);
if let Some(mut tmp) = a.sqrt() {
tmp.square();
assert_eq!(a, tmp);
if let Some(tmp) = a.sqrt() {
assert_eq!(a, tmp.square());
}
}
}

View File

@ -3,7 +3,8 @@ use super::fq2::Fq2;
use super::fq6::Fq6;
use ff::Field;
use rand_core::RngCore;
use std::ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign};
use std::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use subtle::{Choice, ConditionallySelectable};
/// An element of Fq12, represented by c0 + c1 * w.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
@ -20,7 +21,7 @@ impl ::std::fmt::Display for Fq12 {
impl Fq12 {
pub fn conjugate(&mut self) {
self.c1.negate();
self.c1 = self.c1.neg();
}
pub fn mul_by_014(&mut self, c0: &Fq2, c1: &Fq2, c4: &Fq2) {
@ -40,6 +41,26 @@ impl Fq12 {
}
}
impl ConditionallySelectable for Fq12 {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Fq12 {
c0: Fq6::conditional_select(&a.c0, &b.c0, choice),
c1: Fq6::conditional_select(&a.c1, &b.c1, choice),
}
}
}
impl Neg for Fq12 {
type Output = Self;
fn neg(self) -> Self {
Fq12 {
c0: self.c0.neg(),
c1: self.c1.neg(),
}
}
}
impl<'r> Add<&'r Fq12> for Fq12 {
type Output = Self;
@ -172,14 +193,11 @@ impl Field for Fq12 {
self.c0.is_zero() && self.c1.is_zero()
}
fn double(&mut self) {
self.c0.double();
self.c1.double();
}
fn negate(&mut self) {
self.c0.negate();
self.c1.negate();
fn double(&self) -> Self {
Fq12 {
c0: self.c0.double(),
c1: self.c1.double(),
}
}
fn frobenius_map(&mut self, power: usize) {
@ -191,7 +209,7 @@ impl Field for Fq12 {
self.c1.c2.mul_assign(&FROBENIUS_COEFF_FQ12_C1[power % 12]);
}
fn square(&mut self) {
fn square(&self) -> Self {
let mut ab = self.c0;
ab.mul_assign(&self.c1);
let mut c0c1 = self.c0;
@ -201,28 +219,22 @@ impl Field for Fq12 {
c0.add_assign(&self.c0);
c0.mul_assign(&c0c1);
c0.sub_assign(&ab);
self.c1 = ab;
self.c1.add_assign(&ab);
let mut c1 = ab;
c1.add_assign(&ab);
ab.mul_by_nonresidue();
c0.sub_assign(&ab);
self.c0 = c0;
Fq12 { c0, c1 }
}
fn inverse(&self) -> Option<Self> {
let mut c0s = self.c0;
c0s.square();
let mut c1s = self.c1;
c1s.square();
let mut c0s = self.c0.square();
let mut c1s = self.c1.square();
c1s.mul_by_nonresidue();
c0s.sub_assign(&c1s);
c0s.inverse().map(|t| {
let mut tmp = Fq12 { c0: t, c1: t };
tmp.c0.mul_assign(&self.c0);
tmp.c1.mul_assign(&self.c1);
tmp.c1.negate();
tmp
c0s.inverse().map(|t| Fq12 {
c0: t.mul(&self.c0),
c1: t.mul(&self.c1).neg(),
})
}
}

View File

@ -2,7 +2,8 @@ use super::fq::{Fq, FROBENIUS_COEFF_FQ2_C1, NEGATIVE_ONE};
use ff::{Field, SqrtField};
use rand_core::RngCore;
use std::cmp::Ordering;
use std::ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign};
use std::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use subtle::{Choice, ConditionallySelectable};
/// An element of Fq2, represented by c0 + c1 * u.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
@ -46,16 +47,34 @@ impl Fq2 {
/// Norm of Fq2 as extension field in i over Fq
pub fn norm(&self) -> Fq {
let mut t0 = self.c0;
let mut t1 = self.c1;
t0.square();
t1.square();
let t0 = self.c0.square();
let mut t1 = self.c1.square();
t1.add_assign(&t0);
t1
}
}
impl ConditionallySelectable for Fq2 {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Fq2 {
c0: Fq::conditional_select(&a.c0, &b.c0, choice),
c1: Fq::conditional_select(&a.c1, &b.c1, choice),
}
}
}
impl Neg for Fq2 {
type Output = Self;
fn neg(self) -> Self {
Fq2 {
c0: self.c0.neg(),
c1: self.c1.neg(),
}
}
}
impl<'r> Add<&'r Fq2> for Fq2 {
type Output = Self;
@ -187,48 +206,35 @@ impl Field for Fq2 {
self.c0.is_zero() && self.c1.is_zero()
}
fn square(&mut self) {
fn square(&self) -> Self {
let mut ab = self.c0;
ab.mul_assign(&self.c1);
let mut c0c1 = self.c0;
c0c1.add_assign(&self.c1);
let mut c0 = self.c1;
c0.negate();
let mut c0 = self.c1.neg();
c0.add_assign(&self.c0);
c0.mul_assign(&c0c1);
c0.sub_assign(&ab);
self.c1 = ab;
self.c1.add_assign(&ab);
let mut c1 = ab;
c1.add_assign(&ab);
c0.add_assign(&ab);
self.c0 = c0;
Fq2 { c0, c1 }
}
fn double(&mut self) {
self.c0.double();
self.c1.double();
}
fn negate(&mut self) {
self.c0.negate();
self.c1.negate();
fn double(&self) -> Self {
Fq2 {
c0: self.c0.double(),
c1: self.c1.double(),
}
}
fn inverse(&self) -> Option<Self> {
let mut t1 = self.c1;
t1.square();
let mut t0 = self.c0;
t0.square();
let t1 = self.c1.square();
let mut t0 = self.c0.square();
t0.add_assign(&t1);
t0.inverse().map(|t| {
let mut tmp = Fq2 {
c0: self.c0,
c1: self.c1,
};
tmp.c0.mul_assign(&t);
tmp.c1.mul_assign(&t);
tmp.c1.negate();
tmp
t0.inverse().map(|t| Fq2 {
c0: self.c0.mul(&t),
c1: self.c1.mul(&t).neg(),
})
}
@ -257,8 +263,7 @@ impl SqrtField for Fq2 {
0x92c6e9ed90d2eb35,
0x680447a8e5ff9a6,
]);
let mut alpha = a1;
alpha.square();
let mut alpha = a1.square();
alpha.mul_assign(self);
let mut a0 = alpha;
a0.frobenius_map(1);
@ -353,34 +358,30 @@ fn test_fq2_squaring() {
use super::fq::FqRepr;
use ff::PrimeField;
let mut a = Fq2 {
let a = Fq2 {
c0: Fq::one(),
c1: Fq::one(),
}; // u + 1
a.square();
assert_eq!(
a,
a.square(),
Fq2 {
c0: Fq::zero(),
c1: Fq::from_repr(FqRepr::from(2)).unwrap(),
}
); // 2u
let mut a = Fq2 {
let a = Fq2 {
c0: Fq::zero(),
c1: Fq::one(),
}; // u
a.square();
assert_eq!(a, {
let mut neg1 = Fq::one();
neg1.negate();
assert_eq!(a.square(), {
Fq2 {
c0: neg1,
c0: Fq::one().neg(),
c1: Fq::zero(),
}
}); // -1
let mut a = Fq2 {
let a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x9c2c6309bbf8b598,
0x4eef5c946536f602,
@ -400,9 +401,8 @@ fn test_fq2_squaring() {
]))
.unwrap(),
};
a.square();
assert_eq!(
a,
a.square(),
Fq2 {
c0: Fq::from_repr(FqRepr([
0xf262c28c538bcf68,
@ -694,7 +694,7 @@ fn test_fq2_negation() {
use super::fq::FqRepr;
use ff::PrimeField;
let mut a = Fq2 {
let a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
@ -713,8 +713,8 @@ fn test_fq2_negation() {
0x12d1137b8a6a837,
]))
.unwrap(),
};
a.negate();
}
.neg();
assert_eq!(
a,
Fq2 {
@ -745,7 +745,7 @@ fn test_fq2_doubling() {
use super::fq::FqRepr;
use ff::PrimeField;
let mut a = Fq2 {
let a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
@ -765,9 +765,8 @@ fn test_fq2_doubling() {
]))
.unwrap(),
};
a.double();
assert_eq!(
a,
a.double(),
Fq2 {
c0: Fq::from_repr(FqRepr([
0x5a00f006d247ff8e,
@ -1000,8 +999,7 @@ fn test_fq2_legendre() {
assert_eq!(Zero, Fq2::zero().legendre());
// i^2 = -1
let mut m1 = Fq2::one();
m1.negate();
let mut m1 = Fq2::one().neg();
assert_eq!(QuadraticResidue, m1.legendre());
m1.mul_by_nonresidue();
assert_eq!(QuadraticNonResidue, m1.legendre());

View File

@ -2,7 +2,8 @@ use super::fq::{FROBENIUS_COEFF_FQ6_C1, FROBENIUS_COEFF_FQ6_C2};
use super::fq2::Fq2;
use ff::Field;
use rand_core::RngCore;
use std::ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign};
use std::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use subtle::{Choice, ConditionallySelectable};
/// An element of Fq6, represented by c0 + c1 * v + c2 * v^(2).
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
@ -100,6 +101,28 @@ impl Fq6 {
}
}
impl ConditionallySelectable for Fq6 {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Fq6 {
c0: Fq2::conditional_select(&a.c0, &b.c0, choice),
c1: Fq2::conditional_select(&a.c1, &b.c1, choice),
c2: Fq2::conditional_select(&a.c2, &b.c2, choice),
}
}
}
impl Neg for Fq6 {
type Output = Self;
fn neg(self) -> Self {
Fq6 {
c0: self.c0.neg(),
c1: self.c1.neg(),
c2: self.c2.neg(),
}
}
}
impl<'r> Add<&'r Fq6> for Fq6 {
type Output = Self;
@ -274,16 +297,12 @@ impl Field for Fq6 {
self.c0.is_zero() && self.c1.is_zero() && self.c2.is_zero()
}
fn double(&mut self) {
self.c0.double();
self.c1.double();
self.c2.double();
}
fn negate(&mut self) {
self.c0.negate();
self.c1.negate();
self.c2.negate();
fn double(&self) -> Self {
Fq6 {
c0: self.c0.double(),
c1: self.c1.double(),
c2: self.c2.double(),
}
}
fn frobenius_map(&mut self, power: usize) {
@ -295,59 +314,54 @@ impl Field for Fq6 {
self.c2.mul_assign(&FROBENIUS_COEFF_FQ6_C2[power % 6]);
}
fn square(&mut self) {
let mut s0 = self.c0;
s0.square();
fn square(&self) -> Self {
let s0 = self.c0.square();
let mut ab = self.c0;
ab.mul_assign(&self.c1);
let mut s1 = ab;
s1.double();
let s1 = ab.double();
let mut s2 = self.c0;
s2.sub_assign(&self.c1);
s2.add_assign(&self.c2);
s2.square();
s2 = s2.square();
let mut bc = self.c1;
bc.mul_assign(&self.c2);
let mut s3 = bc;
s3.double();
let mut s4 = self.c2;
s4.square();
let s3 = bc.double();
let s4 = self.c2.square();
self.c0 = s3;
self.c0.mul_by_nonresidue();
self.c0.add_assign(&s0);
let mut c0 = s3;
c0.mul_by_nonresidue();
c0.add_assign(&s0);
self.c1 = s4;
self.c1.mul_by_nonresidue();
self.c1.add_assign(&s1);
let mut c1 = s4;
c1.mul_by_nonresidue();
c1.add_assign(&s1);
self.c2 = s1;
self.c2.add_assign(&s2);
self.c2.add_assign(&s3);
self.c2.sub_assign(&s0);
self.c2.sub_assign(&s4);
let mut c2 = s1;
c2.add_assign(&s2);
c2.add_assign(&s3);
c2.sub_assign(&s0);
c2.sub_assign(&s4);
Fq6 { c0, c1, c2 }
}
fn inverse(&self) -> Option<Self> {
let mut c0 = self.c2;
c0.mul_by_nonresidue();
c0.mul_assign(&self.c1);
c0.negate();
c0 = c0.neg();
{
let mut c0s = self.c0;
c0s.square();
let c0s = self.c0.square();
c0.add_assign(&c0s);
}
let mut c1 = self.c2;
c1.square();
let mut c1 = self.c2.square();
c1.mul_by_nonresidue();
{
let mut c01 = self.c0;
c01.mul_assign(&self.c1);
c1.sub_assign(&c01);
}
let mut c2 = self.c1;
c2.square();
let mut c2 = self.c1.square();
{
let mut c02 = self.c0;
c02.mul_assign(&self.c2);

View File

@ -10,6 +10,8 @@ pub struct Fr(FrRepr);
use rand_core::SeedableRng;
#[cfg(test)]
use rand_xorshift::XorShiftRng;
#[cfg(test)]
use std::ops::Neg;
#[test]
fn test_fr_repr_ordering() {
@ -691,16 +693,15 @@ fn test_fr_mul_assign() {
#[test]
fn test_fr_squaring() {
let mut a = Fr(FrRepr([
let a = Fr(FrRepr([
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff,
0x73eda753299d7d47,
]));
assert!(a.is_valid());
a.square();
assert_eq!(
a,
a.square(),
Fr::from_repr(FrRepr([
0xc0d698e7bde077b8,
0xb79a310579e76ec2,
@ -718,14 +719,7 @@ fn test_fr_squaring() {
for _ in 0..1000000 {
// Ensure that (a * a) = a^2
let a = Fr::random(&mut rng);
let mut tmp = a;
tmp.square();
let mut tmp2 = a;
tmp2.mul_assign(&a);
assert_eq!(tmp, tmp2);
assert_eq!(a.square(), a * a);
}
}
@ -758,19 +752,15 @@ fn test_fr_double() {
for _ in 0..1000 {
// Ensure doubling a is equivalent to adding a to itself.
let mut a = Fr::random(&mut rng);
let mut b = a;
b.add_assign(&a);
a.double();
assert_eq!(a, b);
let a = Fr::random(&mut rng);
assert_eq!(a.double(), a + a);
}
}
#[test]
fn test_fr_negate() {
fn test_fr_neg() {
{
let mut a = Fr::zero();
a.negate();
let a = Fr::zero().neg();
assert!(a.is_zero());
}
@ -783,8 +773,7 @@ fn test_fr_negate() {
for _ in 0..1000 {
// Ensure (a - (-a)) = 0.
let mut a = Fr::random(&mut rng);
let mut b = a;
b.negate();
let b = a.neg();
a.add_assign(&b);
assert!(a.is_zero());
@ -832,10 +821,8 @@ fn test_fr_sqrt() {
for _ in 0..1000 {
// Ensure sqrt(a^2) = a or -a
let a = Fr::random(&mut rng);
let mut nega = a;
nega.negate();
let mut b = a;
b.square();
let nega = a.neg();
let b = a.square();
let b = b.sqrt().unwrap();
@ -846,10 +833,8 @@ fn test_fr_sqrt() {
// Ensure sqrt(a)^2 = a for random a
let a = Fr::random(&mut rng);
if let Some(mut tmp) = a.sqrt() {
tmp.square();
assert_eq!(a, tmp);
if let Some(tmp) = a.sqrt() {
assert_eq!(a, tmp.square());
}
}
}

View File

@ -25,7 +25,7 @@ use super::{Engine, PairingCurveAffine};
use ff::{BitIterator, Field, ScalarEngine};
use group::CurveAffine;
use std::ops::{AddAssign, MulAssign, SubAssign};
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
// The BLS parameter x for BLS12-381 is -0xd201000000010000
const BLS_X: u64 = 0xd201000000010000;
@ -97,7 +97,7 @@ impl Engine for Bls12 {
}
}
f.square();
f = f.square();
}
for &mut (p, ref mut coeffs) in &mut pairs {
@ -131,8 +131,7 @@ impl Engine for Bls12 {
}
let mut x = BLS_X;
let mut y0 = r;
y0.square();
let y0 = r.square();
let mut y1 = y0;
exp_by_x(&mut y1, x);
x >>= 1;
@ -185,41 +184,35 @@ impl G2Prepared {
fn doubling_step(r: &mut G2) -> (Fq2, Fq2, Fq2) {
// Adaptation of Algorithm 26, https://eprint.iacr.org/2010/354.pdf
let mut tmp0 = r.x;
tmp0.square();
let mut tmp0 = r.x.square();
let mut tmp1 = r.y;
tmp1.square();
let mut tmp1 = r.y.square();
let mut tmp2 = tmp1;
tmp2.square();
let mut tmp2 = tmp1.square();
let mut tmp3 = tmp1;
tmp3.add_assign(&r.x);
tmp3.square();
tmp3 = tmp3.square();
tmp3.sub_assign(&tmp0);
tmp3.sub_assign(&tmp2);
tmp3.double();
tmp3 = tmp3.double();
let mut tmp4 = tmp0;
tmp4.double();
let mut tmp4 = tmp0.double();
tmp4.add_assign(&tmp0);
let mut tmp6 = r.x;
tmp6.add_assign(&tmp4);
let mut tmp5 = tmp4;
tmp5.square();
let tmp5 = tmp4.square();
let mut zsquared = r.z;
zsquared.square();
let zsquared = r.z.square();
r.x = tmp5;
r.x.sub_assign(&tmp3);
r.x.sub_assign(&tmp3);
r.z.add_assign(&r.y);
r.z.square();
r.z = r.z.square();
r.z.sub_assign(&tmp1);
r.z.sub_assign(&zsquared);
@ -227,47 +220,41 @@ impl G2Prepared {
r.y.sub_assign(&r.x);
r.y.mul_assign(&tmp4);
tmp2.double();
tmp2.double();
tmp2.double();
tmp2 = tmp2.double().double().double();
r.y.sub_assign(&tmp2);
tmp3 = tmp4;
tmp3.mul_assign(&zsquared);
tmp3.double();
tmp3.negate();
tmp3 = tmp3.double().neg();
tmp6.square();
tmp6 = tmp6.square();
tmp6.sub_assign(&tmp0);
tmp6.sub_assign(&tmp5);
tmp1.double();
tmp1.double();
tmp1 = tmp1.double().double();
tmp6.sub_assign(&tmp1);
tmp0 = r.z;
tmp0.mul_assign(&zsquared);
tmp0.double();
tmp0 = tmp0.double();
(tmp0, tmp3, tmp6)
}
fn addition_step(r: &mut G2, q: &G2Affine) -> (Fq2, Fq2, Fq2) {
// Adaptation of Algorithm 27, https://eprint.iacr.org/2010/354.pdf
let mut zsquared = r.z;
zsquared.square();
let zsquared = r.z.square();
let mut ysquared = q.y;
ysquared.square();
let ysquared = q.y.square();
let mut t0 = zsquared;
t0.mul_assign(&q.x);
let mut t1 = q.y;
t1.add_assign(&r.z);
t1.square();
t1 = t1.square();
t1.sub_assign(&ysquared);
t1.sub_assign(&zsquared);
t1.mul_assign(&zsquared);
@ -275,12 +262,9 @@ impl G2Prepared {
let mut t2 = t0;
t2.sub_assign(&r.x);
let mut t3 = t2;
t3.square();
let t3 = t2.square();
let mut t4 = t3;
t4.double();
t4.double();
let t4 = t3.double().double();
let mut t5 = t4;
t5.mul_assign(&t2);
@ -295,14 +279,13 @@ impl G2Prepared {
let mut t7 = t4;
t7.mul_assign(&r.x);
r.x = t6;
r.x.square();
r.x = t6.square();
r.x.sub_assign(&t5);
r.x.sub_assign(&t7);
r.x.sub_assign(&t7);
r.z.add_assign(&t2);
r.z.square();
r.z = r.z.square();
r.z.sub_assign(&zsquared);
r.z.sub_assign(&t3);
@ -315,29 +298,26 @@ impl G2Prepared {
t0 = r.y;
t0.mul_assign(&t5);
t0.double();
t0 = t0.double();
r.y = t8;
r.y.sub_assign(&t0);
t10.square();
t10 = t10.square();
t10.sub_assign(&ysquared);
let mut ztsquared = r.z;
ztsquared.square();
let ztsquared = r.z.square();
t10.sub_assign(&ztsquared);
t9.double();
t9 = t9.double();
t9.sub_assign(&t10);
t10 = r.z;
t10.double();
t10 = r.z.double();
t6.negate();
t6 = t6.neg();
t1 = t6;
t1.double();
t1 = t6.double();
(t10, t1, t9)
}

View File

@ -189,8 +189,7 @@ fn test_g1_uncompressed_invalid_vectors() {
let mut x = Fq::one();
loop {
let mut x3b = x;
x3b.square();
let mut x3b = x.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq::from_repr(FqRepr::from(4)).unwrap()); // TODO: perhaps expose coeff_b through API?
@ -326,8 +325,7 @@ fn test_g2_uncompressed_invalid_vectors() {
let mut x = Fq2::one();
loop {
let mut x3b = x;
x3b.square();
let mut x3b = x.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq2 {
c0: Fq::from_repr(FqRepr::from(4)).unwrap(),
@ -422,8 +420,7 @@ fn test_g1_compressed_invalid_vectors() {
let mut x = Fq::one();
loop {
let mut x3b = x;
x3b.square();
let mut x3b = x.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq::from_repr(FqRepr::from(4)).unwrap()); // TODO: perhaps expose coeff_b through API?
@ -447,8 +444,7 @@ fn test_g1_compressed_invalid_vectors() {
let mut x = Fq::one();
loop {
let mut x3b = x;
x3b.square();
let mut x3b = x.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq::from_repr(FqRepr::from(4)).unwrap()); // TODO: perhaps expose coeff_b through API?
@ -553,8 +549,7 @@ fn test_g2_compressed_invalid_vectors() {
};
loop {
let mut x3b = x;
x3b.square();
let mut x3b = x.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq2 {
c0: Fq::from_repr(FqRepr::from(4)).unwrap(),
@ -585,8 +580,7 @@ fn test_g2_compressed_invalid_vectors() {
};
loop {
let mut x3b = x;
x3b.square();
let mut x3b = x.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq2 {
c0: Fq::from_repr(FqRepr::from(4)).unwrap(),

View File

@ -31,27 +31,24 @@ pub fn random_sqrt_tests<F: SqrtField>() {
for _ in 0..10000 {
let a = F::random(&mut rng);
let mut b = a;
b.square();
let b = a.square();
assert_eq!(b.legendre(), LegendreSymbol::QuadraticResidue);
let b = b.sqrt().unwrap();
let mut negb = b;
negb.negate();
let negb = b.neg();
assert!(a == b || a == negb);
}
let mut c = F::one();
for _ in 0..10000 {
let mut b = c;
b.square();
let mut b = c.square();
assert_eq!(b.legendre(), LegendreSymbol::QuadraticResidue);
b = b.sqrt().unwrap();
if b != c {
b.negate();
b = b.neg();
}
assert_eq!(b, c);
@ -77,8 +74,7 @@ pub fn random_field_tests<F: Field>() {
assert!(F::zero().is_zero());
{
let mut z = F::zero();
z.negate();
let z = F::zero().neg();
assert!(z.is_zero());
}
@ -204,8 +200,7 @@ fn random_subtraction_tests<F: Field, R: RngCore>(rng: &mut R) {
fn random_negation_tests<F: Field, R: RngCore>(rng: &mut R) {
for _ in 0..10000 {
let a = F::random(rng);
let mut b = a;
b.negate();
let mut b = a.neg();
b.add_assign(&a);
assert!(b.is_zero());
@ -214,23 +209,15 @@ fn random_negation_tests<F: Field, R: RngCore>(rng: &mut R) {
fn random_doubling_tests<F: Field, R: RngCore>(rng: &mut R) {
for _ in 0..10000 {
let mut a = F::random(rng);
let mut b = a;
a.add_assign(&b);
b.double();
assert_eq!(a, b);
let a = F::random(rng);
assert_eq!(a + a, a.double());
}
}
fn random_squaring_tests<F: Field, R: RngCore>(rng: &mut R) {
for _ in 0..10000 {
let mut a = F::random(rng);
let mut b = a;
a.mul_assign(&b);
b.square();
assert_eq!(a, b);
let a = F::random(rng);
assert_eq!(a * a, a.square());
}
}

View File

@ -28,6 +28,7 @@ rand_core = "0.5.1"
ripemd160 = { version = "0.8", optional = true }
secp256k1 = { version = "=0.15.0", optional = true }
sha2 = "0.8"
subtle = "2.2.1"
[dev-dependencies]
hex-literal = "0.2"

View File

@ -1,5 +1,5 @@
use ff::{BitIterator, Field, PrimeField, PrimeFieldRepr, SqrtField};
use std::ops::{AddAssign, MulAssign, SubAssign};
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
use super::{montgomery, JubjubEngine, JubjubParams, PrimeOrder, Unknown};
@ -107,8 +107,7 @@ impl<E: JubjubEngine> Point<E, Unknown> {
// as dy^2 + 1 = 0 has no solution in Fr.
// tmp1 = y^2
let mut tmp1 = y;
tmp1.square();
let mut tmp1 = y.square();
// tmp2 = (y^2 * d) + 1
let mut tmp2 = tmp1;
@ -126,7 +125,7 @@ impl<E: JubjubEngine> Point<E, Unknown> {
match tmp1.sqrt() {
Some(mut x) => {
if x.into_repr().is_odd() != sign {
x.negate();
x = x.neg();
}
let mut t = x;
@ -213,12 +212,9 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
// only point of order 2 that is not the neutral element.
if y.is_zero() {
// This must be the point (0, 0) as above.
let mut neg1 = E::Fr::one();
neg1.negate();
Point {
x: E::Fr::zero(),
y: neg1,
y: E::Fr::one().neg(),
t: E::Fr::zero(),
z: E::Fr::one(),
_marker: PhantomData,
@ -324,8 +320,8 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
pub fn negate(&self) -> Self {
let mut p = self.clone();
p.x.negate();
p.t.negate();
p.x = p.x.neg();
p.t = p.t.neg();
p
}
@ -338,27 +334,22 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
// http://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#doubling-dbl-2008-hwcd
// A = X1^2
let mut a = self.x;
a.square();
let a = self.x.square();
// B = Y1^2
let mut b = self.y;
b.square();
let b = self.y.square();
// C = 2*Z1^2
let mut c = self.z;
c.square();
c.double();
let c = self.z.square().double();
// D = a*A
// = -A
let mut d = a;
d.negate();
let d = a.neg();
// E = (X1+Y1)^2 - A - B
let mut e = self.x;
e.add_assign(&self.y);
e.square();
e = e.square();
e.add_assign(&d); // -A = D
e.sub_assign(&b);

View File

@ -5,7 +5,8 @@ use ff::{
PrimeField, PrimeFieldDecodingError, PrimeFieldRepr, SqrtField,
};
use rand_core::RngCore;
use std::ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign};
use std::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use subtle::{Choice, ConditionallySelectable};
use super::ToUniform;
@ -269,6 +270,31 @@ impl From<Fs> for FsRepr {
}
}
impl ConditionallySelectable for Fs {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Fs(FsRepr([
u64::conditional_select(&(a.0).0[0], &(b.0).0[0], choice),
u64::conditional_select(&(a.0).0[1], &(b.0).0[1], choice),
u64::conditional_select(&(a.0).0[2], &(b.0).0[2], choice),
u64::conditional_select(&(a.0).0[3], &(b.0).0[3], choice),
]))
}
}
impl Neg for Fs {
type Output = Self;
#[inline]
fn neg(mut self) -> Self {
if !self.is_zero() {
let mut tmp = MODULUS;
tmp.sub_noborrow(&self.0);
self.0 = tmp;
}
self
}
}
impl<'r> Add<&'r Fs> for Fs {
type Output = Self;
@ -488,21 +514,16 @@ impl Field for Fs {
}
#[inline]
fn double(&mut self) {
fn double(&self) -> Self {
let mut ret = *self;
// This cannot exceed the backing capacity.
self.0.mul2();
ret.0.mul2();
// However, it may need to be reduced.
self.reduce();
}
ret.reduce();
#[inline]
fn negate(&mut self) {
if !self.is_zero() {
let mut tmp = MODULUS;
tmp.sub_noborrow(&self.0);
self.0 = tmp;
}
ret
}
fn inverse(&self) -> Option<Self> {
@ -566,7 +587,7 @@ impl Field for Fs {
}
#[inline]
fn square(&mut self) {
fn square(&self) -> Self {
let mut carry = 0;
let r1 = mac_with_carry(0, (self.0).0[0], (self.0).0[1], &mut carry);
let r2 = mac_with_carry(0, (self.0).0[0], (self.0).0[2], &mut carry);
@ -597,7 +618,10 @@ impl Field for Fs {
let r5 = adc(r5, 0, &mut carry);
let r6 = mac_with_carry(r6, (self.0).0[3], (self.0).0[3], &mut carry);
let r7 = adc(r7, 0, &mut carry);
self.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7);
let mut ret = *self;
ret.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7);
ret
}
}
@ -675,7 +699,7 @@ impl Fs {
fn mul_bits<S: AsRef<[u64]>>(&self, bits: BitIterator<S>) -> Self {
let mut res = Self::zero();
for bit in bits {
res.double();
res = res.double();
if bit {
res.add_assign(self)
@ -727,8 +751,7 @@ impl SqrtField for Fs {
0x4199cec0404d0ec0,
0x39f6d3a994cebea,
]);
let mut a0 = a1;
a0.square();
let mut a0 = a1.square();
a0.mul_assign(self);
if a0 == NEGATIVE_ONE {
@ -742,8 +765,7 @@ impl SqrtField for Fs {
#[test]
fn test_neg_one() {
let mut o = Fs::one();
o.negate();
let o = Fs::one().neg();
assert_eq!(NEGATIVE_ONE, o);
}
@ -1395,16 +1417,15 @@ fn test_fs_mul_assign() {
#[test]
fn test_fr_squaring() {
let mut a = Fs(FsRepr([
let a = Fs(FsRepr([
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff,
0xe7db4ea6533afa8,
]));
assert!(a.is_valid());
a.square();
assert_eq!(
a,
a.square(),
Fs::from_repr(FsRepr([
0x12c7f55cbc52fbaa,
0xdedc98a0b5e6ce9e,
@ -1423,8 +1444,7 @@ fn test_fr_squaring() {
// Ensure that (a * a) = a^2
let a = Fs::random(&mut rng);
let mut tmp = a;
tmp.square();
let tmp = a.square();
let mut tmp2 = a;
tmp2.mul_assign(&a);
@ -1462,19 +1482,15 @@ fn test_fs_double() {
for _ in 0..1000 {
// Ensure doubling a is equivalent to adding a to itself.
let mut a = Fs::random(&mut rng);
let mut b = a;
b.add_assign(&a);
a.double();
assert_eq!(a, b);
let a = Fs::random(&mut rng);
assert_eq!(a.double(), a + a);
}
}
#[test]
fn test_fs_negate() {
fn test_fs_neg() {
{
let mut a = Fs::zero();
a.negate();
let a = Fs::zero().neg();
assert!(a.is_zero());
}
@ -1487,8 +1503,7 @@ fn test_fs_negate() {
for _ in 0..1000 {
// Ensure (a - (-a)) = 0.
let mut a = Fs::random(&mut rng);
let mut b = a;
b.negate();
let b = a.neg();
a.add_assign(&b);
assert!(a.is_zero());
@ -1534,10 +1549,8 @@ fn test_fs_sqrt() {
for _ in 0..1000 {
// Ensure sqrt(a^2) = a or -a
let a = Fs::random(&mut rng);
let mut nega = a;
nega.negate();
let mut b = a;
b.square();
let nega = a.neg();
let b = a.square();
let b = b.sqrt().unwrap();
@ -1548,10 +1561,8 @@ fn test_fs_sqrt() {
// Ensure sqrt(a)^2 = a for random a
let a = Fs::random(&mut rng);
if let Some(mut tmp) = a.sqrt() {
tmp.square();
assert_eq!(a, tmp);
if let Some(tmp) = a.sqrt() {
assert_eq!(a, tmp.square());
}
}
}

View File

@ -195,8 +195,7 @@ impl JubjubParams<Bls12> for JubjubBls12 {
impl JubjubBls12 {
pub fn new() -> Self {
let montgomery_a = Fr::from_str("40962").unwrap();
let mut montgomery_2a = montgomery_a;
montgomery_2a.double();
let montgomery_2a = montgomery_a.double();
let mut tmp_params = JubjubBls12 {
// d = -(10240/10241)

View File

@ -1,5 +1,5 @@
use ff::{BitIterator, Field, PrimeField, PrimeFieldRepr, SqrtField};
use std::ops::{AddAssign, MulAssign, SubAssign};
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
use super::{edwards, JubjubEngine, JubjubParams, PrimeOrder, Unknown};
@ -50,8 +50,7 @@ impl<E: JubjubEngine> Point<E, Unknown> {
pub fn get_for_x(x: E::Fr, sign: bool, params: &E::Params) -> Option<Self> {
// Given an x on the curve, y = sqrt(x^3 + A*x^2 + x)
let mut x2 = x;
x2.square();
let mut x2 = x.square();
let mut rhs = x2;
rhs.mul_assign(params.montgomery_a());
@ -62,7 +61,7 @@ impl<E: JubjubEngine> Point<E, Unknown> {
match rhs.sqrt() {
Some(mut y) => {
if y.into_repr().is_odd() != sign {
y.negate();
y = y.neg();
}
Some(Point {
@ -190,7 +189,7 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
pub fn negate(&self) -> Self {
let mut p = self.clone();
p.y.negate();
p.y = p.y.neg();
p
}
@ -216,24 +215,21 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
{
let mut tmp = *params.montgomery_a();
tmp.mul_assign(&self.x);
tmp.double();
tmp = tmp.double();
delta.add_assign(&tmp);
}
{
let mut tmp = self.x;
tmp.square();
let mut tmp = self.x.square();
delta.add_assign(&tmp);
tmp.double();
tmp = tmp.double();
delta.add_assign(&tmp);
}
{
let mut tmp = self.y;
tmp.double();
let tmp = self.y.double();
delta.mul_assign(&tmp.inverse().expect("y is nonzero so this must be nonzero"));
}
let mut x3 = delta;
x3.square();
let mut x3 = delta.square();
x3.sub_assign(params.montgomery_a());
x3.sub_assign(&self.x);
x3.sub_assign(&self.x);
@ -242,7 +238,7 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
y3.sub_assign(&self.x);
y3.mul_assign(&delta);
y3.add_assign(&self.y);
y3.negate();
y3 = y3.neg();
Point {
x: x3,
@ -282,8 +278,7 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
);
}
let mut x3 = delta;
x3.square();
let mut x3 = delta.square();
x3.sub_assign(params.montgomery_a());
x3.sub_assign(&self.x);
x3.sub_assign(&other.x);
@ -292,7 +287,7 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
y3.sub_assign(&self.x);
y3.mul_assign(&delta);
y3.add_assign(&self.y);
y3.negate();
y3 = y3.neg();
Point {
x: x3,

View File

@ -1,7 +1,7 @@
use super::{edwards, montgomery, JubjubEngine, JubjubParams, PrimeOrder};
use ff::{Field, LegendreSymbol, PrimeField, PrimeFieldRepr, SqrtField};
use std::ops::{AddAssign, MulAssign, SubAssign};
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
use rand_core::{RngCore, SeedableRng};
use rand_xorshift::XorShiftRng;
@ -20,11 +20,9 @@ pub fn test_suite<E: JubjubEngine>(params: &E::Params) {
}
fn is_on_mont_curve<E: JubjubEngine, P: JubjubParams<E>>(x: E::Fr, y: E::Fr, params: &P) -> bool {
let mut lhs = y;
lhs.square();
let lhs = y.square();
let mut x2 = x;
x2.square();
let x2 = x.square();
let mut x3 = x2;
x3.mul_assign(&x);
@ -42,11 +40,9 @@ fn is_on_twisted_edwards_curve<E: JubjubEngine, P: JubjubParams<E>>(
y: E::Fr,
params: &P,
) -> bool {
let mut x2 = x;
x2.square();
let x2 = x.square();
let mut y2 = y;
y2.square();
let y2 = y.square();
// -x^2 + y^2
let mut lhs = y2;
@ -310,15 +306,11 @@ fn test_back_and_forth<E: JubjubEngine>(params: &E::Params) {
fn test_jubjub_params<E: JubjubEngine>(params: &E::Params) {
// a = -1
let mut a = E::Fr::one();
a.negate();
let a = E::Fr::one().neg();
{
// Check that 2A is consistent with A
let mut tmp = *params.montgomery_a();
tmp.double();
assert_eq!(&tmp, params.montgomery_2a());
assert_eq!(&params.montgomery_a().double(), params.montgomery_2a());
}
{
@ -339,7 +331,7 @@ fn test_jubjub_params<E: JubjubEngine>(params: &E::Params) {
assert!(tmp.inverse().unwrap().legendre() == LegendreSymbol::QuadraticNonResidue);
// tmp = -d
tmp.negate();
tmp = tmp.neg();
// -d is nonsquare
assert!(tmp.legendre() == LegendreSymbol::QuadraticNonResidue);
@ -350,8 +342,7 @@ fn test_jubjub_params<E: JubjubEngine>(params: &E::Params) {
{
// Check that A^2 - 4 is nonsquare:
let mut tmp = params.montgomery_a().clone();
tmp.square();
let mut tmp = params.montgomery_a().square();
tmp.sub_assign(&E::Fr::from_str("4").unwrap());
assert!(tmp.legendre() == LegendreSymbol::QuadraticNonResidue);
}

View File

@ -2,7 +2,7 @@
use crate::jubjub::*;
use ff::{Field, PrimeField, PrimeFieldRepr};
use std::ops::AddAssign;
use std::ops::{AddAssign, Neg};
#[derive(Copy, Clone)]
pub enum Personalization {
@ -58,14 +58,14 @@ where
if a {
tmp.add_assign(&cur);
}
cur.double(); // 2^1 * cur
cur = cur.double(); // 2^1 * cur
if b {
tmp.add_assign(&cur);
}
// conditionally negate
if c {
tmp.negate();
tmp = tmp.neg();
}
acc.add_assign(&tmp);
@ -75,9 +75,7 @@ where
if chunks_remaining == 0 {
break;
} else {
cur.double(); // 2^2 * cur
cur.double(); // 2^3 * cur
cur.double(); // 2^4 * cur
cur = cur.double().double().double(); // 2^4 * cur
}
}

View File

@ -7,7 +7,7 @@ use crate::jubjub::{edwards::Point, FixedGenerators, JubjubEngine, JubjubParams,
use ff::{Field, PrimeField, PrimeFieldRepr};
use rand_core::RngCore;
use std::io::{self, Read, Write};
use std::ops::{AddAssign, MulAssign};
use std::ops::{AddAssign, MulAssign, Neg};
use crate::util::hash_to_scalar;
@ -194,7 +194,7 @@ pub fn batch_verify<'a, E: JubjubEngine, R: RngCore>(
let z = E::Fs::random(rng);
s.mul_assign(&z);
s.negate();
s = s.neg();
r = r.mul(z, params);

View File

@ -2,7 +2,7 @@
use ff::Field;
use pairing::Engine;
use std::ops::{AddAssign, MulAssign, SubAssign};
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
use bellman::{ConstraintSystem, SynthesisError};
@ -323,8 +323,7 @@ impl<E: JubjubEngine> EdwardsPoint<E> {
// Compute C = d*A*A
let c = AllocatedNum::alloc(cs.namespace(|| "C"), || {
let mut t0 = *a.get_value().get()?;
t0.square();
let mut t0 = a.get_value().get()?.square();
t0.mul_assign(params.edwards_d());
Ok(t0)
@ -340,7 +339,7 @@ impl<E: JubjubEngine> EdwardsPoint<E> {
// Compute x3 = (2.A) / (1 + C)
let x3 = AllocatedNum::alloc(cs.namespace(|| "x3"), || {
let mut t0 = *a.get_value().get()?;
t0.double();
t0 = t0.double();
let mut t1 = E::Fr::one();
t1.add_assign(c.get_value().get()?);
@ -366,8 +365,7 @@ impl<E: JubjubEngine> EdwardsPoint<E> {
// Compute y3 = (U - 2.A) / (1 - C)
let y3 = AllocatedNum::alloc(cs.namespace(|| "y3"), || {
let mut t0 = *a.get_value().get()?;
t0.double();
t0.negate();
t0 = t0.double().neg();
t0.add_assign(t.get_value().get()?);
let mut t1 = E::Fr::one();
@ -613,8 +611,7 @@ impl<E: JubjubEngine> MontgomeryPoint<E> {
// Compute x'' = lambda^2 - A - x - x'
let xprime = AllocatedNum::alloc(cs.namespace(|| "xprime"), || {
let mut t0 = *lambda.get_value().get()?;
t0.square();
let mut t0 = lambda.get_value().get()?.square();
t0.sub_assign(params.montgomery_a());
t0.sub_assign(self.x.get_value().get()?);
t0.sub_assign(other.x.get_value().get()?);
@ -642,7 +639,7 @@ impl<E: JubjubEngine> MontgomeryPoint<E> {
t0.sub_assign(self.x.get_value().get()?);
t0.mul_assign(lambda.get_value().get()?);
t0.add_assign(self.y.get_value().get()?);
t0.negate();
t0 = t0.neg();
Ok(t0)
})?;

View File

@ -245,7 +245,7 @@ impl<'a, E: JubjubEngine> Circuit<E> for Spend<'a, E> {
let mut coeff = E::Fr::one();
for bit in &value_bits {
value_num = value_num.add_bool_with_coeff(CS::one(), bit, coeff);
coeff.double();
coeff = coeff.double();
}
// Place the value in the note

View File

@ -268,7 +268,7 @@ impl NoteValue {
let mut coeff = E::Fr::one();
for b in &self.bits {
tmp = tmp + (coeff, b.get_variable());
coeff.double();
coeff = coeff.double();
}
tmp

View File

@ -5,7 +5,7 @@ use bellman::{
use ff::Field;
use pairing::bls12_381::{Bls12, Fr};
use rand_core::OsRng;
use std::ops::AddAssign;
use std::ops::{AddAssign, Neg};
use zcash_primitives::{
jubjub::{edwards, fs::Fs, FixedGenerators, JubjubBls12, Unknown},
primitives::{Diversifier, Note, PaymentAddress, ProofGenerationKey, ValueCommitment},
@ -202,8 +202,7 @@ impl SaplingProvingContext {
// Accumulate the value commitment randomness in the context
{
let mut tmp = rcv;
tmp.negate(); // Outputs subtract from the total.
let mut tmp = rcv.neg(); // Outputs subtract from the total.
tmp.add_assign(&self.bsk);
// Update the context