//! This module implements arithmetic over the quadratic extension field Fp2. use core::fmt; use core::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign}; use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption}; use crate::fp::Fp; #[derive(Copy, Clone)] pub struct Fp2 { pub c0: Fp, pub c1: Fp, } impl fmt::Debug for Fp2 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{:?} + {:?}*u", self.c0, self.c1) } } impl Default for Fp2 { fn default() -> Self { Fp2::zero() } } impl From for Fp2 { fn from(f: Fp) -> Fp2 { Fp2 { c0: f, c1: Fp::zero(), } } } impl ConstantTimeEq for Fp2 { fn ct_eq(&self, other: &Self) -> Choice { self.c0.ct_eq(&other.c0) & self.c1.ct_eq(&other.c1) } } impl Eq for Fp2 {} impl PartialEq for Fp2 { #[inline] fn eq(&self, other: &Self) -> bool { self.ct_eq(other).unwrap_u8() == 1 } } impl ConditionallySelectable for Fp2 { fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self { Fp2 { c0: Fp::conditional_select(&a.c0, &b.c0, choice), c1: Fp::conditional_select(&a.c1, &b.c1, choice), } } } impl<'a> Neg for &'a Fp2 { type Output = Fp2; #[inline] fn neg(self) -> Fp2 { self.neg() } } impl Neg for Fp2 { type Output = Fp2; #[inline] fn neg(self) -> Fp2 { -&self } } impl<'a, 'b> Sub<&'b Fp2> for &'a Fp2 { type Output = Fp2; #[inline] fn sub(self, rhs: &'b Fp2) -> Fp2 { self.sub(rhs) } } impl<'a, 'b> Add<&'b Fp2> for &'a Fp2 { type Output = Fp2; #[inline] fn add(self, rhs: &'b Fp2) -> Fp2 { self.add(rhs) } } impl<'a, 'b> Mul<&'b Fp2> for &'a Fp2 { type Output = Fp2; #[inline] fn mul(self, rhs: &'b Fp2) -> Fp2 { self.mul(rhs) } } impl_binops_additive!(Fp2, Fp2); impl_binops_multiplicative!(Fp2, Fp2); impl Fp2 { #[inline] pub const fn zero() -> Fp2 { Fp2 { c0: Fp::zero(), c1: Fp::zero(), } } #[inline] pub const fn one() -> Fp2 { Fp2 { c0: Fp::one(), c1: Fp::zero(), } } pub fn is_zero(&self) -> Choice { self.c0.is_zero() & self.c1.is_zero() } /// Raises this element to p. #[inline(always)] pub fn frobenius_map(&self) -> Self { // This is always just a conjugation. If you're curious why, here's // an article about it: https://alicebob.cryptoland.net/the-frobenius-endomorphism-with-finite-fields/ self.conjugate() } #[inline(always)] pub fn conjugate(&self) -> Self { Fp2 { c0: self.c0, c1: -self.c1, } } #[inline(always)] pub fn mul_by_nonresidue(&self) -> Fp2 { // Multiply a + bu by u + 1, getting // au + a + bu^2 + bu // and because u^2 = -1, we get // (a - b) + (a + b)u Fp2 { c0: self.c0 - self.c1, c1: self.c0 + self.c1, } } /// Returns whether or not this element is strictly lexicographically /// larger than its negation. #[inline] pub fn lexicographically_largest(&self) -> Choice { // If this element's c1 coefficient is lexicographically largest // then it is lexicographically largest. Otherwise, in the event // the c1 coefficient is zero and the c0 coefficient is // lexicographically largest, then this element is lexicographically // largest. self.c1.lexicographically_largest() | (self.c1.is_zero() & self.c0.lexicographically_largest()) } pub const fn square(&self) -> Fp2 { // Complex squaring: // // v0 = c0 * c1 // c0' = (c0 + c1) * (c0 + \beta*c1) - v0 - \beta * v0 // c1' = 2 * v0 // // In BLS12-381's F_{p^2}, our \beta is -1 so we // can modify this formula: // // c0' = (c0 + c1) * (c0 - c1) // c1' = 2 * c0 * c1 let a = (&self.c0).add(&self.c1); let b = (&self.c0).sub(&self.c1); let c = (&self.c0).add(&self.c0); Fp2 { c0: (&a).mul(&b), c1: (&c).mul(&self.c1), } } pub const fn mul(&self, rhs: &Fp2) -> Fp2 { // Karatsuba multiplication: // // v0 = a0 * b0 // v1 = a1 * b1 // c0 = v0 + \beta * v1 // c1 = (a0 + a1) * (b0 + b1) - v0 - v1 // // In BLS12-381's F_{p^2}, our \beta is -1 so we // can modify this formula. (Also, since we always // subtract v1, we can compute v1 = -a1 * b1.) // // v0 = a0 * b0 // v1 = (-a1) * b1 // c0 = v0 + v1 // c1 = (a0 + a1) * (b0 + b1) - v0 + v1 let v0 = (&self.c0).mul(&rhs.c0); let v1 = (&(&self.c1).neg()).mul(&rhs.c1); let c0 = (&v0).add(&v1); let c1 = (&(&self.c0).add(&self.c1)).mul(&(&rhs.c0).add(&rhs.c1)); let c1 = (&c1).sub(&v0); let c1 = (&c1).add(&v1); Fp2 { c0, c1 } } pub const fn add(&self, rhs: &Fp2) -> Fp2 { Fp2 { c0: (&self.c0).add(&rhs.c0), c1: (&self.c1).add(&rhs.c1), } } pub const fn sub(&self, rhs: &Fp2) -> Fp2 { Fp2 { c0: (&self.c0).sub(&rhs.c0), c1: (&self.c1).sub(&rhs.c1), } } pub const fn neg(&self) -> Fp2 { Fp2 { c0: (&self.c0).neg(), c1: (&self.c1).neg(), } } pub fn sqrt(&self) -> CtOption { // Algorithm 9, https://eprint.iacr.org/2012/685.pdf // with constant time modifications. CtOption::new(Fp2::zero(), self.is_zero()).or_else(|| { // a1 = self^((p - 3) / 4) let a1 = self.pow_vartime(&[ 0xee7f_bfff_ffff_eaaa, 0x07aa_ffff_ac54_ffff, 0xd9cc_34a8_3dac_3d89, 0xd91d_d2e1_3ce1_44af, 0x92c6_e9ed_90d2_eb35, 0x0680_447a_8e5f_f9a6, ]); // alpha = a1^2 * self = self^((p - 3) / 2 + 1) = self^((p - 1) / 2) let alpha = a1.square() * self; // x0 = self^((p + 1) / 4) let x0 = a1 * self; // In the event that alpha = -1, the element is order p - 1 and so // we're just trying to get the square of an element of the subfield // Fp. This is given by x0 * u, since u = sqrt(-1). Since the element // x0 = a + bu has b = 0, the solution is therefore au. CtOption::new( Fp2 { c0: -x0.c1, c1: x0.c0, }, alpha.ct_eq(&(&Fp2::one()).neg()), ) // Otherwise, the correct solution is (1 + alpha)^((q - 1) // 2) * x0 .or_else(|| { CtOption::new( (alpha + Fp2::one()).pow_vartime(&[ 0xdcff_7fff_ffff_d555, 0x0f55_ffff_58a9_ffff, 0xb398_6950_7b58_7b12, 0xb23b_a5c2_79c2_895f, 0x258d_d3db_21a5_d66b, 0x0d00_88f5_1cbf_f34d, ]) * x0, Choice::from(1), ) }) // Only return the result if it's really the square root (and so // self is actually quadratic nonresidue) .and_then(|sqrt| CtOption::new(sqrt, sqrt.square().ct_eq(self))) }) } /// Computes the multiplicative inverse of this field /// element, returning None in the case that this element /// is zero. pub fn invert(&self) -> CtOption { // We wish to find the multiplicative inverse of a nonzero // element a + bu in Fp2. We leverage an identity // // (a + bu)(a - bu) = a^2 + b^2 // // which holds because u^2 = -1. This can be rewritten as // // (a + bu)(a - bu)/(a^2 + b^2) = 1 // // because a^2 + b^2 = 0 has no nonzero solutions for (a, b). // This gives that (a - bu)/(a^2 + b^2) is the inverse // of (a + bu). Importantly, this can be computing using // only a single inversion in Fp. (self.c0.square() + self.c1.square()).invert().map(|t| Fp2 { c0: self.c0 * t, c1: self.c1 * -t, }) } /// Although this is labeled "vartime", it is only /// variable time with respect to the exponent. It /// is also not exposed in the public API. pub fn pow_vartime(&self, by: &[u64; 6]) -> Self { let mut res = Self::one(); for e in by.iter().rev() { for i in (0..64).rev() { res = res.square(); if ((*e >> i) & 1) == 1 { res *= self; } } } res } } #[test] fn test_conditional_selection() { let a = Fp2 { c0: Fp::from_raw_unchecked([1, 2, 3, 4, 5, 6]), c1: Fp::from_raw_unchecked([7, 8, 9, 10, 11, 12]), }; let b = Fp2 { c0: Fp::from_raw_unchecked([13, 14, 15, 16, 17, 18]), c1: Fp::from_raw_unchecked([19, 20, 21, 22, 23, 24]), }; assert_eq!( ConditionallySelectable::conditional_select(&a, &b, Choice::from(0u8)), a ); assert_eq!( ConditionallySelectable::conditional_select(&a, &b, Choice::from(1u8)), b ); } #[test] fn test_equality() { fn is_equal(a: &Fp2, b: &Fp2) -> bool { let eq = a == b; let ct_eq = a.ct_eq(&b); assert_eq!(eq, ct_eq.unwrap_u8() == 1); eq } assert!(is_equal( &Fp2 { c0: Fp::from_raw_unchecked([1, 2, 3, 4, 5, 6]), c1: Fp::from_raw_unchecked([7, 8, 9, 10, 11, 12]), }, &Fp2 { c0: Fp::from_raw_unchecked([1, 2, 3, 4, 5, 6]), c1: Fp::from_raw_unchecked([7, 8, 9, 10, 11, 12]), } )); assert!(!is_equal( &Fp2 { c0: Fp::from_raw_unchecked([2, 2, 3, 4, 5, 6]), c1: Fp::from_raw_unchecked([7, 8, 9, 10, 11, 12]), }, &Fp2 { c0: Fp::from_raw_unchecked([1, 2, 3, 4, 5, 6]), c1: Fp::from_raw_unchecked([7, 8, 9, 10, 11, 12]), } )); assert!(!is_equal( &Fp2 { c0: Fp::from_raw_unchecked([1, 2, 3, 4, 5, 6]), c1: Fp::from_raw_unchecked([2, 8, 9, 10, 11, 12]), }, &Fp2 { c0: Fp::from_raw_unchecked([1, 2, 3, 4, 5, 6]), c1: Fp::from_raw_unchecked([7, 8, 9, 10, 11, 12]), } )); } #[test] fn test_squaring() { let a = Fp2 { c0: Fp::from_raw_unchecked([ 0xc9a2_1831_63ee_70d4, 0xbc37_70a7_196b_5c91, 0xa247_f8c1_304c_5f44, 0xb01f_c2a3_726c_80b5, 0xe1d2_93e5_bbd9_19c9, 0x04b7_8e80_020e_f2ca, ]), c1: Fp::from_raw_unchecked([ 0x952e_a446_0462_618f, 0x238d_5edd_f025_c62f, 0xf6c9_4b01_2ea9_2e72, 0x03ce_24ea_c1c9_3808, 0x0559_50f9_45da_483c, 0x010a_768d_0df4_eabc, ]), }; let b = Fp2 { c0: Fp::from_raw_unchecked([ 0xa1e0_9175_a4d2_c1fe, 0x8b33_acfc_204e_ff12, 0xe244_15a1_1b45_6e42, 0x61d9_96b1_b6ee_1936, 0x1164_dbe8_667c_853c, 0x0788_557a_cc7d_9c79, ]), c1: Fp::from_raw_unchecked([ 0xda6a_87cc_6f48_fa36, 0x0fc7_b488_277c_1903, 0x9445_ac4a_dc44_8187, 0x0261_6d5b_c909_9209, 0xdbed_4677_2db5_8d48, 0x11b9_4d50_76c7_b7b1, ]), }; assert_eq!(a.square(), b); } #[test] fn test_multiplication() { let a = Fp2 { c0: Fp::from_raw_unchecked([ 0xc9a2_1831_63ee_70d4, 0xbc37_70a7_196b_5c91, 0xa247_f8c1_304c_5f44, 0xb01f_c2a3_726c_80b5, 0xe1d2_93e5_bbd9_19c9, 0x04b7_8e80_020e_f2ca, ]), c1: Fp::from_raw_unchecked([ 0x952e_a446_0462_618f, 0x238d_5edd_f025_c62f, 0xf6c9_4b01_2ea9_2e72, 0x03ce_24ea_c1c9_3808, 0x0559_50f9_45da_483c, 0x010a_768d_0df4_eabc, ]), }; let b = Fp2 { c0: Fp::from_raw_unchecked([ 0xa1e0_9175_a4d2_c1fe, 0x8b33_acfc_204e_ff12, 0xe244_15a1_1b45_6e42, 0x61d9_96b1_b6ee_1936, 0x1164_dbe8_667c_853c, 0x0788_557a_cc7d_9c79, ]), c1: Fp::from_raw_unchecked([ 0xda6a_87cc_6f48_fa36, 0x0fc7_b488_277c_1903, 0x9445_ac4a_dc44_8187, 0x0261_6d5b_c909_9209, 0xdbed_4677_2db5_8d48, 0x11b9_4d50_76c7_b7b1, ]), }; let c = Fp2 { c0: Fp::from_raw_unchecked([ 0xf597_483e_27b4_e0f7, 0x610f_badf_811d_ae5f, 0x8432_af91_7714_327a, 0x6a9a_9603_cf88_f09e, 0xf05a_7bf8_bad0_eb01, 0x0954_9131_c003_ffae, ]), c1: Fp::from_raw_unchecked([ 0x963b_02d0_f93d_37cd, 0xc95c_e1cd_b30a_73d4, 0x3087_25fa_3126_f9b8, 0x56da_3c16_7fab_0d50, 0x6b50_86b5_f4b6_d6af, 0x09c3_9f06_2f18_e9f2, ]), }; assert_eq!(a * b, c); } #[test] fn test_addition() { let a = Fp2 { c0: Fp::from_raw_unchecked([ 0xc9a2_1831_63ee_70d4, 0xbc37_70a7_196b_5c91, 0xa247_f8c1_304c_5f44, 0xb01f_c2a3_726c_80b5, 0xe1d2_93e5_bbd9_19c9, 0x04b7_8e80_020e_f2ca, ]), c1: Fp::from_raw_unchecked([ 0x952e_a446_0462_618f, 0x238d_5edd_f025_c62f, 0xf6c9_4b01_2ea9_2e72, 0x03ce_24ea_c1c9_3808, 0x0559_50f9_45da_483c, 0x010a_768d_0df4_eabc, ]), }; let b = Fp2 { c0: Fp::from_raw_unchecked([ 0xa1e0_9175_a4d2_c1fe, 0x8b33_acfc_204e_ff12, 0xe244_15a1_1b45_6e42, 0x61d9_96b1_b6ee_1936, 0x1164_dbe8_667c_853c, 0x0788_557a_cc7d_9c79, ]), c1: Fp::from_raw_unchecked([ 0xda6a_87cc_6f48_fa36, 0x0fc7_b488_277c_1903, 0x9445_ac4a_dc44_8187, 0x0261_6d5b_c909_9209, 0xdbed_4677_2db5_8d48, 0x11b9_4d50_76c7_b7b1, ]), }; let c = Fp2 { c0: Fp::from_raw_unchecked([ 0x6b82_a9a7_08c1_32d2, 0x476b_1da3_39ba_5ba4, 0x848c_0e62_4b91_cd87, 0x11f9_5955_295a_99ec, 0xf337_6fce_2255_9f06, 0x0c3f_e3fa_ce8c_8f43, ]), c1: Fp::from_raw_unchecked([ 0x6f99_2c12_73ab_5bc5, 0x3355_1366_17a1_df33, 0x8b0e_f74c_0aed_aff9, 0x062f_9246_8ad2_ca12, 0xe146_9770_738f_d584, 0x12c3_c3dd_84bc_a26d, ]), }; assert_eq!(a + b, c); } #[test] fn test_subtraction() { let a = Fp2 { c0: Fp::from_raw_unchecked([ 0xc9a2_1831_63ee_70d4, 0xbc37_70a7_196b_5c91, 0xa247_f8c1_304c_5f44, 0xb01f_c2a3_726c_80b5, 0xe1d2_93e5_bbd9_19c9, 0x04b7_8e80_020e_f2ca, ]), c1: Fp::from_raw_unchecked([ 0x952e_a446_0462_618f, 0x238d_5edd_f025_c62f, 0xf6c9_4b01_2ea9_2e72, 0x03ce_24ea_c1c9_3808, 0x0559_50f9_45da_483c, 0x010a_768d_0df4_eabc, ]), }; let b = Fp2 { c0: Fp::from_raw_unchecked([ 0xa1e0_9175_a4d2_c1fe, 0x8b33_acfc_204e_ff12, 0xe244_15a1_1b45_6e42, 0x61d9_96b1_b6ee_1936, 0x1164_dbe8_667c_853c, 0x0788_557a_cc7d_9c79, ]), c1: Fp::from_raw_unchecked([ 0xda6a_87cc_6f48_fa36, 0x0fc7_b488_277c_1903, 0x9445_ac4a_dc44_8187, 0x0261_6d5b_c909_9209, 0xdbed_4677_2db5_8d48, 0x11b9_4d50_76c7_b7b1, ]), }; let c = Fp2 { c0: Fp::from_raw_unchecked([ 0xe1c0_86bb_bf1b_5981, 0x4faf_c3a9_aa70_5d7e, 0x2734_b5c1_0bb7_e726, 0xb2bd_7776_af03_7a3e, 0x1b89_5fb3_98a8_4164, 0x1730_4aef_6f11_3cec, ]), c1: Fp::from_raw_unchecked([ 0x74c3_1c79_9519_1204, 0x3271_aa54_79fd_ad2b, 0xc9b4_7157_4915_a30f, 0x65e4_0313_ec44_b8be, 0x7487_b238_5b70_67cb, 0x0952_3b26_d0ad_19a4, ]), }; assert_eq!(a - b, c); } #[test] fn test_negation() { let a = Fp2 { c0: Fp::from_raw_unchecked([ 0xc9a2_1831_63ee_70d4, 0xbc37_70a7_196b_5c91, 0xa247_f8c1_304c_5f44, 0xb01f_c2a3_726c_80b5, 0xe1d2_93e5_bbd9_19c9, 0x04b7_8e80_020e_f2ca, ]), c1: Fp::from_raw_unchecked([ 0x952e_a446_0462_618f, 0x238d_5edd_f025_c62f, 0xf6c9_4b01_2ea9_2e72, 0x03ce_24ea_c1c9_3808, 0x0559_50f9_45da_483c, 0x010a_768d_0df4_eabc, ]), }; let b = Fp2 { c0: Fp::from_raw_unchecked([ 0xf05c_e7ce_9c11_39d7, 0x6274_8f57_97e8_a36d, 0xc4e8_d9df_c664_96df, 0xb457_88e1_8118_9209, 0x6949_13d0_8772_930d, 0x1549_836a_3770_f3cf, ]), c1: Fp::from_raw_unchecked([ 0x24d0_5bb9_fb9d_491c, 0xfb1e_a120_c12e_39d0, 0x7067_879f_c807_c7b1, 0x60a9_269a_31bb_dab6, 0x45c2_56bc_fd71_649b, 0x18f6_9b5d_2b8a_fbde, ]), }; assert_eq!(-a, b); } #[test] fn test_sqrt() { // a = 1488924004771393321054797166853618474668089414631333405711627789629391903630694737978065425271543178763948256226639*u + 784063022264861764559335808165825052288770346101304131934508881646553551234697082295473567906267937225174620141295 let a = Fp2 { c0: Fp::from_raw_unchecked([ 0x2bee_d146_27d7_f9e9, 0xb661_4e06_660e_5dce, 0x06c4_cc7c_2f91_d42c, 0x996d_7847_4b7a_63cc, 0xebae_bc4c_820d_574e, 0x1886_5e12_d93f_d845, ]), c1: Fp::from_raw_unchecked([ 0x7d82_8664_baf4_f566, 0xd17e_6639_96ec_7339, 0x679e_ad55_cb40_78d0, 0xfe3b_2260_e001_ec28, 0x3059_93d0_43d9_1b68, 0x0626_f03c_0489_b72d, ]), }; assert_eq!(a.sqrt().unwrap().square(), a); // b = 5, which is a generator of the p - 1 order // multiplicative subgroup let b = Fp2 { c0: Fp::from_raw_unchecked([ 0x6631_0000_0010_5545, 0x2114_0040_0eec_000d, 0x3fa7_af30_c820_e316, 0xc52a_8b8d_6387_695d, 0x9fb4_e61d_1e83_eac5, 0x005c_b922_afe8_4dc7, ]), c1: Fp::zero(), }; assert_eq!(b.sqrt().unwrap().square(), b); // c = 25, which is a generator of the (p - 1) / 2 order // multiplicative subgroup let c = Fp2 { c0: Fp::from_raw_unchecked([ 0x44f6_0000_0051_ffae, 0x86b8_0141_9948_0043, 0xd715_9952_f1f3_794a, 0x755d_6e3d_fe1f_fc12, 0xd36c_d6db_5547_e905, 0x02f8_c8ec_bf18_67bb, ]), c1: Fp::zero(), }; assert_eq!(c.sqrt().unwrap().square(), c); // 2155129644831861015726826462986972654175647013268275306775721078997042729172900466542651176384766902407257452753362*u + 2796889544896299244102912275102369318775038861758288697415827248356648685135290329705805931514906495247464901062529 // is nonsquare. assert!(bool::from( Fp2 { c0: Fp::from_raw_unchecked([ 0xc5fa_1bc8_fd00_d7f6, 0x3830_ca45_4606_003b, 0x2b28_7f11_04b1_02da, 0xa7fb_30f2_8230_f23e, 0x339c_db9e_e953_dbf0, 0x0d78_ec51_d989_fc57, ]), c1: Fp::from_raw_unchecked([ 0x27ec_4898_cf87_f613, 0x9de1_394e_1abb_05a5, 0x0947_f85d_c170_fc14, 0x586f_bc69_6b61_14b7, 0x2b34_75a4_077d_7169, 0x13e1_c895_cc4b_6c22, ]) } .sqrt() .is_none() )); } #[test] fn test_inversion() { let a = Fp2 { c0: Fp::from_raw_unchecked([ 0x1128_ecad_6754_9455, 0x9e7a_1cff_3a4e_a1a8, 0xeb20_8d51_e08b_cf27, 0xe98a_d408_11f5_fc2b, 0x736c_3a59_232d_511d, 0x10ac_d42d_29cf_cbb6, ]), c1: Fp::from_raw_unchecked([ 0xd328_e37c_c2f5_8d41, 0x948d_f085_8a60_5869, 0x6032_f9d5_6f93_a573, 0x2be4_83ef_3fff_dc87, 0x30ef_61f8_8f48_3c2a, 0x1333_f55a_3572_5be0, ]), }; let b = Fp2 { c0: Fp::from_raw_unchecked([ 0x0581_a133_3d4f_48a6, 0x5824_2f6e_f074_8500, 0x0292_c955_349e_6da5, 0xba37_721d_dd95_fcd0, 0x70d1_6790_3aa5_dfc5, 0x1189_5e11_8b58_a9d5, ]), c1: Fp::from_raw_unchecked([ 0x0eda_09d2_d7a8_5d17, 0x8808_e137_a7d1_a2cf, 0x43ae_2625_c1ff_21db, 0xf85a_c9fd_f7a7_4c64, 0x8fcc_dda5_b8da_9738, 0x08e8_4f0c_b32c_d17d, ]), }; assert_eq!(a.invert().unwrap(), b); assert!(Fp2::zero().invert().is_none().unwrap_u8() == 1); } #[test] fn test_lexicographic_largest() { assert!(!bool::from(Fp2::zero().lexicographically_largest())); assert!(!bool::from(Fp2::one().lexicographically_largest())); assert!(bool::from( Fp2 { c0: Fp::from_raw_unchecked([ 0x1128_ecad_6754_9455, 0x9e7a_1cff_3a4e_a1a8, 0xeb20_8d51_e08b_cf27, 0xe98a_d408_11f5_fc2b, 0x736c_3a59_232d_511d, 0x10ac_d42d_29cf_cbb6, ]), c1: Fp::from_raw_unchecked([ 0xd328_e37c_c2f5_8d41, 0x948d_f085_8a60_5869, 0x6032_f9d5_6f93_a573, 0x2be4_83ef_3fff_dc87, 0x30ef_61f8_8f48_3c2a, 0x1333_f55a_3572_5be0, ]), } .lexicographically_largest() )); assert!(!bool::from( Fp2 { c0: -Fp::from_raw_unchecked([ 0x1128_ecad_6754_9455, 0x9e7a_1cff_3a4e_a1a8, 0xeb20_8d51_e08b_cf27, 0xe98a_d408_11f5_fc2b, 0x736c_3a59_232d_511d, 0x10ac_d42d_29cf_cbb6, ]), c1: -Fp::from_raw_unchecked([ 0xd328_e37c_c2f5_8d41, 0x948d_f085_8a60_5869, 0x6032_f9d5_6f93_a573, 0x2be4_83ef_3fff_dc87, 0x30ef_61f8_8f48_3c2a, 0x1333_f55a_3572_5be0, ]), } .lexicographically_largest() )); assert!(!bool::from( Fp2 { c0: Fp::from_raw_unchecked([ 0x1128_ecad_6754_9455, 0x9e7a_1cff_3a4e_a1a8, 0xeb20_8d51_e08b_cf27, 0xe98a_d408_11f5_fc2b, 0x736c_3a59_232d_511d, 0x10ac_d42d_29cf_cbb6, ]), c1: Fp::zero(), } .lexicographically_largest() )); assert!(bool::from( Fp2 { c0: -Fp::from_raw_unchecked([ 0x1128_ecad_6754_9455, 0x9e7a_1cff_3a4e_a1a8, 0xeb20_8d51_e08b_cf27, 0xe98a_d408_11f5_fc2b, 0x736c_3a59_232d_511d, 0x10ac_d42d_29cf_cbb6, ]), c1: Fp::zero(), } .lexicographically_largest() )); }