use byteorder::{ByteOrder, LittleEndian}; use ff::{ adc, mac_with_carry, sbb, BitIterator, Field, LegendreSymbol::{self, *}, PrimeField, PrimeFieldDecodingError, PrimeFieldRepr, SqrtField, }; use rand_core::RngCore; use std::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign}; use super::ToUniform; // s = 6554484396890773809930967563523245729705921265872317281365359162392183254199 const MODULUS: FsRepr = FsRepr([ 0xd0970e5ed6f72cb7, 0xa6682093ccc81082, 0x6673b0101343b00, 0xe7db4ea6533afa9, ]); // The number of bits needed to represent the modulus. const MODULUS_BITS: u32 = 252; // The number of bits that must be shaved from the beginning of // the representation when randomly sampling. const REPR_SHAVE_BITS: u32 = 4; // R = 2**256 % s const R: FsRepr = FsRepr([ 0x25f80bb3b99607d9, 0xf315d62f66b6e750, 0x932514eeeb8814f4, 0x9a6fc6f479155c6, ]); // R2 = R^2 % s const R2: FsRepr = FsRepr([ 0x67719aa495e57731, 0x51b0cef09ce3fc26, 0x69dab7fac026e9a5, 0x4f6547b8d127688, ]); // INV = -(s^{-1} mod 2^64) mod s const INV: u64 = 0x1ba3a358ef788ef9; // GENERATOR = 6 (multiplicative generator of r-1 order, that is also quadratic nonresidue) const GENERATOR: FsRepr = FsRepr([ 0x720b1b19d49ea8f1, 0xbf4aa36101f13a58, 0x5fa8cc968193ccbb, 0xe70cbdc7dccf3ac, ]); // 2^S * t = MODULUS - 1 with t odd const S: u32 = 1; // 2^S root of unity computed by GENERATOR^t const ROOT_OF_UNITY: FsRepr = FsRepr([ 0xaa9f02ab1d6124de, 0xb3524a6466112932, 0x7342261215ac260b, 0x4d6b87b1da259e2, ]); // -((2**256) mod s) mod s const NEGATIVE_ONE: Fs = Fs(FsRepr([ 0xaa9f02ab1d6124de, 0xb3524a6466112932, 0x7342261215ac260b, 0x4d6b87b1da259e2, ])); /// This is the underlying representation of an element of `Fs`. #[derive(Copy, Clone, PartialEq, Eq, Default, Debug)] pub struct FsRepr(pub [u64; 4]); impl ::std::fmt::Display for FsRepr { fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result { write!(f, "0x")?; for i in self.0.iter().rev() { write!(f, "{:016x}", *i)?; } Ok(()) } } impl AsRef<[u64]> for FsRepr { #[inline(always)] fn as_ref(&self) -> &[u64] { &self.0 } } impl AsMut<[u64]> for FsRepr { #[inline(always)] fn as_mut(&mut self) -> &mut [u64] { &mut self.0 } } impl From for FsRepr { #[inline(always)] fn from(val: u64) -> FsRepr { let mut repr = Self::default(); repr.0[0] = val; repr } } impl Ord for FsRepr { #[inline(always)] fn cmp(&self, other: &FsRepr) -> ::std::cmp::Ordering { for (a, b) in self.0.iter().rev().zip(other.0.iter().rev()) { if a < b { return ::std::cmp::Ordering::Less; } else if a > b { return ::std::cmp::Ordering::Greater; } } ::std::cmp::Ordering::Equal } } impl PartialOrd for FsRepr { #[inline(always)] fn partial_cmp(&self, other: &FsRepr) -> Option<::std::cmp::Ordering> { Some(self.cmp(other)) } } impl PrimeFieldRepr for FsRepr { #[inline(always)] fn is_odd(&self) -> bool { self.0[0] & 1 == 1 } #[inline(always)] fn is_even(&self) -> bool { !self.is_odd() } #[inline(always)] fn is_zero(&self) -> bool { self.0.iter().all(|&e| e == 0) } #[inline(always)] fn shr(&mut self, mut n: u32) { if n >= 64 * 4 { *self = Self::from(0); return; } while n >= 64 { let mut t = 0; for i in self.0.iter_mut().rev() { ::std::mem::swap(&mut t, i); } n -= 64; } if n > 0 { let mut t = 0; for i in self.0.iter_mut().rev() { let t2 = *i << (64 - n); *i >>= n; *i |= t; t = t2; } } } #[inline(always)] fn div2(&mut self) { let mut t = 0; for i in self.0.iter_mut().rev() { let t2 = *i << 63; *i >>= 1; *i |= t; t = t2; } } #[inline(always)] fn mul2(&mut self) { let mut last = 0; for i in &mut self.0 { let tmp = *i >> 63; *i <<= 1; *i |= last; last = tmp; } } #[inline(always)] fn shl(&mut self, mut n: u32) { if n >= 64 * 4 { *self = Self::from(0); return; } while n >= 64 { let mut t = 0; for i in &mut self.0 { ::std::mem::swap(&mut t, i); } n -= 64; } if n > 0 { let mut t = 0; for i in &mut self.0 { let t2 = *i >> (64 - n); *i <<= n; *i |= t; t = t2; } } } #[inline(always)] fn num_bits(&self) -> u32 { let mut ret = (4 as u32) * 64; for i in self.0.iter().rev() { let leading = i.leading_zeros(); ret -= leading; if leading != 64 { break; } } ret } #[inline(always)] fn add_nocarry(&mut self, other: &FsRepr) { let mut carry = 0; for (a, b) in self.0.iter_mut().zip(other.0.iter()) { *a = adc(*a, *b, &mut carry); } } #[inline(always)] fn sub_noborrow(&mut self, other: &FsRepr) { let mut borrow = 0; for (a, b) in self.0.iter_mut().zip(other.0.iter()) { *a = sbb(*a, *b, &mut borrow); } } } /// This is an element of the scalar field of the Jubjub curve. #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct Fs(FsRepr); impl ::std::fmt::Display for Fs { fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result { write!(f, "Fs({})", self.into_repr()) } } impl From for FsRepr { fn from(e: Fs) -> FsRepr { e.into_repr() } } impl Neg for Fs { type Output = Self; #[inline] fn neg(mut self) -> Self { if !self.is_zero() { let mut tmp = MODULUS; tmp.sub_noborrow(&self.0); self.0 = tmp; } self } } impl<'r> Add<&'r Fs> for Fs { type Output = Self; #[inline] fn add(self, other: &Self) -> Self { let mut ret = self; ret.add_assign(other); ret } } impl Add for Fs { type Output = Self; #[inline] fn add(self, other: Self) -> Self { self + &other } } impl<'r> AddAssign<&'r Fs> for Fs { #[inline] fn add_assign(&mut self, other: &Self) { // This cannot exceed the backing capacity. self.0.add_nocarry(&other.0); // However, it may need to be reduced. self.reduce(); } } impl AddAssign for Fs { #[inline] fn add_assign(&mut self, other: Self) { self.add_assign(&other); } } impl<'r> Sub<&'r Fs> for Fs { type Output = Self; #[inline] fn sub(self, other: &Self) -> Self { let mut ret = self; ret.sub_assign(other); ret } } impl Sub for Fs { type Output = Self; #[inline] fn sub(self, other: Self) -> Self { self - &other } } impl<'r> SubAssign<&'r Fs> for Fs { #[inline] fn sub_assign(&mut self, other: &Self) { // If `other` is larger than `self`, we'll need to add the modulus to self first. if other.0 > self.0 { self.0.add_nocarry(&MODULUS); } self.0.sub_noborrow(&other.0); } } impl SubAssign for Fs { #[inline] fn sub_assign(&mut self, other: Self) { self.sub_assign(&other); } } impl<'r> Mul<&'r Fs> for Fs { type Output = Self; #[inline] fn mul(self, other: &Self) -> Self { let mut ret = self; ret.mul_assign(other); ret } } impl Mul for Fs { type Output = Self; #[inline] fn mul(self, other: Self) -> Self { self * &other } } impl<'r> MulAssign<&'r Fs> for Fs { #[inline] fn mul_assign(&mut self, other: &Self) { let mut carry = 0; let r0 = mac_with_carry(0, (self.0).0[0], (other.0).0[0], &mut carry); let r1 = mac_with_carry(0, (self.0).0[0], (other.0).0[1], &mut carry); let r2 = mac_with_carry(0, (self.0).0[0], (other.0).0[2], &mut carry); let r3 = mac_with_carry(0, (self.0).0[0], (other.0).0[3], &mut carry); let r4 = carry; let mut carry = 0; let r1 = mac_with_carry(r1, (self.0).0[1], (other.0).0[0], &mut carry); let r2 = mac_with_carry(r2, (self.0).0[1], (other.0).0[1], &mut carry); let r3 = mac_with_carry(r3, (self.0).0[1], (other.0).0[2], &mut carry); let r4 = mac_with_carry(r4, (self.0).0[1], (other.0).0[3], &mut carry); let r5 = carry; let mut carry = 0; let r2 = mac_with_carry(r2, (self.0).0[2], (other.0).0[0], &mut carry); let r3 = mac_with_carry(r3, (self.0).0[2], (other.0).0[1], &mut carry); let r4 = mac_with_carry(r4, (self.0).0[2], (other.0).0[2], &mut carry); let r5 = mac_with_carry(r5, (self.0).0[2], (other.0).0[3], &mut carry); let r6 = carry; let mut carry = 0; let r3 = mac_with_carry(r3, (self.0).0[3], (other.0).0[0], &mut carry); let r4 = mac_with_carry(r4, (self.0).0[3], (other.0).0[1], &mut carry); let r5 = mac_with_carry(r5, (self.0).0[3], (other.0).0[2], &mut carry); let r6 = mac_with_carry(r6, (self.0).0[3], (other.0).0[3], &mut carry); let r7 = carry; self.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7); } } impl MulAssign for Fs { #[inline] fn mul_assign(&mut self, other: Self) { self.mul_assign(&other); } } impl PrimeField for Fs { type Repr = FsRepr; fn from_repr(r: FsRepr) -> Result { let mut r = Fs(r); if r.is_valid() { r.mul_assign(&Fs(R2)); Ok(r) } else { Err(PrimeFieldDecodingError::NotInField(format!("{}", r.0))) } } fn into_repr(&self) -> FsRepr { let mut r = *self; r.mont_reduce( (self.0).0[0], (self.0).0[1], (self.0).0[2], (self.0).0[3], 0, 0, 0, 0, ); r.0 } fn char() -> FsRepr { MODULUS } const NUM_BITS: u32 = MODULUS_BITS; const CAPACITY: u32 = Self::NUM_BITS - 1; fn multiplicative_generator() -> Self { Fs(GENERATOR) } const S: u32 = S; fn root_of_unity() -> Self { Fs(ROOT_OF_UNITY) } } impl Field for Fs { fn random(rng: &mut R) -> Self { loop { let mut tmp = { let mut repr = [0u64; 4]; for limb in &mut repr { *limb = rng.next_u64(); } Fs(FsRepr(repr)) }; // Mask away the unused most-significant bits. tmp.0.as_mut()[3] &= 0xffffffffffffffff >> REPR_SHAVE_BITS; if tmp.is_valid() { return tmp; } } } #[inline] fn zero() -> Self { Fs(FsRepr::from(0)) } #[inline] fn one() -> Self { Fs(R) } #[inline] fn is_zero(&self) -> bool { self.0.is_zero() } #[inline] fn double(&self) -> Self { let mut ret = *self; // This cannot exceed the backing capacity. ret.0.mul2(); // However, it may need to be reduced. ret.reduce(); ret } fn inverse(&self) -> Option { if self.is_zero() { None } else { // Guajardo Kumar Paar Pelzl // Efficient Software-Implementation of Finite Fields with Applications to Cryptography // Algorithm 16 (BEA for Inversion in Fp) let one = FsRepr::from(1); let mut u = self.0; let mut v = MODULUS; let mut b = Fs(R2); // Avoids unnecessary reduction step. let mut c = Self::zero(); while u != one && v != one { while u.is_even() { u.div2(); if b.0.is_even() { b.0.div2(); } else { b.0.add_nocarry(&MODULUS); b.0.div2(); } } while v.is_even() { v.div2(); if c.0.is_even() { c.0.div2(); } else { c.0.add_nocarry(&MODULUS); c.0.div2(); } } if v < u { u.sub_noborrow(&v); b.sub_assign(&c); } else { v.sub_noborrow(&u); c.sub_assign(&b); } } if u == one { Some(b) } else { Some(c) } } } #[inline(always)] fn frobenius_map(&mut self, _: usize) { // This has no effect in a prime field. } #[inline] fn square(&mut self) { let mut carry = 0; let r1 = mac_with_carry(0, (self.0).0[0], (self.0).0[1], &mut carry); let r2 = mac_with_carry(0, (self.0).0[0], (self.0).0[2], &mut carry); let r3 = mac_with_carry(0, (self.0).0[0], (self.0).0[3], &mut carry); let r4 = carry; let mut carry = 0; let r3 = mac_with_carry(r3, (self.0).0[1], (self.0).0[2], &mut carry); let r4 = mac_with_carry(r4, (self.0).0[1], (self.0).0[3], &mut carry); let r5 = carry; let mut carry = 0; let r5 = mac_with_carry(r5, (self.0).0[2], (self.0).0[3], &mut carry); let r6 = carry; let r7 = r6 >> 63; let r6 = (r6 << 1) | (r5 >> 63); let r5 = (r5 << 1) | (r4 >> 63); let r4 = (r4 << 1) | (r3 >> 63); let r3 = (r3 << 1) | (r2 >> 63); let r2 = (r2 << 1) | (r1 >> 63); let r1 = r1 << 1; let mut carry = 0; let r0 = mac_with_carry(0, (self.0).0[0], (self.0).0[0], &mut carry); let r1 = adc(r1, 0, &mut carry); let r2 = mac_with_carry(r2, (self.0).0[1], (self.0).0[1], &mut carry); let r3 = adc(r3, 0, &mut carry); let r4 = mac_with_carry(r4, (self.0).0[2], (self.0).0[2], &mut carry); let r5 = adc(r5, 0, &mut carry); let r6 = mac_with_carry(r6, (self.0).0[3], (self.0).0[3], &mut carry); let r7 = adc(r7, 0, &mut carry); self.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7); } } impl Fs { /// Determines if the element is really in the field. This is only used /// internally. #[inline(always)] fn is_valid(&self) -> bool { self.0 < MODULUS } /// Subtracts the modulus from this element if this element is not in the /// field. Only used internally. #[inline(always)] fn reduce(&mut self) { if !self.is_valid() { self.0.sub_noborrow(&MODULUS); } } #[inline(always)] fn mont_reduce( &mut self, r0: u64, mut r1: u64, mut r2: u64, mut r3: u64, mut r4: u64, mut r5: u64, mut r6: u64, mut r7: u64, ) { // The Montgomery reduction here is based on Algorithm 14.32 in // Handbook of Applied Cryptography // . let k = r0.wrapping_mul(INV); let mut carry = 0; mac_with_carry(r0, k, MODULUS.0[0], &mut carry); r1 = mac_with_carry(r1, k, MODULUS.0[1], &mut carry); r2 = mac_with_carry(r2, k, MODULUS.0[2], &mut carry); r3 = mac_with_carry(r3, k, MODULUS.0[3], &mut carry); r4 = adc(r4, 0, &mut carry); let carry2 = carry; let k = r1.wrapping_mul(INV); let mut carry = 0; mac_with_carry(r1, k, MODULUS.0[0], &mut carry); r2 = mac_with_carry(r2, k, MODULUS.0[1], &mut carry); r3 = mac_with_carry(r3, k, MODULUS.0[2], &mut carry); r4 = mac_with_carry(r4, k, MODULUS.0[3], &mut carry); r5 = adc(r5, carry2, &mut carry); let carry2 = carry; let k = r2.wrapping_mul(INV); let mut carry = 0; mac_with_carry(r2, k, MODULUS.0[0], &mut carry); r3 = mac_with_carry(r3, k, MODULUS.0[1], &mut carry); r4 = mac_with_carry(r4, k, MODULUS.0[2], &mut carry); r5 = mac_with_carry(r5, k, MODULUS.0[3], &mut carry); r6 = adc(r6, carry2, &mut carry); let carry2 = carry; let k = r3.wrapping_mul(INV); let mut carry = 0; mac_with_carry(r3, k, MODULUS.0[0], &mut carry); r4 = mac_with_carry(r4, k, MODULUS.0[1], &mut carry); r5 = mac_with_carry(r5, k, MODULUS.0[2], &mut carry); r6 = mac_with_carry(r6, k, MODULUS.0[3], &mut carry); r7 = adc(r7, carry2, &mut carry); (self.0).0[0] = r4; (self.0).0[1] = r5; (self.0).0[2] = r6; (self.0).0[3] = r7; self.reduce(); } fn mul_bits>(&self, bits: BitIterator) -> Self { let mut res = Self::zero(); for bit in bits { res = res.double(); if bit { res.add_assign(self) } } res } } impl ToUniform for Fs { /// Convert a little endian byte string into a uniform /// field element. The number is reduced mod s. The caller /// is responsible for ensuring the input is 64 bytes of /// Random Oracle output. fn to_uniform(digest: &[u8]) -> Self { assert_eq!(digest.len(), 64); let mut repr: [u64; 8] = [0; 8]; LittleEndian::read_u64_into(digest, &mut repr); Self::one().mul_bits(BitIterator::new(repr)) } } impl SqrtField for Fs { fn legendre(&self) -> LegendreSymbol { // s = self^((s - 1) // 2) let s = self.pow([ 0x684b872f6b7b965b, 0x53341049e6640841, 0x83339d80809a1d80, 0x73eda753299d7d4, ]); if s == Self::zero() { Zero } else if s == Self::one() { QuadraticResidue } else { QuadraticNonResidue } } fn sqrt(&self) -> Option { // Shank's algorithm for s mod 4 = 3 // https://eprint.iacr.org/2012/685.pdf (page 9, algorithm 2) // a1 = self^((s - 3) // 4) let mut a1 = self.pow([ 0xb425c397b5bdcb2d, 0x299a0824f3320420, 0x4199cec0404d0ec0, 0x39f6d3a994cebea, ]); let mut a0 = a1; a0.square(); a0.mul_assign(self); if a0 == NEGATIVE_ONE { None } else { a1.mul_assign(self); Some(a1) } } } #[test] fn test_neg_one() { let o = Fs::one().neg(); assert_eq!(NEGATIVE_ONE, o); } #[cfg(test)] use rand_core::SeedableRng; #[cfg(test)] use rand_xorshift::XorShiftRng; #[test] fn test_fs_repr_ordering() { fn assert_equality(a: FsRepr, b: FsRepr) { assert_eq!(a, b); assert!(a.cmp(&b) == ::std::cmp::Ordering::Equal); } fn assert_lt(a: FsRepr, b: FsRepr) { assert!(a < b); assert!(b > a); } assert_equality( FsRepr([9999, 9999, 9999, 9999]), FsRepr([9999, 9999, 9999, 9999]), ); assert_equality( FsRepr([9999, 9998, 9999, 9999]), FsRepr([9999, 9998, 9999, 9999]), ); assert_equality( FsRepr([9999, 9999, 9999, 9997]), FsRepr([9999, 9999, 9999, 9997]), ); assert_lt( FsRepr([9999, 9997, 9999, 9998]), FsRepr([9999, 9997, 9999, 9999]), ); assert_lt( FsRepr([9999, 9997, 9998, 9999]), FsRepr([9999, 9997, 9999, 9999]), ); assert_lt( FsRepr([9, 9999, 9999, 9997]), FsRepr([9999, 9999, 9999, 9997]), ); } #[test] fn test_fs_repr_from() { assert_eq!(FsRepr::from(100), FsRepr([100, 0, 0, 0])); } #[test] fn test_fs_repr_is_odd() { assert!(!FsRepr::from(0).is_odd()); assert!(FsRepr::from(0).is_even()); assert!(FsRepr::from(1).is_odd()); assert!(!FsRepr::from(1).is_even()); assert!(!FsRepr::from(324834872).is_odd()); assert!(FsRepr::from(324834872).is_even()); assert!(FsRepr::from(324834873).is_odd()); assert!(!FsRepr::from(324834873).is_even()); } #[test] fn test_fs_repr_is_zero() { assert!(FsRepr::from(0).is_zero()); assert!(!FsRepr::from(1).is_zero()); assert!(!FsRepr([0, 0, 1, 0]).is_zero()); } #[test] fn test_fs_repr_div2() { let mut a = FsRepr([ 0xbd2920b19c972321, 0x174ed0466a3be37e, 0xd468d5e3b551f0b5, 0xcb67c072733beefc, ]); a.div2(); assert_eq!( a, FsRepr([ 0x5e949058ce4b9190, 0x8ba76823351df1bf, 0x6a346af1daa8f85a, 0x65b3e039399df77e ]) ); for _ in 0..10 { a.div2(); } assert_eq!( a, FsRepr([ 0x6fd7a524163392e4, 0x16a2e9da08cd477c, 0xdf9a8d1abc76aa3e, 0x196cf80e4e677d ]) ); for _ in 0..200 { a.div2(); } assert_eq!(a, FsRepr([0x196cf80e4e67, 0x0, 0x0, 0x0])); for _ in 0..40 { a.div2(); } assert_eq!(a, FsRepr([0x19, 0x0, 0x0, 0x0])); for _ in 0..4 { a.div2(); } assert_eq!(a, FsRepr([0x1, 0x0, 0x0, 0x0])); a.div2(); assert!(a.is_zero()); } #[test] fn test_fs_repr_shr() { let mut a = FsRepr([ 0xb33fbaec482a283f, 0x997de0d3a88cb3df, 0x9af62d2a9a0e5525, 0x36003ab08de70da1, ]); a.shr(0); assert_eq!( a, FsRepr([ 0xb33fbaec482a283f, 0x997de0d3a88cb3df, 0x9af62d2a9a0e5525, 0x36003ab08de70da1 ]) ); a.shr(1); assert_eq!( a, FsRepr([ 0xd99fdd762415141f, 0xccbef069d44659ef, 0xcd7b16954d072a92, 0x1b001d5846f386d0 ]) ); a.shr(50); assert_eq!( a, FsRepr([ 0xbc1a7511967bf667, 0xc5a55341caa4b32f, 0x75611bce1b4335e, 0x6c0 ]) ); a.shr(130); assert_eq!(a, FsRepr([0x1d5846f386d0cd7, 0x1b0, 0x0, 0x0])); a.shr(64); assert_eq!(a, FsRepr([0x1b0, 0x0, 0x0, 0x0])); } #[test] fn test_fs_repr_mul2() { let mut a = FsRepr::from(23712937547); a.mul2(); assert_eq!(a, FsRepr([0xb0acd6c96, 0x0, 0x0, 0x0])); for _ in 0..60 { a.mul2(); } assert_eq!(a, FsRepr([0x6000000000000000, 0xb0acd6c9, 0x0, 0x0])); for _ in 0..128 { a.mul2(); } assert_eq!(a, FsRepr([0x0, 0x0, 0x6000000000000000, 0xb0acd6c9])); for _ in 0..60 { a.mul2(); } assert_eq!(a, FsRepr([0x0, 0x0, 0x0, 0x9600000000000000])); for _ in 0..7 { a.mul2(); } assert!(a.is_zero()); } #[test] fn test_fs_repr_num_bits() { let mut a = FsRepr::from(0); assert_eq!(0, a.num_bits()); a = FsRepr::from(1); for i in 1..257 { assert_eq!(i, a.num_bits()); a.mul2(); } assert_eq!(0, a.num_bits()); } #[test] fn test_fs_repr_sub_noborrow() { let mut rng = XorShiftRng::from_seed([ 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0xe5, ]); let mut t = FsRepr([ 0x8e62a7e85264e2c3, 0xb23d34c1941d3ca, 0x5976930b7502dd15, 0x600f3fb517bf5495, ]); t.sub_noborrow(&FsRepr([ 0xd64f669809cbc6a4, 0xfa76cb9d90cf7637, 0xfefb0df9038d43b3, 0x298a30c744b31acf, ])); assert!( t == FsRepr([ 0xb813415048991c1f, 0x10ad07ae88725d92, 0x5a7b851271759961, 0x36850eedd30c39c5 ]) ); for _ in 0..1000 { let mut a = Fs::random(&mut rng).into_repr(); a.0[3] >>= 30; let mut b = a; for _ in 0..10 { b.mul2(); } let mut c = b; for _ in 0..10 { c.mul2(); } assert!(a < b); assert!(b < c); let mut csub_ba = c; csub_ba.sub_noborrow(&b); csub_ba.sub_noborrow(&a); let mut csub_ab = c; csub_ab.sub_noborrow(&a); csub_ab.sub_noborrow(&b); assert_eq!(csub_ab, csub_ba); } } #[test] fn test_fs_legendre() { assert_eq!(QuadraticResidue, Fs::one().legendre()); assert_eq!(Zero, Fs::zero().legendre()); let e = FsRepr([ 0x8385eec23df1f88e, 0x9a01fb412b2dba16, 0x4c928edcdd6c22f, 0x9f2df7ef69ecef9, ]); assert_eq!(QuadraticResidue, Fs::from_repr(e).unwrap().legendre()); let e = FsRepr([ 0xe8ed9f299da78568, 0x35efdebc88b2209, 0xc82125cb1f916dbe, 0x6813d2b38c39bd0, ]); assert_eq!(QuadraticNonResidue, Fs::from_repr(e).unwrap().legendre()); } #[test] fn test_fr_repr_add_nocarry() { let mut rng = XorShiftRng::from_seed([ 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0xe5, ]); let mut t = FsRepr([ 0xd64f669809cbc6a4, 0xfa76cb9d90cf7637, 0xfefb0df9038d43b3, 0x298a30c744b31acf, ]); t.add_nocarry(&FsRepr([ 0x8e62a7e85264e2c3, 0xb23d34c1941d3ca, 0x5976930b7502dd15, 0x600f3fb517bf5495, ])); assert_eq!( t, FsRepr([ 0x64b20e805c30a967, 0x59a9ee9aa114a02, 0x5871a104789020c9, 0x8999707c5c726f65 ]) ); // Test for the associativity of addition. for _ in 0..1000 { let mut a = Fs::random(&mut rng).into_repr(); let mut b = Fs::random(&mut rng).into_repr(); let mut c = Fs::random(&mut rng).into_repr(); // Unset the first few bits, so that overflow won't occur. a.0[3] >>= 3; b.0[3] >>= 3; c.0[3] >>= 3; let mut abc = a; abc.add_nocarry(&b); abc.add_nocarry(&c); let mut acb = a; acb.add_nocarry(&c); acb.add_nocarry(&b); let mut bac = b; bac.add_nocarry(&a); bac.add_nocarry(&c); let mut bca = b; bca.add_nocarry(&c); bca.add_nocarry(&a); let mut cab = c; cab.add_nocarry(&a); cab.add_nocarry(&b); let mut cba = c; cba.add_nocarry(&b); cba.add_nocarry(&a); assert_eq!(abc, acb); assert_eq!(abc, bac); assert_eq!(abc, bca); assert_eq!(abc, cab); assert_eq!(abc, cba); } } #[test] fn test_fs_is_valid() { let mut a = Fs(MODULUS); assert!(!a.is_valid()); a.0.sub_noborrow(&FsRepr::from(1)); assert!(a.is_valid()); assert!(Fs(FsRepr::from(0)).is_valid()); assert!(Fs(FsRepr([ 0xd0970e5ed6f72cb6, 0xa6682093ccc81082, 0x6673b0101343b00, 0xe7db4ea6533afa9 ])) .is_valid()); assert!(!Fs(FsRepr([ 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff ])) .is_valid()); let mut rng = XorShiftRng::from_seed([ 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0xe5, ]); for _ in 0..1000 { let a = Fs::random(&mut rng); assert!(a.is_valid()); } } #[test] fn test_fs_add_assign() { { // Random number let mut tmp = Fs::from_str( "4577408157467272683998459759522778614363623736323078995109579213719612604198", ) .unwrap(); assert!(tmp.is_valid()); // Test that adding zero has no effect. tmp.add_assign(&Fs(FsRepr::from(0))); assert_eq!( tmp, Fs(FsRepr([ 0x8e6bfff4722d6e67, 0x5643da5c892044f9, 0x9465f4b281921a69, 0x25f752d3edd7162 ])) ); // Add one and test for the result. tmp.add_assign(&Fs(FsRepr::from(1))); assert_eq!( tmp, Fs(FsRepr([ 0x8e6bfff4722d6e68, 0x5643da5c892044f9, 0x9465f4b281921a69, 0x25f752d3edd7162 ])) ); // Add another random number that exercises the reduction. tmp.add_assign(&Fs(FsRepr([ 0xb634d07bc42d4a70, 0xf724f0c008411f5f, 0x456d4053d865af34, 0x24ce814e8c63027, ]))); assert_eq!( tmp, Fs(FsRepr([ 0x44a0d070365ab8d8, 0x4d68cb1c91616459, 0xd9d3350659f7c99e, 0x4ac5d4227a3a189 ])) ); // Add one to (s - 1) and test for the result. tmp = Fs(FsRepr([ 0xd0970e5ed6f72cb6, 0xa6682093ccc81082, 0x6673b0101343b00, 0xe7db4ea6533afa9, ])); tmp.add_assign(&Fs(FsRepr::from(1))); assert!(tmp.0.is_zero()); // Add a random number to another one such that the result is s - 1 tmp = Fs(FsRepr([ 0xa11fda5950ce3636, 0x922e0dbccfe0ca0e, 0xacebb6e215b82d4a, 0x97ffb8cdc3aee93, ])); tmp.add_assign(&Fs(FsRepr([ 0x2f7734058628f680, 0x143a12d6fce74674, 0x597b841eeb7c0db6, 0x4fdb95d88f8c115, ]))); assert_eq!( tmp, Fs(FsRepr([ 0xd0970e5ed6f72cb6, 0xa6682093ccc81082, 0x6673b0101343b00, 0xe7db4ea6533afa9 ])) ); // Add one to the result and test for it. tmp.add_assign(&Fs(FsRepr::from(1))); assert!(tmp.0.is_zero()); } // Test associativity let mut rng = XorShiftRng::from_seed([ 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0xe5, ]); for _ in 0..1000 { // Generate a, b, c and ensure (a + b) + c == a + (b + c). let a = Fs::random(&mut rng); let b = Fs::random(&mut rng); let c = Fs::random(&mut rng); let mut tmp1 = a; tmp1.add_assign(&b); tmp1.add_assign(&c); let mut tmp2 = b; tmp2.add_assign(&c); tmp2.add_assign(&a); assert!(tmp1.is_valid()); assert!(tmp2.is_valid()); assert_eq!(tmp1, tmp2); } } #[test] fn test_fs_sub_assign() { { // Test arbitrary subtraction that tests reduction. let mut tmp = Fs(FsRepr([ 0xb384d9f6877afd99, 0x4442513958e1a1c1, 0x352c4b8a95eccc3f, 0x2db62dee4b0f2, ])); tmp.sub_assign(&Fs(FsRepr([ 0xec5bd2d13ed6b05a, 0x2adc0ab3a39b5fa, 0x82d3360a493e637e, 0x53ccff4a64d6679, ]))); assert_eq!( tmp, Fs(FsRepr([ 0x97c015841f9b79f6, 0xe7fcb121eb6ffc49, 0xb8c050814de2a3c1, 0x943c0589dcafa21 ])) ); // Test the opposite subtraction which doesn't test reduction. tmp = Fs(FsRepr([ 0xec5bd2d13ed6b05a, 0x2adc0ab3a39b5fa, 0x82d3360a493e637e, 0x53ccff4a64d6679, ])); tmp.sub_assign(&Fs(FsRepr([ 0xb384d9f6877afd99, 0x4442513958e1a1c1, 0x352c4b8a95eccc3f, 0x2db62dee4b0f2, ]))); assert_eq!( tmp, Fs(FsRepr([ 0x38d6f8dab75bb2c1, 0xbe6b6f71e1581439, 0x4da6ea7fb351973e, 0x539f491c768b587 ])) ); // Test for sensible results with zero tmp = Fs(FsRepr::from(0)); tmp.sub_assign(&Fs(FsRepr::from(0))); assert!(tmp.is_zero()); tmp = Fs(FsRepr([ 0x361e16aef5cce835, 0x55bbde2536e274c1, 0x4dc77a63fd15ee75, 0x1e14bb37c14f230, ])); tmp.sub_assign(&Fs(FsRepr::from(0))); assert_eq!( tmp, Fs(FsRepr([ 0x361e16aef5cce835, 0x55bbde2536e274c1, 0x4dc77a63fd15ee75, 0x1e14bb37c14f230 ])) ); } let mut rng = XorShiftRng::from_seed([ 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0xe5, ]); for _ in 0..1000 { // Ensure that (a - b) + (b - a) = 0. let a = Fs::random(&mut rng); let b = Fs::random(&mut rng); let mut tmp1 = a; tmp1.sub_assign(&b); let mut tmp2 = b; tmp2.sub_assign(&a); tmp1.add_assign(&tmp2); assert!(tmp1.is_zero()); } } #[test] fn test_fs_mul_assign() { let mut tmp = Fs(FsRepr([ 0xb433b01287f71744, 0x4eafb86728c4d108, 0xfdd52c14b9dfbe65, 0x2ff1f3434821118, ])); tmp.mul_assign(&Fs(FsRepr([ 0xdae00fc63c9fa90f, 0x5a5ed89b96ce21ce, 0x913cd26101bd6f58, 0x3f0822831697fe9, ]))); assert!( tmp == Fs(FsRepr([ 0xb68ecb61d54d2992, 0x5ff95874defce6a6, 0x3590eb053894657d, 0x53823a118515933 ])) ); let mut rng = XorShiftRng::from_seed([ 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0xe5, ]); for _ in 0..1000000 { // Ensure that (a * b) * c = a * (b * c) let a = Fs::random(&mut rng); let b = Fs::random(&mut rng); let c = Fs::random(&mut rng); let mut tmp1 = a; tmp1.mul_assign(&b); tmp1.mul_assign(&c); let mut tmp2 = b; tmp2.mul_assign(&c); tmp2.mul_assign(&a); assert_eq!(tmp1, tmp2); } for _ in 0..1000000 { // Ensure that r * (a + b + c) = r*a + r*b + r*c let r = Fs::random(&mut rng); let mut a = Fs::random(&mut rng); let mut b = Fs::random(&mut rng); let mut c = Fs::random(&mut rng); let mut tmp1 = a; tmp1.add_assign(&b); tmp1.add_assign(&c); tmp1.mul_assign(&r); a.mul_assign(&r); b.mul_assign(&r); c.mul_assign(&r); a.add_assign(&b); a.add_assign(&c); assert_eq!(tmp1, a); } } #[test] fn test_fr_squaring() { let mut a = Fs(FsRepr([ 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0xe7db4ea6533afa8, ])); assert!(a.is_valid()); a.square(); assert_eq!( a, Fs::from_repr(FsRepr([ 0x12c7f55cbc52fbaa, 0xdedc98a0b5e6ce9e, 0xad2892726a5396a, 0x9fe82af8fee77b3 ])) .unwrap() ); let mut rng = XorShiftRng::from_seed([ 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0xe5, ]); for _ in 0..1000000 { // Ensure that (a * a) = a^2 let a = Fs::random(&mut rng); let mut tmp = a; tmp.square(); let mut tmp2 = a; tmp2.mul_assign(&a); assert_eq!(tmp, tmp2); } } #[test] fn test_fs_inverse() { assert!(Fs::zero().inverse().is_none()); let mut rng = XorShiftRng::from_seed([ 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0xe5, ]); let one = Fs::one(); for _ in 0..1000 { // Ensure that a * a^-1 = 1 let mut a = Fs::random(&mut rng); let ainv = a.inverse().unwrap(); a.mul_assign(&ainv); assert_eq!(a, one); } } #[test] fn test_fs_double() { let mut rng = XorShiftRng::from_seed([ 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0xe5, ]); for _ in 0..1000 { // Ensure doubling a is equivalent to adding a to itself. let a = Fs::random(&mut rng); assert_eq!(a.double(), a + a); } } #[test] fn test_fs_neg() { { let a = Fs::zero().neg(); assert!(a.is_zero()); } let mut rng = XorShiftRng::from_seed([ 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0xe5, ]); for _ in 0..1000 { // Ensure (a - (-a)) = 0. let mut a = Fs::random(&mut rng); let b = a.neg(); a.add_assign(&b); assert!(a.is_zero()); } } #[test] fn test_fs_pow() { let mut rng = XorShiftRng::from_seed([ 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0xe5, ]); for i in 0..1000 { // Exponentiate by various small numbers and ensure it consists with repeated // multiplication. let a = Fs::random(&mut rng); let target = a.pow(&[i]); let mut c = Fs::one(); for _ in 0..i { c.mul_assign(&a); } assert_eq!(c, target); } for _ in 0..1000 { // Exponentiating by the modulus should have no effect in a prime field. let a = Fs::random(&mut rng); assert_eq!(a, a.pow(Fs::char())); } } #[test] fn test_fs_sqrt() { let mut rng = XorShiftRng::from_seed([ 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0xe5, ]); assert_eq!(Fs::zero().sqrt().unwrap(), Fs::zero()); for _ in 0..1000 { // Ensure sqrt(a^2) = a or -a let a = Fs::random(&mut rng); let nega = a.neg(); let mut b = a; b.square(); let b = b.sqrt().unwrap(); assert!(a == b || nega == b); } for _ in 0..1000 { // Ensure sqrt(a)^2 = a for random a let a = Fs::random(&mut rng); if let Some(mut tmp) = a.sqrt() { tmp.square(); assert_eq!(a, tmp); } } } #[test] fn test_fs_from_into_repr() { // r + 1 should not be in the field assert!(Fs::from_repr(FsRepr([ 0xd0970e5ed6f72cb8, 0xa6682093ccc81082, 0x6673b0101343b00, 0xe7db4ea6533afa9 ])) .is_err()); // r should not be in the field assert!(Fs::from_repr(Fs::char()).is_err()); // Multiply some arbitrary representations to see if the result is as expected. let a = FsRepr([ 0x5f2d0c05d0337b71, 0xa1df2b0f8a20479, 0xad73785e71bb863, 0x504a00480c9acec, ]); let mut a_fs = Fs::from_repr(a).unwrap(); let b = FsRepr([ 0x66356ff51e477562, 0x60a92ab55cf7603, 0x8e4273c7364dd192, 0x36df8844a344dc5, ]); let b_fs = Fs::from_repr(b).unwrap(); let c = FsRepr([ 0x7eef61708f4f2868, 0x747a7e6cf52946fb, 0x83dd75d7c9120017, 0x762f5177f0f3df7, ]); a_fs.mul_assign(&b_fs); assert_eq!(a_fs.into_repr(), c); // Zero should be in the field. assert!(Fs::from_repr(FsRepr::from(0)).unwrap().is_zero()); let mut rng = XorShiftRng::from_seed([ 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0xe5, ]); for _ in 0..1000 { // Try to turn Fs elements into representations and back again, and compare. let a = Fs::random(&mut rng); let a_repr = a.into_repr(); let b_repr = FsRepr::from(a); assert_eq!(a_repr, b_repr); let a_again = Fs::from_repr(a_repr).unwrap(); assert_eq!(a, a_again); } } #[test] fn test_fs_repr_display() { assert_eq!( format!( "{}", FsRepr([ 0xa296db59787359df, 0x8d3e33077430d318, 0xd1abf5c606102eb7, 0xcbc33ee28108f0 ]) ), "0x00cbc33ee28108f0d1abf5c606102eb78d3e33077430d318a296db59787359df".to_string() ); assert_eq!( format!( "{}", FsRepr([ 0x14cb03535054a620, 0x312aa2bf2d1dff52, 0x970fe98746ab9361, 0xc1e18acf82711e6 ]) ), "0x0c1e18acf82711e6970fe98746ab9361312aa2bf2d1dff5214cb03535054a620".to_string() ); assert_eq!( format!( "{}", FsRepr([ 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff ]) ), "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff".to_string() ); assert_eq!( format!("{}", FsRepr([0, 0, 0, 0])), "0x0000000000000000000000000000000000000000000000000000000000000000".to_string() ); } #[test] fn test_fs_display() { assert_eq!( format!( "{}", Fs::from_repr(FsRepr([ 0x5528efb9998a01a3, 0x5bd2add5cb357089, 0xc061fa6adb491f98, 0x70db9d143db03d9 ])) .unwrap() ), "Fs(0x070db9d143db03d9c061fa6adb491f985bd2add5cb3570895528efb9998a01a3)".to_string() ); assert_eq!( format!( "{}", Fs::from_repr(FsRepr([ 0xd674745e2717999e, 0xbeb1f52d3e96f338, 0x9c7ae147549482b9, 0x999706024530d22 ])) .unwrap() ), "Fs(0x0999706024530d229c7ae147549482b9beb1f52d3e96f338d674745e2717999e)".to_string() ); } #[test] fn test_fs_num_bits() { assert_eq!(Fs::NUM_BITS, 252); assert_eq!(Fs::CAPACITY, 251); } #[test] fn test_fs_root_of_unity() { assert_eq!(Fs::S, 1); assert_eq!( Fs::multiplicative_generator(), Fs::from_repr(FsRepr::from(6)).unwrap() ); assert_eq!( Fs::multiplicative_generator().pow([ 0x684b872f6b7b965b, 0x53341049e6640841, 0x83339d80809a1d80, 0x73eda753299d7d4 ]), Fs::root_of_unity() ); assert_eq!(Fs::root_of_unity().pow([1 << Fs::S]), Fs::one()); assert!(Fs::multiplicative_generator().sqrt().is_none()); }