mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-01-30 23:42:13 +00:00
121 lines
2.9 KiB
Rust
121 lines
2.9 KiB
Rust
mod common;
|
|
|
|
use common::{new_rng, MyRandom, NUM_BLACK_BOX_CHECKS};
|
|
use jubjub::*;
|
|
|
|
#[test]
|
|
fn test_to_and_from_bytes() {
|
|
let mut rng = new_rng();
|
|
for _ in 0..NUM_BLACK_BOX_CHECKS {
|
|
let a = Fr::new_random(&mut rng);
|
|
assert_eq!(a, Fr::from_bytes(&Fr::to_bytes(&a)).unwrap());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_additive_associativity() {
|
|
let mut rng = new_rng();
|
|
for _ in 0..NUM_BLACK_BOX_CHECKS {
|
|
let a = Fr::new_random(&mut rng);
|
|
let b = Fr::new_random(&mut rng);
|
|
let c = Fr::new_random(&mut rng);
|
|
assert_eq!((a + b) + c, a + (b + c))
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_additive_identity() {
|
|
let mut rng = new_rng();
|
|
for _ in 0..NUM_BLACK_BOX_CHECKS {
|
|
let a = Fr::new_random(&mut rng);
|
|
assert_eq!(a, a + Fr::zero());
|
|
assert_eq!(a, Fr::zero() + a);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_subtract_additive_identity() {
|
|
let mut rng = new_rng();
|
|
for _ in 0..NUM_BLACK_BOX_CHECKS {
|
|
let a = Fr::new_random(&mut rng);
|
|
assert_eq!(a, a - Fr::zero());
|
|
assert_eq!(a, Fr::zero() - -&a);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_additive_inverse() {
|
|
let mut rng = new_rng();
|
|
for _ in 0..NUM_BLACK_BOX_CHECKS {
|
|
let a = Fr::new_random(&mut rng);
|
|
let a_neg = -&a;
|
|
assert_eq!(Fr::zero(), a + a_neg);
|
|
assert_eq!(Fr::zero(), a_neg + a);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_additive_commutativity() {
|
|
let mut rng = new_rng();
|
|
for _ in 0..NUM_BLACK_BOX_CHECKS {
|
|
let a = Fr::new_random(&mut rng);
|
|
let b = Fr::new_random(&mut rng);
|
|
assert_eq!(a + b, b + a);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_multiplicative_associativity() {
|
|
let mut rng = new_rng();
|
|
for _ in 0..NUM_BLACK_BOX_CHECKS {
|
|
let a = Fr::new_random(&mut rng);
|
|
let b = Fr::new_random(&mut rng);
|
|
let c = Fr::new_random(&mut rng);
|
|
assert_eq!((a * b) * c, a * (b * c))
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_multiplicative_identity() {
|
|
let mut rng = new_rng();
|
|
for _ in 0..NUM_BLACK_BOX_CHECKS {
|
|
let a = Fr::new_random(&mut rng);
|
|
assert_eq!(a, a * Fr::one());
|
|
assert_eq!(a, Fr::one() * a);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_multiplicative_inverse() {
|
|
let mut rng = new_rng();
|
|
for _ in 0..NUM_BLACK_BOX_CHECKS {
|
|
let a = Fr::new_random(&mut rng);
|
|
if a == Fr::zero() {
|
|
continue;
|
|
}
|
|
let a_inv = a.invert().unwrap();
|
|
assert_eq!(Fr::one(), a * a_inv);
|
|
assert_eq!(Fr::one(), a_inv * a);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_multiplicative_commutativity() {
|
|
let mut rng = new_rng();
|
|
for _ in 0..NUM_BLACK_BOX_CHECKS {
|
|
let a = Fr::new_random(&mut rng);
|
|
let b = Fr::new_random(&mut rng);
|
|
assert_eq!(a * b, b * a);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_multiply_additive_identity() {
|
|
let mut rng = new_rng();
|
|
for _ in 0..NUM_BLACK_BOX_CHECKS {
|
|
let a = Fr::new_random(&mut rng);
|
|
assert_eq!(Fr::zero(), Fr::zero() * a);
|
|
assert_eq!(Fr::zero(), a * Fr::zero());
|
|
}
|
|
}
|