Files
pirate-librustzcash/bellman/src/groth16/tests/dummy_engine.rs
Jack Grigg 15e229509a ff: Move pow_vartime back into Field trait
The only places we don't use constant u64 limbs, we use PrimeField::char
instead (except in a single test where we use a field element).
2020-05-02 18:54:02 +12:00

492 lines
10 KiB
Rust

use ff::{Field, PrimeField, ScalarEngine};
use group::{CurveAffine, CurveProjective, EncodedPoint, GroupDecodingError};
use pairing::{Engine, PairingCurveAffine};
use rand_core::RngCore;
use std::fmt;
use std::num::Wrapping;
use std::ops::{Add, AddAssign, BitAnd, Mul, MulAssign, Neg, Shr, Sub, SubAssign};
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
const MODULUS_R: Wrapping<u32> = Wrapping(64513);
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct Fr(Wrapping<u32>);
impl Default for Fr {
fn default() -> Self {
<Fr as Field>::zero()
}
}
impl ConstantTimeEq for Fr {
fn ct_eq(&self, other: &Fr) -> Choice {
(self.0).0.ct_eq(&(other.0).0)
}
}
impl fmt::Display for Fr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
write!(f, "{}", (self.0).0)
}
}
impl From<u64> for Fr {
fn from(v: u64) -> Fr {
Fr(Wrapping((v % MODULUS_R.0 as u64) as u32))
}
}
impl ConditionallySelectable for Fr {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Fr(Wrapping(u32::conditional_select(
&(a.0).0,
&(b.0).0,
choice,
)))
}
}
impl Neg for Fr {
type Output = Self;
fn neg(mut self) -> Self {
if !<Fr as Field>::is_zero(&self) {
self.0 = MODULUS_R - self.0;
}
self
}
}
impl<'r> Add<&'r Fr> for Fr {
type Output = Self;
fn add(self, other: &Self) -> Self {
let mut ret = self;
AddAssign::add_assign(&mut ret, other);
ret
}
}
impl Add for Fr {
type Output = Self;
fn add(self, other: Self) -> Self {
self + &other
}
}
impl<'r> AddAssign<&'r Fr> for Fr {
fn add_assign(&mut self, other: &Self) {
self.0 = (self.0 + other.0) % MODULUS_R;
}
}
impl AddAssign for Fr {
fn add_assign(&mut self, other: Self) {
AddAssign::add_assign(self, &other);
}
}
impl<'r> Sub<&'r Fr> for Fr {
type Output = Self;
fn sub(self, other: &Self) -> Self {
let mut ret = self;
SubAssign::sub_assign(&mut ret, other);
ret
}
}
impl Sub for Fr {
type Output = Self;
fn sub(self, other: Self) -> Self {
self - &other
}
}
impl<'r> SubAssign<&'r Fr> for Fr {
fn sub_assign(&mut self, other: &Self) {
self.0 = ((MODULUS_R + self.0) - other.0) % MODULUS_R;
}
}
impl SubAssign for Fr {
fn sub_assign(&mut self, other: Self) {
SubAssign::sub_assign(self, &other);
}
}
impl<'r> Mul<&'r Fr> for Fr {
type Output = Self;
fn mul(self, other: &Self) -> Self {
let mut ret = self;
MulAssign::mul_assign(&mut ret, other);
ret
}
}
impl Mul for Fr {
type Output = Self;
fn mul(self, other: Self) -> Self {
self * &other
}
}
impl<'r> MulAssign<&'r Fr> for Fr {
fn mul_assign(&mut self, other: &Self) {
self.0 = (self.0 * other.0) % MODULUS_R;
}
}
impl MulAssign for Fr {
fn mul_assign(&mut self, other: Self) {
MulAssign::mul_assign(self, &other);
}
}
impl BitAnd<u64> for Fr {
type Output = u64;
fn bitand(self, rhs: u64) -> u64 {
(self.0).0 as u64 & rhs
}
}
impl Shr<u32> for Fr {
type Output = Fr;
fn shr(mut self, rhs: u32) -> Fr {
self.0 = Wrapping((self.0).0 >> rhs);
self
}
}
impl Field for Fr {
fn random<R: RngCore + ?std::marker::Sized>(rng: &mut R) -> Self {
Fr(Wrapping(rng.next_u32()) % MODULUS_R)
}
fn zero() -> Self {
Fr(Wrapping(0))
}
fn one() -> Self {
Fr(Wrapping(1))
}
fn is_zero(&self) -> bool {
(self.0).0 == 0
}
fn square(&self) -> Self {
Fr((self.0 * self.0) % MODULUS_R)
}
fn double(&self) -> Self {
Fr((self.0 << 1) % MODULUS_R)
}
fn invert(&self) -> CtOption<Self> {
if <Fr as Field>::is_zero(self) {
CtOption::new(<Fr as Field>::zero(), Choice::from(0))
} else {
CtOption::new(
self.pow_vartime(&[(MODULUS_R.0 as u64) - 2]),
Choice::from(1),
)
}
}
fn sqrt(&self) -> CtOption<Self> {
// Tonelli-Shank's algorithm for q mod 16 = 1
// https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
let mut c = Fr::root_of_unity();
// r = self^((t + 1) // 2)
let mut r = self.pow_vartime([32u64]);
// t = self^t
let mut t = self.pow_vartime([63u64]);
let mut m = Fr::S;
while t != <Fr as Field>::one() {
let mut i = 1;
{
let mut t2i = t.square();
loop {
if t2i == <Fr as Field>::one() {
break;
}
t2i = t2i.square();
i += 1;
}
}
for _ in 0..(m - i - 1) {
c = c.square();
}
MulAssign::mul_assign(&mut r, &c);
c = c.square();
MulAssign::mul_assign(&mut t, &c);
m = i;
}
CtOption::new(r, (r * r).ct_eq(self))
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct FrRepr([u8; 8]);
impl From<Fr> for FrRepr {
fn from(v: Fr) -> FrRepr {
FrRepr::from(&v)
}
}
impl<'a> From<&'a Fr> for FrRepr {
fn from(v: &'a Fr) -> FrRepr {
FrRepr(((v.0).0 as u64).to_le_bytes())
}
}
impl AsMut<[u8]> for FrRepr {
fn as_mut(&mut self) -> &mut [u8] {
&mut self.0[..]
}
}
impl AsRef<[u8]> for FrRepr {
fn as_ref(&self) -> &[u8] {
&self.0[..]
}
}
impl Default for FrRepr {
fn default() -> FrRepr {
FrRepr([0; 8])
}
}
impl PrimeField for Fr {
type Repr = FrRepr;
type ReprEndianness = byteorder::LittleEndian;
const NUM_BITS: u32 = 16;
const CAPACITY: u32 = 15;
const S: u32 = 10;
fn from_repr(repr: FrRepr) -> Option<Self> {
let v = u64::from_le_bytes(repr.0);
if v >= (MODULUS_R.0 as u64) {
None
} else {
Some(Fr(Wrapping(v as u32)))
}
}
fn into_repr(&self) -> FrRepr {
FrRepr::from(*self)
}
fn is_odd(&self) -> bool {
(self.0).0 % 2 != 0
}
fn char() -> FrRepr {
Fr(MODULUS_R).into()
}
fn multiplicative_generator() -> Fr {
Fr(Wrapping(5))
}
fn root_of_unity() -> Fr {
Fr(Wrapping(57751))
}
}
#[derive(Clone)]
pub struct DummyEngine;
impl ScalarEngine for DummyEngine {
type Fr = Fr;
}
impl Engine for DummyEngine {
type G1 = Fr;
type G1Affine = Fr;
type G2 = Fr;
type G2Affine = Fr;
type Fq = Fr;
type Fqe = Fr;
// TODO: This should be F_645131 or something. Doesn't matter for now.
type Fqk = Fr;
fn miller_loop<'a, I>(i: I) -> Self::Fqk
where
I: IntoIterator<
Item = &'a (
&'a <Self::G1Affine as PairingCurveAffine>::Prepared,
&'a <Self::G2Affine as PairingCurveAffine>::Prepared,
),
>,
{
let mut acc = <Fr as Field>::zero();
for &(a, b) in i {
let mut tmp = *a;
MulAssign::mul_assign(&mut tmp, b);
AddAssign::add_assign(&mut acc, &tmp);
}
acc
}
/// Perform final exponentiation of the result of a miller loop.
fn final_exponentiation(this: &Self::Fqk) -> CtOption<Self::Fqk> {
CtOption::new(*this, Choice::from(1))
}
}
impl CurveProjective for Fr {
type Affine = Fr;
type Base = Fr;
type Scalar = Fr;
type Engine = DummyEngine;
fn random<R: RngCore + ?std::marker::Sized>(rng: &mut R) -> Self {
<Fr as Field>::random(rng)
}
fn zero() -> Self {
<Fr as Field>::zero()
}
fn one() -> Self {
<Fr as Field>::one()
}
fn is_zero(&self) -> bool {
<Fr as Field>::is_zero(self)
}
fn batch_normalization(_: &mut [Self]) {}
fn is_normalized(&self) -> bool {
true
}
fn double(&mut self) {
self.0 = <Fr as Field>::double(self).0;
}
fn mul_assign<S: Into<<Self::Scalar as PrimeField>::Repr>>(&mut self, other: S) {
let tmp = Fr::from_repr(other.into()).unwrap();
MulAssign::mul_assign(self, &tmp);
}
fn into_affine(&self) -> Fr {
*self
}
fn recommended_wnaf_for_scalar(_: &Self::Scalar) -> usize {
3
}
fn recommended_wnaf_for_num_scalars(_: usize) -> usize {
3
}
}
#[derive(Copy, Clone)]
pub struct FakePoint;
impl AsMut<[u8]> for FakePoint {
fn as_mut(&mut self) -> &mut [u8] {
unimplemented!()
}
}
impl AsRef<[u8]> for FakePoint {
fn as_ref(&self) -> &[u8] {
unimplemented!()
}
}
impl EncodedPoint for FakePoint {
type Affine = Fr;
fn empty() -> Self {
unimplemented!()
}
fn size() -> usize {
unimplemented!()
}
fn into_affine(&self) -> Result<Self::Affine, GroupDecodingError> {
unimplemented!()
}
fn into_affine_unchecked(&self) -> Result<Self::Affine, GroupDecodingError> {
unimplemented!()
}
fn from_affine(_: Self::Affine) -> Self {
unimplemented!()
}
}
impl CurveAffine for Fr {
type Compressed = FakePoint;
type Uncompressed = FakePoint;
type Projective = Fr;
type Base = Fr;
type Scalar = Fr;
type Engine = DummyEngine;
fn zero() -> Self {
<Fr as Field>::zero()
}
fn one() -> Self {
<Fr as Field>::one()
}
fn is_zero(&self) -> bool {
<Fr as Field>::is_zero(self)
}
fn mul<S: Into<<Self::Scalar as PrimeField>::Repr>>(&self, other: S) -> Self::Projective {
let mut res = *self;
let tmp = Fr::from_repr(other.into()).unwrap();
MulAssign::mul_assign(&mut res, &tmp);
res
}
fn into_projective(&self) -> Self::Projective {
*self
}
}
impl PairingCurveAffine for Fr {
type Prepared = Fr;
type Pair = Fr;
type PairingResult = Fr;
fn prepare(&self) -> Self::Prepared {
*self
}
fn pairing_with(&self, other: &Self::Pair) -> Self::PairingResult {
self.mul(*other)
}
}