Files
pirate-librustzcash/ff/src/lib.rs
Jack Grigg 1761ebfb35 ff: Remove SqrtField trait
The sqrt() function is now part of the Field trait. ff_derive returns an
error on fields for which it does not support generating a square root
function.

Note that Fq6 and Fq12 in pairing::bls12_381 leave the function
unimplemented. They will be dropped once the migration to the bls12_381
crate is complete. The equivalent structs in that crate are not exposed.
2020-05-02 16:07:48 +12:00

359 lines
9.8 KiB
Rust

//! This crate provides traits for working with finite fields.
// Catch documentation errors caused by code changes.
#![no_std]
#![deny(intra_doc_link_resolution_failure)]
#![allow(unused_imports)]
#[cfg(feature = "std")]
#[macro_use]
extern crate std;
#[cfg(feature = "derive")]
pub use ff_derive::*;
use core::convert::TryFrom;
use core::fmt;
use core::marker::PhantomData;
use core::ops::{Add, AddAssign, BitAnd, Mul, MulAssign, Neg, Shr, Sub, SubAssign};
use rand_core::RngCore;
#[cfg(feature = "std")]
use std::io::{self, Read, Write};
use subtle::{ConditionallySelectable, CtOption};
/// This trait represents an element of a field.
pub trait Field:
Sized
+ Eq
+ Copy
+ Clone
+ Default
+ Send
+ Sync
+ fmt::Debug
+ fmt::Display
+ 'static
+ ConditionallySelectable
+ Add<Output = Self>
+ Sub<Output = Self>
+ Mul<Output = Self>
+ Neg<Output = Self>
+ for<'a> Add<&'a Self, Output = Self>
+ for<'a> Mul<&'a Self, Output = Self>
+ for<'a> Sub<&'a Self, Output = Self>
+ MulAssign
+ AddAssign
+ SubAssign
+ for<'a> MulAssign<&'a Self>
+ for<'a> AddAssign<&'a Self>
+ for<'a> SubAssign<&'a Self>
{
/// Returns an element chosen uniformly at random using a user-provided RNG.
fn random<R: RngCore + ?std::marker::Sized>(rng: &mut R) -> Self;
/// Returns the zero element of the field, the additive identity.
fn zero() -> Self;
/// Returns the one element of the field, the multiplicative identity.
fn one() -> Self;
/// Returns true iff this element is zero.
fn is_zero(&self) -> bool;
/// Squares this element.
#[must_use]
fn square(&self) -> Self;
/// Doubles this element.
#[must_use]
fn double(&self) -> Self;
/// Computes the multiplicative inverse of this element,
/// failing if the element is zero.
fn invert(&self) -> CtOption<Self>;
/// Exponentiates this element by a power of the base prime modulus via
/// the Frobenius automorphism.
fn frobenius_map(&mut self, power: usize);
/// Returns the square root of the field element, if it is
/// quadratic residue.
fn sqrt(&self) -> CtOption<Self>;
}
pub trait PowVartime<L>: Field
where
L: Copy + PartialEq + PartialOrd + AddAssign,
L: BitAnd<Output = L>,
L: Shr<Output = L>,
L: Sub<Output = L>,
{
const ZERO: L;
const ONE: L;
const LIMB_SIZE: L;
/// Exponentiates `self` by `exp`, where `exp` is a little-endian order
/// integer exponent.
///
/// **This operation is variable time with respect to the exponent.** If the
/// exponent is fixed, this operation is effectively constant time.
fn pow_vartime<S: AsRef<[L]>>(&self, exp: S) -> Self {
let mut res = Self::one();
for e in exp.as_ref().iter().rev() {
let mut i = Self::ZERO;
while i < Self::LIMB_SIZE {
res = res.square();
if ((*e >> (Self::LIMB_SIZE - Self::ONE - i)) & Self::ONE) == Self::ONE {
res.mul_assign(self);
}
i += Self::ONE;
}
}
res
}
}
impl<T: Field> PowVartime<u8> for T {
const ZERO: u8 = 0;
const ONE: u8 = 1;
const LIMB_SIZE: u8 = 8;
}
impl<T: Field> PowVartime<u64> for T {
const ZERO: u64 = 0;
const ONE: u64 = 1;
const LIMB_SIZE: u64 = 64;
}
/// This represents an element of a prime field.
pub trait PrimeField:
Field + Ord + From<u64> + BitAnd<u64, Output = u64> + Shr<u32, Output = Self>
{
/// The prime field can be converted back and forth into this binary
/// representation.
type Repr: Default + AsRef<[u8]> + AsMut<[u8]> + From<Self> + for<'r> From<&'r Self>;
/// Interpret a string of numbers as a (congruent) prime field element.
/// Does not accept unnecessary leading zeroes or a blank string.
fn from_str(s: &str) -> Option<Self> {
if s.is_empty() {
return None;
}
if s == "0" {
return Some(Self::zero());
}
let mut res = Self::zero();
let ten = Self::from(10);
let mut first_digit = true;
for c in s.chars() {
match c.to_digit(10) {
Some(c) => {
if first_digit {
if c == 0 {
return None;
}
first_digit = false;
}
res.mul_assign(&ten);
res.add_assign(&Self::from(u64::from(c)));
}
None => {
return None;
}
}
}
Some(res)
}
/// Attempts to convert a byte representation of a field element into an element of
/// this prime field, failing if the input is not canonical (is not smaller than the
/// field's modulus).
///
/// The byte representation is interpreted with the same endianness as is returned
/// by [`PrimeField::into_repr`].
fn from_repr(_: Self::Repr) -> Option<Self>;
/// Converts an element of the prime field into the standard byte representation for
/// this field.
///
/// Endianness of the byte representation is defined by the field implementation.
/// Callers should assume that it is the standard endianness used to represent encoded
/// elements of this particular field.
fn into_repr(&self) -> Self::Repr;
/// Returns true iff this element is odd.
fn is_odd(&self) -> bool;
/// Returns true iff this element is even.
#[inline(always)]
fn is_even(&self) -> bool {
!self.is_odd()
}
/// Returns the field characteristic; the modulus.
fn char() -> Self::Repr;
/// How many bits are needed to represent an element of this field.
const NUM_BITS: u32;
/// How many bits of information can be reliably stored in the field element.
const CAPACITY: u32;
/// Returns the multiplicative generator of `char()` - 1 order. This element
/// must also be quadratic nonresidue.
fn multiplicative_generator() -> Self;
/// 2^s * t = `char()` - 1 with t odd.
const S: u32;
/// Returns the 2^s root of unity computed by exponentiating the `multiplicative_generator()`
/// by t.
fn root_of_unity() -> Self;
}
/// An "engine" is a collection of types (fields, elliptic curve groups, etc.)
/// with well-defined relationships. Specific relationships (for example, a
/// pairing-friendly curve) can be defined in a subtrait.
pub trait ScalarEngine: Sized + 'static + Clone {
/// This is the scalar field of the engine's groups.
type Fr: PrimeField;
}
#[derive(Debug)]
pub struct BitIterator<T, E: AsRef<[T]>> {
t: E,
n: usize,
_limb: PhantomData<T>,
}
impl<E: AsRef<[u64]>> BitIterator<u64, E> {
pub fn new(t: E) -> Self {
let n = t.as_ref().len() * 64;
BitIterator {
t,
n,
_limb: PhantomData::default(),
}
}
}
impl<E: AsRef<[u64]>> Iterator for BitIterator<u64, E> {
type Item = bool;
fn next(&mut self) -> Option<bool> {
if self.n == 0 {
None
} else {
self.n -= 1;
let part = self.n / 64;
let bit = self.n - (64 * part);
Some(self.t.as_ref()[part] & (1 << bit) > 0)
}
}
}
impl<E: AsRef<[u8]>> BitIterator<u8, E> {
pub fn new(t: E) -> Self {
let n = t.as_ref().len() * 8;
BitIterator {
t,
n,
_limb: PhantomData::default(),
}
}
}
impl<E: AsRef<[u8]>> Iterator for BitIterator<u8, E> {
type Item = bool;
fn next(&mut self) -> Option<bool> {
if self.n == 0 {
None
} else {
self.n -= 1;
let part = self.n / 8;
let bit = self.n - (8 * part);
Some(self.t.as_ref()[part] & (1 << bit) > 0)
}
}
}
#[test]
fn test_bit_iterator() {
let mut a = BitIterator::<u64, _>::new([0xa953_d79b_83f6_ab59, 0x6dea_2059_e200_bd39]);
let expected = "01101101111010100010000001011001111000100000000010111101001110011010100101010011110101111001101110000011111101101010101101011001";
for e in expected.chars() {
assert!(a.next().unwrap() == (e == '1'));
}
assert!(a.next().is_none());
let expected = "1010010101111110101010000101101011101000011101110101001000011001100100100011011010001011011011010001011011101100110100111011010010110001000011110100110001100110011101101000101100011100100100100100001010011101010111110011101011000011101000111011011101011001";
let mut a = BitIterator::<u64, _>::new([
0x429d_5f3a_c3a3_b759,
0xb10f_4c66_768b_1c92,
0x9236_8b6d_16ec_d3b4,
0xa57e_a85a_e877_5219,
]);
for e in expected.chars() {
assert!(a.next().unwrap() == (e == '1'));
}
assert!(a.next().is_none());
}
pub use self::arith_impl::*;
mod arith_impl {
/// Calculate a - b - borrow, returning the result and modifying
/// the borrow value.
#[inline(always)]
pub fn sbb(a: u64, b: u64, borrow: &mut u64) -> u64 {
let tmp = (1u128 << 64) + u128::from(a) - u128::from(b) - u128::from(*borrow);
*borrow = if tmp >> 64 == 0 { 1 } else { 0 };
tmp as u64
}
/// Calculate a + b + carry, returning the sum and modifying the
/// carry value.
#[inline(always)]
pub fn adc(a: u64, b: u64, carry: &mut u64) -> u64 {
let tmp = u128::from(a) + u128::from(b) + u128::from(*carry);
*carry = (tmp >> 64) as u64;
tmp as u64
}
/// Calculate a + (b * c) + carry, returning the least significant digit
/// and setting carry to the most significant digit.
#[inline(always)]
pub fn mac_with_carry(a: u64, b: u64, c: u64, carry: &mut u64) -> u64 {
let tmp = (u128::from(a)) + u128::from(b) * u128::from(c) + u128::from(*carry);
*carry = (tmp >> 64) as u64;
tmp as u64
}
}