mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-07-30 03:51:22 +00:00
The sqrt() function is now part of the Field trait. ff_derive returns an error on fields for which it does not support generating a square root function. Note that Fq6 and Fq12 in pairing::bls12_381 leave the function unimplemented. They will be dropped once the migration to the bls12_381 crate is complete. The equivalent structs in that crate are not exposed.
318 lines
9.0 KiB
Rust
318 lines
9.0 KiB
Rust
use ff::{BitIterator, Field, PrimeField};
|
|
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
|
|
use subtle::CtOption;
|
|
|
|
use super::{edwards, JubjubEngine, JubjubParams, PrimeOrder, Unknown};
|
|
|
|
use rand_core::RngCore;
|
|
|
|
use std::marker::PhantomData;
|
|
|
|
// Represents the affine point (X, Y)
|
|
pub struct Point<E: JubjubEngine, Subgroup> {
|
|
x: E::Fr,
|
|
y: E::Fr,
|
|
infinity: bool,
|
|
_marker: PhantomData<Subgroup>,
|
|
}
|
|
|
|
fn convert_subgroup<E: JubjubEngine, S1, S2>(from: &Point<E, S1>) -> Point<E, S2> {
|
|
Point {
|
|
x: from.x,
|
|
y: from.y,
|
|
infinity: from.infinity,
|
|
_marker: PhantomData,
|
|
}
|
|
}
|
|
|
|
impl<E: JubjubEngine> From<Point<E, PrimeOrder>> for Point<E, Unknown> {
|
|
fn from(p: Point<E, PrimeOrder>) -> Point<E, Unknown> {
|
|
convert_subgroup(&p)
|
|
}
|
|
}
|
|
|
|
impl<E: JubjubEngine, Subgroup> Clone for Point<E, Subgroup> {
|
|
fn clone(&self) -> Self {
|
|
convert_subgroup(self)
|
|
}
|
|
}
|
|
|
|
impl<E: JubjubEngine, Subgroup> PartialEq for Point<E, Subgroup> {
|
|
fn eq(&self, other: &Point<E, Subgroup>) -> bool {
|
|
match (self.infinity, other.infinity) {
|
|
(true, true) => true,
|
|
(true, false) | (false, true) => false,
|
|
(false, false) => self.x == other.x && self.y == other.y,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<E: JubjubEngine> Point<E, Unknown> {
|
|
pub fn get_for_x(x: E::Fr, sign: bool, params: &E::Params) -> CtOption<Self> {
|
|
// Given an x on the curve, y = sqrt(x^3 + A*x^2 + x)
|
|
|
|
let mut x2 = x.square();
|
|
|
|
let mut rhs = x2;
|
|
rhs.mul_assign(params.montgomery_a());
|
|
rhs.add_assign(&x);
|
|
x2.mul_assign(&x);
|
|
rhs.add_assign(&x2);
|
|
|
|
rhs.sqrt().map(|mut y| {
|
|
if y.is_odd() != sign {
|
|
y = y.neg();
|
|
}
|
|
|
|
Point {
|
|
x,
|
|
y,
|
|
infinity: false,
|
|
_marker: PhantomData,
|
|
}
|
|
})
|
|
}
|
|
|
|
/// This guarantees the point is in the prime order subgroup
|
|
#[must_use]
|
|
pub fn mul_by_cofactor(&self, params: &E::Params) -> Point<E, PrimeOrder> {
|
|
let tmp = self.double(params).double(params).double(params);
|
|
|
|
convert_subgroup(&tmp)
|
|
}
|
|
|
|
pub fn rand<R: RngCore>(rng: &mut R, params: &E::Params) -> Self {
|
|
loop {
|
|
let x = E::Fr::random(rng);
|
|
let sign = rng.next_u32() % 2 != 0;
|
|
|
|
let p = Self::get_for_x(x, sign, params);
|
|
if p.is_some().into() {
|
|
return p.unwrap();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
|
/// Convert from an Edwards point
|
|
pub fn from_edwards(e: &edwards::Point<E, Subgroup>, params: &E::Params) -> Self {
|
|
let (x, y) = e.to_xy();
|
|
|
|
if y == E::Fr::one() {
|
|
// The only solution for y = 1 is x = 0. (0, 1) is
|
|
// the neutral element, so we map this to the point
|
|
// at infinity.
|
|
|
|
Point::zero()
|
|
} else {
|
|
// The map from a twisted Edwards curve is defined as
|
|
// (x, y) -> (u, v) where
|
|
// u = (1 + y) / (1 - y)
|
|
// v = u / x
|
|
//
|
|
// This mapping is not defined for y = 1 and for x = 0.
|
|
//
|
|
// We have that y != 1 above. If x = 0, the only
|
|
// solutions for y are 1 (contradiction) or -1.
|
|
if x.is_zero() {
|
|
// (0, -1) is the point of order two which is not
|
|
// the neutral element, so we map it to (0, 0) which is
|
|
// the only affine point of order 2.
|
|
|
|
Point {
|
|
x: E::Fr::zero(),
|
|
y: E::Fr::zero(),
|
|
infinity: false,
|
|
_marker: PhantomData,
|
|
}
|
|
} else {
|
|
// The mapping is defined as above.
|
|
//
|
|
// (x, y) -> (u, v) where
|
|
// u = (1 + y) / (1 - y)
|
|
// v = u / x
|
|
|
|
let mut u = E::Fr::one();
|
|
u.add_assign(&y);
|
|
{
|
|
let mut tmp = E::Fr::one();
|
|
tmp.sub_assign(&y);
|
|
u.mul_assign(&tmp.invert().unwrap())
|
|
}
|
|
|
|
let mut v = u;
|
|
v.mul_assign(&x.invert().unwrap());
|
|
|
|
// Scale it into the correct curve constants
|
|
v.mul_assign(params.scale());
|
|
|
|
Point {
|
|
x: u,
|
|
y: v,
|
|
infinity: false,
|
|
_marker: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Attempts to cast this as a prime order element, failing if it's
|
|
/// not in the prime order subgroup.
|
|
pub fn as_prime_order(&self, params: &E::Params) -> Option<Point<E, PrimeOrder>> {
|
|
if self.mul(E::Fs::char(), params) == Point::zero() {
|
|
Some(convert_subgroup(self))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
pub fn zero() -> Self {
|
|
Point {
|
|
x: E::Fr::zero(),
|
|
y: E::Fr::zero(),
|
|
infinity: true,
|
|
_marker: PhantomData,
|
|
}
|
|
}
|
|
|
|
pub fn to_xy(&self) -> Option<(E::Fr, E::Fr)> {
|
|
if self.infinity {
|
|
None
|
|
} else {
|
|
Some((self.x, self.y))
|
|
}
|
|
}
|
|
|
|
#[must_use]
|
|
pub fn negate(&self) -> Self {
|
|
let mut p = self.clone();
|
|
|
|
p.y = p.y.neg();
|
|
|
|
p
|
|
}
|
|
|
|
#[must_use]
|
|
pub fn double(&self, params: &E::Params) -> Self {
|
|
if self.infinity {
|
|
return Point::zero();
|
|
}
|
|
|
|
// (0, 0) is the point of order 2. Doubling
|
|
// produces the point at infinity.
|
|
if self.y == E::Fr::zero() {
|
|
return Point::zero();
|
|
}
|
|
|
|
// This is a standard affine point doubling formula
|
|
// See 4.3.2 The group law for Weierstrass curves
|
|
// Montgomery curves and the Montgomery Ladder
|
|
// Daniel J. Bernstein and Tanja Lange
|
|
|
|
let mut delta = E::Fr::one();
|
|
{
|
|
let mut tmp = *params.montgomery_a();
|
|
tmp.mul_assign(&self.x);
|
|
tmp = tmp.double();
|
|
delta.add_assign(&tmp);
|
|
}
|
|
{
|
|
let mut tmp = self.x.square();
|
|
delta.add_assign(&tmp);
|
|
tmp = tmp.double();
|
|
delta.add_assign(&tmp);
|
|
}
|
|
{
|
|
let tmp = self.y.double();
|
|
// y is nonzero so this must be nonzero
|
|
delta.mul_assign(&tmp.invert().unwrap());
|
|
}
|
|
|
|
let mut x3 = delta.square();
|
|
x3.sub_assign(params.montgomery_a());
|
|
x3.sub_assign(&self.x);
|
|
x3.sub_assign(&self.x);
|
|
|
|
let mut y3 = x3;
|
|
y3.sub_assign(&self.x);
|
|
y3.mul_assign(&delta);
|
|
y3.add_assign(&self.y);
|
|
y3 = y3.neg();
|
|
|
|
Point {
|
|
x: x3,
|
|
y: y3,
|
|
infinity: false,
|
|
_marker: PhantomData,
|
|
}
|
|
}
|
|
|
|
#[must_use]
|
|
pub fn add(&self, other: &Self, params: &E::Params) -> Self {
|
|
// This is a standard affine point addition formula
|
|
// See 4.3.2 The group law for Weierstrass curves
|
|
// Montgomery curves and the Montgomery Ladder
|
|
// Daniel J. Bernstein and Tanja Lange
|
|
|
|
match (self.infinity, other.infinity) {
|
|
(true, true) => Point::zero(),
|
|
(true, false) => other.clone(),
|
|
(false, true) => self.clone(),
|
|
(false, false) => {
|
|
if self.x == other.x {
|
|
if self.y == other.y {
|
|
self.double(params)
|
|
} else {
|
|
Point::zero()
|
|
}
|
|
} else {
|
|
let mut delta = other.y;
|
|
delta.sub_assign(&self.y);
|
|
{
|
|
let mut tmp = other.x;
|
|
tmp.sub_assign(&self.x);
|
|
// self.x != other.x, so this must be nonzero
|
|
delta.mul_assign(&tmp.invert().unwrap());
|
|
}
|
|
|
|
let mut x3 = delta.square();
|
|
x3.sub_assign(params.montgomery_a());
|
|
x3.sub_assign(&self.x);
|
|
x3.sub_assign(&other.x);
|
|
|
|
let mut y3 = x3;
|
|
y3.sub_assign(&self.x);
|
|
y3.mul_assign(&delta);
|
|
y3.add_assign(&self.y);
|
|
y3 = y3.neg();
|
|
|
|
Point {
|
|
x: x3,
|
|
y: y3,
|
|
infinity: false,
|
|
_marker: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[must_use]
|
|
pub fn mul<S: Into<<E::Fs as PrimeField>::Repr>>(&self, scalar: S, params: &E::Params) -> Self {
|
|
// Standard double-and-add scalar multiplication
|
|
|
|
let mut res = Self::zero();
|
|
|
|
for b in BitIterator::<u8, _>::new(scalar.into()) {
|
|
res = res.double(params);
|
|
|
|
if b {
|
|
res = res.add(self, params);
|
|
}
|
|
}
|
|
|
|
res
|
|
}
|
|
}
|