mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-07-30 20:11:23 +00:00
1100 lines
34 KiB
Rust
1100 lines
34 KiB
Rust
use ff::Field;
|
|
use pairing::Engine;
|
|
|
|
use bellman::{ConstraintSystem, SynthesisError};
|
|
|
|
use bellman::gadgets::Assignment;
|
|
|
|
use bellman::gadgets::num::{AllocatedNum, Num};
|
|
|
|
use zcash_primitives::jubjub::{edwards, FixedGenerators, JubjubEngine, JubjubParams};
|
|
|
|
use bellman::gadgets::lookup::lookup3_xy;
|
|
|
|
use bellman::gadgets::boolean::Boolean;
|
|
|
|
#[derive(Clone)]
|
|
pub struct EdwardsPoint<E: Engine> {
|
|
x: AllocatedNum<E>,
|
|
y: AllocatedNum<E>,
|
|
}
|
|
|
|
/// Perform a fixed-base scalar multiplication with
|
|
/// `by` being in little-endian bit order.
|
|
pub fn fixed_base_multiplication<E, CS>(
|
|
mut cs: CS,
|
|
base: FixedGenerators,
|
|
by: &[Boolean],
|
|
params: &E::Params,
|
|
) -> Result<EdwardsPoint<E>, SynthesisError>
|
|
where
|
|
CS: ConstraintSystem<E>,
|
|
E: JubjubEngine,
|
|
{
|
|
// Represents the result of the multiplication
|
|
let mut result = None;
|
|
|
|
for (i, (chunk, window)) in by
|
|
.chunks(3)
|
|
.zip(params.circuit_generators(base).iter())
|
|
.enumerate()
|
|
{
|
|
let chunk_a = chunk
|
|
.get(0)
|
|
.map(|e| e.clone())
|
|
.unwrap_or(Boolean::constant(false));
|
|
let chunk_b = chunk
|
|
.get(1)
|
|
.map(|e| e.clone())
|
|
.unwrap_or(Boolean::constant(false));
|
|
let chunk_c = chunk
|
|
.get(2)
|
|
.map(|e| e.clone())
|
|
.unwrap_or(Boolean::constant(false));
|
|
|
|
let (x, y) = lookup3_xy(
|
|
cs.namespace(|| format!("window table lookup {}", i)),
|
|
&[chunk_a, chunk_b, chunk_c],
|
|
window,
|
|
)?;
|
|
|
|
let p = EdwardsPoint { x: x, y: y };
|
|
|
|
if result.is_none() {
|
|
result = Some(p);
|
|
} else {
|
|
result = Some(result.unwrap().add(
|
|
cs.namespace(|| format!("addition {}", i)),
|
|
&p,
|
|
params,
|
|
)?);
|
|
}
|
|
}
|
|
|
|
Ok(result.get()?.clone())
|
|
}
|
|
|
|
impl<E: JubjubEngine> EdwardsPoint<E> {
|
|
pub fn get_x(&self) -> &AllocatedNum<E> {
|
|
&self.x
|
|
}
|
|
|
|
pub fn get_y(&self) -> &AllocatedNum<E> {
|
|
&self.y
|
|
}
|
|
|
|
pub fn assert_not_small_order<CS>(
|
|
&self,
|
|
mut cs: CS,
|
|
params: &E::Params,
|
|
) -> Result<(), SynthesisError>
|
|
where
|
|
CS: ConstraintSystem<E>,
|
|
{
|
|
let tmp = self.double(cs.namespace(|| "first doubling"), params)?;
|
|
let tmp = tmp.double(cs.namespace(|| "second doubling"), params)?;
|
|
let tmp = tmp.double(cs.namespace(|| "third doubling"), params)?;
|
|
|
|
// (0, -1) is a small order point, but won't ever appear here
|
|
// because cofactor is 2^3, and we performed three doublings.
|
|
// (0, 1) is the neutral element, so checking if x is nonzero
|
|
// is sufficient to prevent small order points here.
|
|
tmp.x.assert_nonzero(cs.namespace(|| "check x != 0"))?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub fn inputize<CS>(&self, mut cs: CS) -> Result<(), SynthesisError>
|
|
where
|
|
CS: ConstraintSystem<E>,
|
|
{
|
|
self.x.inputize(cs.namespace(|| "x"))?;
|
|
self.y.inputize(cs.namespace(|| "y"))?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// This converts the point into a representation.
|
|
pub fn repr<CS>(&self, mut cs: CS) -> Result<Vec<Boolean>, SynthesisError>
|
|
where
|
|
CS: ConstraintSystem<E>,
|
|
{
|
|
let mut tmp = vec![];
|
|
|
|
let x = self.x.into_bits_le_strict(cs.namespace(|| "unpack x"))?;
|
|
|
|
let y = self.y.into_bits_le_strict(cs.namespace(|| "unpack y"))?;
|
|
|
|
tmp.extend(y);
|
|
tmp.push(x[0].clone());
|
|
|
|
Ok(tmp)
|
|
}
|
|
|
|
/// This 'witnesses' a point inside the constraint system.
|
|
/// It guarantees the point is on the curve.
|
|
pub fn witness<Order, CS>(
|
|
mut cs: CS,
|
|
p: Option<edwards::Point<E, Order>>,
|
|
params: &E::Params,
|
|
) -> Result<Self, SynthesisError>
|
|
where
|
|
CS: ConstraintSystem<E>,
|
|
{
|
|
let p = p.map(|p| p.into_xy());
|
|
|
|
// Allocate x
|
|
let x = AllocatedNum::alloc(cs.namespace(|| "x"), || Ok(p.get()?.0))?;
|
|
|
|
// Allocate y
|
|
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || Ok(p.get()?.1))?;
|
|
|
|
Self::interpret(cs.namespace(|| "point interpretation"), &x, &y, params)
|
|
}
|
|
|
|
/// Returns `self` if condition is true, and the neutral
|
|
/// element (0, 1) otherwise.
|
|
pub fn conditionally_select<CS>(
|
|
&self,
|
|
mut cs: CS,
|
|
condition: &Boolean,
|
|
) -> Result<Self, SynthesisError>
|
|
where
|
|
CS: ConstraintSystem<E>,
|
|
{
|
|
// Compute x' = self.x if condition, and 0 otherwise
|
|
let x_prime = AllocatedNum::alloc(cs.namespace(|| "x'"), || {
|
|
if *condition.get_value().get()? {
|
|
Ok(*self.x.get_value().get()?)
|
|
} else {
|
|
Ok(E::Fr::zero())
|
|
}
|
|
})?;
|
|
|
|
// condition * x = x'
|
|
// if condition is 0, x' must be 0
|
|
// if condition is 1, x' must be x
|
|
let one = CS::one();
|
|
cs.enforce(
|
|
|| "x' computation",
|
|
|lc| lc + self.x.get_variable(),
|
|
|_| condition.lc(one, E::Fr::one()),
|
|
|lc| lc + x_prime.get_variable(),
|
|
);
|
|
|
|
// Compute y' = self.y if condition, and 1 otherwise
|
|
let y_prime = AllocatedNum::alloc(cs.namespace(|| "y'"), || {
|
|
if *condition.get_value().get()? {
|
|
Ok(*self.y.get_value().get()?)
|
|
} else {
|
|
Ok(E::Fr::one())
|
|
}
|
|
})?;
|
|
|
|
// condition * y = y' - (1 - condition)
|
|
// if condition is 0, y' must be 1
|
|
// if condition is 1, y' must be y
|
|
cs.enforce(
|
|
|| "y' computation",
|
|
|lc| lc + self.y.get_variable(),
|
|
|_| condition.lc(one, E::Fr::one()),
|
|
|lc| lc + y_prime.get_variable() - &condition.not().lc(one, E::Fr::one()),
|
|
);
|
|
|
|
Ok(EdwardsPoint {
|
|
x: x_prime,
|
|
y: y_prime,
|
|
})
|
|
}
|
|
|
|
/// Performs a scalar multiplication of this twisted Edwards
|
|
/// point by a scalar represented as a sequence of booleans
|
|
/// in little-endian bit order.
|
|
pub fn mul<CS>(
|
|
&self,
|
|
mut cs: CS,
|
|
by: &[Boolean],
|
|
params: &E::Params,
|
|
) -> Result<Self, SynthesisError>
|
|
where
|
|
CS: ConstraintSystem<E>,
|
|
{
|
|
// Represents the current "magnitude" of the base
|
|
// that we're operating over. Starts at self,
|
|
// then 2*self, then 4*self, ...
|
|
let mut curbase = None;
|
|
|
|
// Represents the result of the multiplication
|
|
let mut result = None;
|
|
|
|
for (i, bit) in by.iter().enumerate() {
|
|
if curbase.is_none() {
|
|
curbase = Some(self.clone());
|
|
} else {
|
|
// Double the previous value
|
|
curbase = Some(
|
|
curbase
|
|
.unwrap()
|
|
.double(cs.namespace(|| format!("doubling {}", i)), params)?,
|
|
);
|
|
}
|
|
|
|
// Represents the select base. If the bit for this magnitude
|
|
// is true, this will return `curbase`. Otherwise it will
|
|
// return the neutral element, which will have no effect on
|
|
// the result.
|
|
let thisbase = curbase
|
|
.as_ref()
|
|
.unwrap()
|
|
.conditionally_select(cs.namespace(|| format!("selection {}", i)), bit)?;
|
|
|
|
if result.is_none() {
|
|
result = Some(thisbase);
|
|
} else {
|
|
result = Some(result.unwrap().add(
|
|
cs.namespace(|| format!("addition {}", i)),
|
|
&thisbase,
|
|
params,
|
|
)?);
|
|
}
|
|
}
|
|
|
|
Ok(result.get()?.clone())
|
|
}
|
|
|
|
pub fn interpret<CS>(
|
|
mut cs: CS,
|
|
x: &AllocatedNum<E>,
|
|
y: &AllocatedNum<E>,
|
|
params: &E::Params,
|
|
) -> Result<Self, SynthesisError>
|
|
where
|
|
CS: ConstraintSystem<E>,
|
|
{
|
|
// -x^2 + y^2 = 1 + dx^2y^2
|
|
|
|
let x2 = x.square(cs.namespace(|| "x^2"))?;
|
|
let y2 = y.square(cs.namespace(|| "y^2"))?;
|
|
let x2y2 = x2.mul(cs.namespace(|| "x^2 y^2"), &y2)?;
|
|
|
|
let one = CS::one();
|
|
cs.enforce(
|
|
|| "on curve check",
|
|
|lc| lc - x2.get_variable() + y2.get_variable(),
|
|
|lc| lc + one,
|
|
|lc| lc + one + (*params.edwards_d(), x2y2.get_variable()),
|
|
);
|
|
|
|
Ok(EdwardsPoint {
|
|
x: x.clone(),
|
|
y: y.clone(),
|
|
})
|
|
}
|
|
|
|
pub fn double<CS>(&self, mut cs: CS, params: &E::Params) -> Result<Self, SynthesisError>
|
|
where
|
|
CS: ConstraintSystem<E>,
|
|
{
|
|
// Compute T = (x1 + y1) * (x1 + y1)
|
|
let t = AllocatedNum::alloc(cs.namespace(|| "T"), || {
|
|
let mut t0 = *self.x.get_value().get()?;
|
|
t0.add_assign(self.y.get_value().get()?);
|
|
|
|
let mut t1 = *self.x.get_value().get()?;
|
|
t1.add_assign(self.y.get_value().get()?);
|
|
|
|
t0.mul_assign(&t1);
|
|
|
|
Ok(t0)
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|| "T computation",
|
|
|lc| lc + self.x.get_variable() + self.y.get_variable(),
|
|
|lc| lc + self.x.get_variable() + self.y.get_variable(),
|
|
|lc| lc + t.get_variable(),
|
|
);
|
|
|
|
// Compute A = x1 * y1
|
|
let a = self.x.mul(cs.namespace(|| "A computation"), &self.y)?;
|
|
|
|
// Compute C = d*A*A
|
|
let c = AllocatedNum::alloc(cs.namespace(|| "C"), || {
|
|
let mut t0 = *a.get_value().get()?;
|
|
t0.square();
|
|
t0.mul_assign(params.edwards_d());
|
|
|
|
Ok(t0)
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|| "C computation",
|
|
|lc| lc + (*params.edwards_d(), a.get_variable()),
|
|
|lc| lc + a.get_variable(),
|
|
|lc| lc + c.get_variable(),
|
|
);
|
|
|
|
// Compute x3 = (2.A) / (1 + C)
|
|
let x3 = AllocatedNum::alloc(cs.namespace(|| "x3"), || {
|
|
let mut t0 = *a.get_value().get()?;
|
|
t0.double();
|
|
|
|
let mut t1 = E::Fr::one();
|
|
t1.add_assign(c.get_value().get()?);
|
|
|
|
match t1.inverse() {
|
|
Some(t1) => {
|
|
t0.mul_assign(&t1);
|
|
|
|
Ok(t0)
|
|
}
|
|
None => Err(SynthesisError::DivisionByZero),
|
|
}
|
|
})?;
|
|
|
|
let one = CS::one();
|
|
cs.enforce(
|
|
|| "x3 computation",
|
|
|lc| lc + one + c.get_variable(),
|
|
|lc| lc + x3.get_variable(),
|
|
|lc| lc + a.get_variable() + a.get_variable(),
|
|
);
|
|
|
|
// Compute y3 = (U - 2.A) / (1 - C)
|
|
let y3 = AllocatedNum::alloc(cs.namespace(|| "y3"), || {
|
|
let mut t0 = *a.get_value().get()?;
|
|
t0.double();
|
|
t0.negate();
|
|
t0.add_assign(t.get_value().get()?);
|
|
|
|
let mut t1 = E::Fr::one();
|
|
t1.sub_assign(c.get_value().get()?);
|
|
|
|
match t1.inverse() {
|
|
Some(t1) => {
|
|
t0.mul_assign(&t1);
|
|
|
|
Ok(t0)
|
|
}
|
|
None => Err(SynthesisError::DivisionByZero),
|
|
}
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|| "y3 computation",
|
|
|lc| lc + one - c.get_variable(),
|
|
|lc| lc + y3.get_variable(),
|
|
|lc| lc + t.get_variable() - a.get_variable() - a.get_variable(),
|
|
);
|
|
|
|
Ok(EdwardsPoint { x: x3, y: y3 })
|
|
}
|
|
|
|
/// Perform addition between any two points
|
|
pub fn add<CS>(
|
|
&self,
|
|
mut cs: CS,
|
|
other: &Self,
|
|
params: &E::Params,
|
|
) -> Result<Self, SynthesisError>
|
|
where
|
|
CS: ConstraintSystem<E>,
|
|
{
|
|
// Compute U = (x1 + y1) * (x2 + y2)
|
|
let u = AllocatedNum::alloc(cs.namespace(|| "U"), || {
|
|
let mut t0 = *self.x.get_value().get()?;
|
|
t0.add_assign(self.y.get_value().get()?);
|
|
|
|
let mut t1 = *other.x.get_value().get()?;
|
|
t1.add_assign(other.y.get_value().get()?);
|
|
|
|
t0.mul_assign(&t1);
|
|
|
|
Ok(t0)
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|| "U computation",
|
|
|lc| lc + self.x.get_variable() + self.y.get_variable(),
|
|
|lc| lc + other.x.get_variable() + other.y.get_variable(),
|
|
|lc| lc + u.get_variable(),
|
|
);
|
|
|
|
// Compute A = y2 * x1
|
|
let a = other.y.mul(cs.namespace(|| "A computation"), &self.x)?;
|
|
|
|
// Compute B = x2 * y1
|
|
let b = other.x.mul(cs.namespace(|| "B computation"), &self.y)?;
|
|
|
|
// Compute C = d*A*B
|
|
let c = AllocatedNum::alloc(cs.namespace(|| "C"), || {
|
|
let mut t0 = *a.get_value().get()?;
|
|
t0.mul_assign(b.get_value().get()?);
|
|
t0.mul_assign(params.edwards_d());
|
|
|
|
Ok(t0)
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|| "C computation",
|
|
|lc| lc + (*params.edwards_d(), a.get_variable()),
|
|
|lc| lc + b.get_variable(),
|
|
|lc| lc + c.get_variable(),
|
|
);
|
|
|
|
// Compute x3 = (A + B) / (1 + C)
|
|
let x3 = AllocatedNum::alloc(cs.namespace(|| "x3"), || {
|
|
let mut t0 = *a.get_value().get()?;
|
|
t0.add_assign(b.get_value().get()?);
|
|
|
|
let mut t1 = E::Fr::one();
|
|
t1.add_assign(c.get_value().get()?);
|
|
|
|
match t1.inverse() {
|
|
Some(t1) => {
|
|
t0.mul_assign(&t1);
|
|
|
|
Ok(t0)
|
|
}
|
|
None => Err(SynthesisError::DivisionByZero),
|
|
}
|
|
})?;
|
|
|
|
let one = CS::one();
|
|
cs.enforce(
|
|
|| "x3 computation",
|
|
|lc| lc + one + c.get_variable(),
|
|
|lc| lc + x3.get_variable(),
|
|
|lc| lc + a.get_variable() + b.get_variable(),
|
|
);
|
|
|
|
// Compute y3 = (U - A - B) / (1 - C)
|
|
let y3 = AllocatedNum::alloc(cs.namespace(|| "y3"), || {
|
|
let mut t0 = *u.get_value().get()?;
|
|
t0.sub_assign(a.get_value().get()?);
|
|
t0.sub_assign(b.get_value().get()?);
|
|
|
|
let mut t1 = E::Fr::one();
|
|
t1.sub_assign(c.get_value().get()?);
|
|
|
|
match t1.inverse() {
|
|
Some(t1) => {
|
|
t0.mul_assign(&t1);
|
|
|
|
Ok(t0)
|
|
}
|
|
None => Err(SynthesisError::DivisionByZero),
|
|
}
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|| "y3 computation",
|
|
|lc| lc + one - c.get_variable(),
|
|
|lc| lc + y3.get_variable(),
|
|
|lc| lc + u.get_variable() - a.get_variable() - b.get_variable(),
|
|
);
|
|
|
|
Ok(EdwardsPoint { x: x3, y: y3 })
|
|
}
|
|
}
|
|
|
|
pub struct MontgomeryPoint<E: Engine> {
|
|
x: Num<E>,
|
|
y: Num<E>,
|
|
}
|
|
|
|
impl<E: JubjubEngine> MontgomeryPoint<E> {
|
|
/// Converts an element in the prime order subgroup into
|
|
/// a point in the birationally equivalent twisted
|
|
/// Edwards curve.
|
|
pub fn into_edwards<CS>(
|
|
&self,
|
|
mut cs: CS,
|
|
params: &E::Params,
|
|
) -> Result<EdwardsPoint<E>, SynthesisError>
|
|
where
|
|
CS: ConstraintSystem<E>,
|
|
{
|
|
// Compute u = (scale*x) / y
|
|
let u = AllocatedNum::alloc(cs.namespace(|| "u"), || {
|
|
let mut t0 = *self.x.get_value().get()?;
|
|
t0.mul_assign(params.scale());
|
|
|
|
match self.y.get_value().get()?.inverse() {
|
|
Some(invy) => {
|
|
t0.mul_assign(&invy);
|
|
|
|
Ok(t0)
|
|
}
|
|
None => Err(SynthesisError::DivisionByZero),
|
|
}
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|| "u computation",
|
|
|lc| lc + &self.y.lc(E::Fr::one()),
|
|
|lc| lc + u.get_variable(),
|
|
|lc| lc + &self.x.lc(*params.scale()),
|
|
);
|
|
|
|
// Compute v = (x - 1) / (x + 1)
|
|
let v = AllocatedNum::alloc(cs.namespace(|| "v"), || {
|
|
let mut t0 = *self.x.get_value().get()?;
|
|
let mut t1 = t0;
|
|
t0.sub_assign(&E::Fr::one());
|
|
t1.add_assign(&E::Fr::one());
|
|
|
|
match t1.inverse() {
|
|
Some(t1) => {
|
|
t0.mul_assign(&t1);
|
|
|
|
Ok(t0)
|
|
}
|
|
None => Err(SynthesisError::DivisionByZero),
|
|
}
|
|
})?;
|
|
|
|
let one = CS::one();
|
|
cs.enforce(
|
|
|| "v computation",
|
|
|lc| lc + &self.x.lc(E::Fr::one()) + one,
|
|
|lc| lc + v.get_variable(),
|
|
|lc| lc + &self.x.lc(E::Fr::one()) - one,
|
|
);
|
|
|
|
Ok(EdwardsPoint { x: u, y: v })
|
|
}
|
|
|
|
/// Interprets an (x, y) pair as a point
|
|
/// in Montgomery, does not check that it's
|
|
/// on the curve. Useful for constants and
|
|
/// window table lookups.
|
|
pub fn interpret_unchecked(x: Num<E>, y: Num<E>) -> Self {
|
|
MontgomeryPoint { x: x, y: y }
|
|
}
|
|
|
|
/// Performs an affine point addition, not defined for
|
|
/// coincident points.
|
|
pub fn add<CS>(
|
|
&self,
|
|
mut cs: CS,
|
|
other: &Self,
|
|
params: &E::Params,
|
|
) -> Result<Self, SynthesisError>
|
|
where
|
|
CS: ConstraintSystem<E>,
|
|
{
|
|
// Compute lambda = (y' - y) / (x' - x)
|
|
let lambda = AllocatedNum::alloc(cs.namespace(|| "lambda"), || {
|
|
let mut n = *other.y.get_value().get()?;
|
|
n.sub_assign(self.y.get_value().get()?);
|
|
|
|
let mut d = *other.x.get_value().get()?;
|
|
d.sub_assign(self.x.get_value().get()?);
|
|
|
|
match d.inverse() {
|
|
Some(d) => {
|
|
n.mul_assign(&d);
|
|
Ok(n)
|
|
}
|
|
None => Err(SynthesisError::DivisionByZero),
|
|
}
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|| "evaluate lambda",
|
|
|lc| lc + &other.x.lc(E::Fr::one()) - &self.x.lc(E::Fr::one()),
|
|
|lc| lc + lambda.get_variable(),
|
|
|lc| lc + &other.y.lc(E::Fr::one()) - &self.y.lc(E::Fr::one()),
|
|
);
|
|
|
|
// Compute x'' = lambda^2 - A - x - x'
|
|
let xprime = AllocatedNum::alloc(cs.namespace(|| "xprime"), || {
|
|
let mut t0 = *lambda.get_value().get()?;
|
|
t0.square();
|
|
t0.sub_assign(params.montgomery_a());
|
|
t0.sub_assign(self.x.get_value().get()?);
|
|
t0.sub_assign(other.x.get_value().get()?);
|
|
|
|
Ok(t0)
|
|
})?;
|
|
|
|
// (lambda) * (lambda) = (A + x + x' + x'')
|
|
let one = CS::one();
|
|
cs.enforce(
|
|
|| "evaluate xprime",
|
|
|lc| lc + lambda.get_variable(),
|
|
|lc| lc + lambda.get_variable(),
|
|
|lc| {
|
|
lc + (*params.montgomery_a(), one)
|
|
+ &self.x.lc(E::Fr::one())
|
|
+ &other.x.lc(E::Fr::one())
|
|
+ xprime.get_variable()
|
|
},
|
|
);
|
|
|
|
// Compute y' = -(y + lambda(x' - x))
|
|
let yprime = AllocatedNum::alloc(cs.namespace(|| "yprime"), || {
|
|
let mut t0 = *xprime.get_value().get()?;
|
|
t0.sub_assign(self.x.get_value().get()?);
|
|
t0.mul_assign(lambda.get_value().get()?);
|
|
t0.add_assign(self.y.get_value().get()?);
|
|
t0.negate();
|
|
|
|
Ok(t0)
|
|
})?;
|
|
|
|
// y' + y = lambda(x - x')
|
|
cs.enforce(
|
|
|| "evaluate yprime",
|
|
|lc| lc + &self.x.lc(E::Fr::one()) - xprime.get_variable(),
|
|
|lc| lc + lambda.get_variable(),
|
|
|lc| lc + yprime.get_variable() + &self.y.lc(E::Fr::one()),
|
|
);
|
|
|
|
Ok(MontgomeryPoint {
|
|
x: xprime.into(),
|
|
y: yprime.into(),
|
|
})
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use bellman::ConstraintSystem;
|
|
use ff::{BitIterator, Field, PrimeField};
|
|
use pairing::bls12_381::{Bls12, Fr};
|
|
use rand_core::{RngCore, SeedableRng};
|
|
use rand_xorshift::XorShiftRng;
|
|
|
|
use bellman::gadgets::test::*;
|
|
use zcash_primitives::jubjub::fs::Fs;
|
|
use zcash_primitives::jubjub::{
|
|
edwards, montgomery, FixedGenerators, JubjubBls12, JubjubParams,
|
|
};
|
|
|
|
use super::{fixed_base_multiplication, AllocatedNum, EdwardsPoint, MontgomeryPoint};
|
|
use bellman::gadgets::boolean::{AllocatedBit, Boolean};
|
|
|
|
#[test]
|
|
fn test_into_edwards() {
|
|
let params = &JubjubBls12::new();
|
|
let rng = &mut XorShiftRng::from_seed([
|
|
0x59, 0x62, 0xbe, 0x3d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
|
|
0xbc, 0xe5,
|
|
]);
|
|
|
|
for _ in 0..100 {
|
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
|
|
|
let p = montgomery::Point::<Bls12, _>::rand(rng, params);
|
|
let (u, v) = edwards::Point::from_montgomery(&p, params).into_xy();
|
|
let (x, y) = p.into_xy().unwrap();
|
|
|
|
let numx = AllocatedNum::alloc(cs.namespace(|| "mont x"), || Ok(x)).unwrap();
|
|
let numy = AllocatedNum::alloc(cs.namespace(|| "mont y"), || Ok(y)).unwrap();
|
|
|
|
let p = MontgomeryPoint::interpret_unchecked(numx.into(), numy.into());
|
|
|
|
let q = p.into_edwards(&mut cs, params).unwrap();
|
|
|
|
assert!(cs.is_satisfied());
|
|
assert!(q.x.get_value().unwrap() == u);
|
|
assert!(q.y.get_value().unwrap() == v);
|
|
|
|
cs.set("u/num", Fr::random(rng));
|
|
assert_eq!(cs.which_is_unsatisfied().unwrap(), "u computation");
|
|
cs.set("u/num", u);
|
|
assert!(cs.is_satisfied());
|
|
|
|
cs.set("v/num", Fr::random(rng));
|
|
assert_eq!(cs.which_is_unsatisfied().unwrap(), "v computation");
|
|
cs.set("v/num", v);
|
|
assert!(cs.is_satisfied());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_interpret() {
|
|
let params = &JubjubBls12::new();
|
|
let rng = &mut XorShiftRng::from_seed([
|
|
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
|
|
0xbc, 0xe5,
|
|
]);
|
|
|
|
for _ in 0..100 {
|
|
let p = edwards::Point::<Bls12, _>::rand(rng, ¶ms);
|
|
|
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
|
let q = EdwardsPoint::witness(&mut cs, Some(p.clone()), ¶ms).unwrap();
|
|
|
|
let p = p.into_xy();
|
|
|
|
assert!(cs.is_satisfied());
|
|
assert_eq!(q.x.get_value().unwrap(), p.0);
|
|
assert_eq!(q.y.get_value().unwrap(), p.1);
|
|
}
|
|
|
|
for _ in 0..100 {
|
|
let p = edwards::Point::<Bls12, _>::rand(rng, ¶ms);
|
|
let (x, y) = p.into_xy();
|
|
|
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
|
let numx = AllocatedNum::alloc(cs.namespace(|| "x"), || Ok(x)).unwrap();
|
|
let numy = AllocatedNum::alloc(cs.namespace(|| "y"), || Ok(y)).unwrap();
|
|
|
|
let p = EdwardsPoint::interpret(&mut cs, &numx, &numy, ¶ms).unwrap();
|
|
|
|
assert!(cs.is_satisfied());
|
|
assert_eq!(p.x.get_value().unwrap(), x);
|
|
assert_eq!(p.y.get_value().unwrap(), y);
|
|
}
|
|
|
|
// Random (x, y) are unlikely to be on the curve.
|
|
for _ in 0..100 {
|
|
let x = Fr::random(rng);
|
|
let y = Fr::random(rng);
|
|
|
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
|
let numx = AllocatedNum::alloc(cs.namespace(|| "x"), || Ok(x)).unwrap();
|
|
let numy = AllocatedNum::alloc(cs.namespace(|| "y"), || Ok(y)).unwrap();
|
|
|
|
EdwardsPoint::interpret(&mut cs, &numx, &numy, ¶ms).unwrap();
|
|
|
|
assert_eq!(cs.which_is_unsatisfied().unwrap(), "on curve check");
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_edwards_fixed_base_multiplication() {
|
|
let params = &JubjubBls12::new();
|
|
let rng = &mut XorShiftRng::from_seed([
|
|
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
|
|
0xbc, 0xe5,
|
|
]);
|
|
|
|
for _ in 0..100 {
|
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
|
|
|
let p = params.generator(FixedGenerators::NoteCommitmentRandomness);
|
|
let s = Fs::random(rng);
|
|
let q = p.mul(s, params);
|
|
let (x1, y1) = q.into_xy();
|
|
|
|
let mut s_bits = BitIterator::new(s.into_repr()).collect::<Vec<_>>();
|
|
s_bits.reverse();
|
|
s_bits.truncate(Fs::NUM_BITS as usize);
|
|
|
|
let s_bits = s_bits
|
|
.into_iter()
|
|
.enumerate()
|
|
.map(|(i, b)| {
|
|
AllocatedBit::alloc(cs.namespace(|| format!("scalar bit {}", i)), Some(b))
|
|
.unwrap()
|
|
})
|
|
.map(|v| Boolean::from(v))
|
|
.collect::<Vec<_>>();
|
|
|
|
let q = fixed_base_multiplication(
|
|
cs.namespace(|| "multiplication"),
|
|
FixedGenerators::NoteCommitmentRandomness,
|
|
&s_bits,
|
|
params,
|
|
)
|
|
.unwrap();
|
|
|
|
assert_eq!(q.x.get_value().unwrap(), x1);
|
|
assert_eq!(q.y.get_value().unwrap(), y1);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_edwards_multiplication() {
|
|
let params = &JubjubBls12::new();
|
|
let rng = &mut XorShiftRng::from_seed([
|
|
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
|
|
0xbc, 0xe5,
|
|
]);
|
|
|
|
for _ in 0..100 {
|
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
|
|
|
let p = edwards::Point::<Bls12, _>::rand(rng, params);
|
|
let s = Fs::random(rng);
|
|
let q = p.mul(s, params);
|
|
|
|
let (x0, y0) = p.into_xy();
|
|
let (x1, y1) = q.into_xy();
|
|
|
|
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || Ok(x0)).unwrap();
|
|
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || Ok(y0)).unwrap();
|
|
|
|
let p = EdwardsPoint {
|
|
x: num_x0,
|
|
y: num_y0,
|
|
};
|
|
|
|
let mut s_bits = BitIterator::new(s.into_repr()).collect::<Vec<_>>();
|
|
s_bits.reverse();
|
|
s_bits.truncate(Fs::NUM_BITS as usize);
|
|
|
|
let s_bits = s_bits
|
|
.into_iter()
|
|
.enumerate()
|
|
.map(|(i, b)| {
|
|
AllocatedBit::alloc(cs.namespace(|| format!("scalar bit {}", i)), Some(b))
|
|
.unwrap()
|
|
})
|
|
.map(|v| Boolean::from(v))
|
|
.collect::<Vec<_>>();
|
|
|
|
let q = p
|
|
.mul(cs.namespace(|| "scalar mul"), &s_bits, params)
|
|
.unwrap();
|
|
|
|
assert!(cs.is_satisfied());
|
|
|
|
assert_eq!(q.x.get_value().unwrap(), x1);
|
|
|
|
assert_eq!(q.y.get_value().unwrap(), y1);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_conditionally_select() {
|
|
let params = &JubjubBls12::new();
|
|
let rng = &mut XorShiftRng::from_seed([
|
|
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
|
|
0xbc, 0xe5,
|
|
]);
|
|
|
|
for _ in 0..1000 {
|
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
|
|
|
let p = edwards::Point::<Bls12, _>::rand(rng, params);
|
|
|
|
let (x0, y0) = p.into_xy();
|
|
|
|
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || Ok(x0)).unwrap();
|
|
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || Ok(y0)).unwrap();
|
|
|
|
let p = EdwardsPoint {
|
|
x: num_x0,
|
|
y: num_y0,
|
|
};
|
|
|
|
let mut should_we_select = rng.next_u32() % 2 != 0;
|
|
|
|
// Conditionally allocate
|
|
let mut b = if rng.next_u32() % 2 != 0 {
|
|
Boolean::from(
|
|
AllocatedBit::alloc(cs.namespace(|| "condition"), Some(should_we_select))
|
|
.unwrap(),
|
|
)
|
|
} else {
|
|
Boolean::constant(should_we_select)
|
|
};
|
|
|
|
// Conditionally negate
|
|
if rng.next_u32() % 2 != 0 {
|
|
b = b.not();
|
|
should_we_select = !should_we_select;
|
|
}
|
|
|
|
let q = p
|
|
.conditionally_select(cs.namespace(|| "select"), &b)
|
|
.unwrap();
|
|
|
|
assert!(cs.is_satisfied());
|
|
|
|
if should_we_select {
|
|
assert_eq!(q.x.get_value().unwrap(), x0);
|
|
assert_eq!(q.y.get_value().unwrap(), y0);
|
|
|
|
cs.set("select/y'/num", Fr::one());
|
|
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/y' computation");
|
|
cs.set("select/x'/num", Fr::zero());
|
|
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/x' computation");
|
|
} else {
|
|
assert_eq!(q.x.get_value().unwrap(), Fr::zero());
|
|
assert_eq!(q.y.get_value().unwrap(), Fr::one());
|
|
|
|
cs.set("select/y'/num", x0);
|
|
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/y' computation");
|
|
cs.set("select/x'/num", y0);
|
|
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/x' computation");
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_edwards_addition() {
|
|
let params = &JubjubBls12::new();
|
|
let rng = &mut XorShiftRng::from_seed([
|
|
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
|
|
0xbc, 0xe5,
|
|
]);
|
|
|
|
for _ in 0..100 {
|
|
let p1 = edwards::Point::<Bls12, _>::rand(rng, params);
|
|
let p2 = edwards::Point::<Bls12, _>::rand(rng, params);
|
|
|
|
let p3 = p1.add(&p2, params);
|
|
|
|
let (x0, y0) = p1.into_xy();
|
|
let (x1, y1) = p2.into_xy();
|
|
let (x2, y2) = p3.into_xy();
|
|
|
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
|
|
|
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || Ok(x0)).unwrap();
|
|
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || Ok(y0)).unwrap();
|
|
|
|
let num_x1 = AllocatedNum::alloc(cs.namespace(|| "x1"), || Ok(x1)).unwrap();
|
|
let num_y1 = AllocatedNum::alloc(cs.namespace(|| "y1"), || Ok(y1)).unwrap();
|
|
|
|
let p1 = EdwardsPoint {
|
|
x: num_x0,
|
|
y: num_y0,
|
|
};
|
|
|
|
let p2 = EdwardsPoint {
|
|
x: num_x1,
|
|
y: num_y1,
|
|
};
|
|
|
|
let p3 = p1.add(cs.namespace(|| "addition"), &p2, params).unwrap();
|
|
|
|
assert!(cs.is_satisfied());
|
|
|
|
assert!(p3.x.get_value().unwrap() == x2);
|
|
assert!(p3.y.get_value().unwrap() == y2);
|
|
|
|
let u = cs.get("addition/U/num");
|
|
cs.set("addition/U/num", Fr::random(rng));
|
|
assert_eq!(cs.which_is_unsatisfied(), Some("addition/U computation"));
|
|
cs.set("addition/U/num", u);
|
|
assert!(cs.is_satisfied());
|
|
|
|
let x3 = cs.get("addition/x3/num");
|
|
cs.set("addition/x3/num", Fr::random(rng));
|
|
assert_eq!(cs.which_is_unsatisfied(), Some("addition/x3 computation"));
|
|
cs.set("addition/x3/num", x3);
|
|
assert!(cs.is_satisfied());
|
|
|
|
let y3 = cs.get("addition/y3/num");
|
|
cs.set("addition/y3/num", Fr::random(rng));
|
|
assert_eq!(cs.which_is_unsatisfied(), Some("addition/y3 computation"));
|
|
cs.set("addition/y3/num", y3);
|
|
assert!(cs.is_satisfied());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_edwards_doubling() {
|
|
let params = &JubjubBls12::new();
|
|
let rng = &mut XorShiftRng::from_seed([
|
|
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
|
|
0xbc, 0xe5,
|
|
]);
|
|
|
|
for _ in 0..100 {
|
|
let p1 = edwards::Point::<Bls12, _>::rand(rng, params);
|
|
let p2 = p1.double(params);
|
|
|
|
let (x0, y0) = p1.into_xy();
|
|
let (x1, y1) = p2.into_xy();
|
|
|
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
|
|
|
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || Ok(x0)).unwrap();
|
|
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || Ok(y0)).unwrap();
|
|
|
|
let p1 = EdwardsPoint {
|
|
x: num_x0,
|
|
y: num_y0,
|
|
};
|
|
|
|
let p2 = p1.double(cs.namespace(|| "doubling"), params).unwrap();
|
|
|
|
assert!(cs.is_satisfied());
|
|
|
|
assert!(p2.x.get_value().unwrap() == x1);
|
|
assert!(p2.y.get_value().unwrap() == y1);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_montgomery_addition() {
|
|
let params = &JubjubBls12::new();
|
|
let rng = &mut XorShiftRng::from_seed([
|
|
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
|
|
0xbc, 0xe5,
|
|
]);
|
|
|
|
for _ in 0..100 {
|
|
let p1 = loop {
|
|
let x = Fr::random(rng);
|
|
let s: bool = rng.next_u32() % 2 != 0;
|
|
|
|
if let Some(p) = montgomery::Point::<Bls12, _>::get_for_x(x, s, params) {
|
|
break p;
|
|
}
|
|
};
|
|
|
|
let p2 = loop {
|
|
let x = Fr::random(rng);
|
|
let s: bool = rng.next_u32() % 2 != 0;
|
|
|
|
if let Some(p) = montgomery::Point::<Bls12, _>::get_for_x(x, s, params) {
|
|
break p;
|
|
}
|
|
};
|
|
|
|
let p3 = p1.add(&p2, params);
|
|
|
|
let (x0, y0) = p1.into_xy().unwrap();
|
|
let (x1, y1) = p2.into_xy().unwrap();
|
|
let (x2, y2) = p3.into_xy().unwrap();
|
|
|
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
|
|
|
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || Ok(x0)).unwrap();
|
|
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || Ok(y0)).unwrap();
|
|
|
|
let num_x1 = AllocatedNum::alloc(cs.namespace(|| "x1"), || Ok(x1)).unwrap();
|
|
let num_y1 = AllocatedNum::alloc(cs.namespace(|| "y1"), || Ok(y1)).unwrap();
|
|
|
|
let p1 = MontgomeryPoint {
|
|
x: num_x0.into(),
|
|
y: num_y0.into(),
|
|
};
|
|
|
|
let p2 = MontgomeryPoint {
|
|
x: num_x1.into(),
|
|
y: num_y1.into(),
|
|
};
|
|
|
|
let p3 = p1.add(cs.namespace(|| "addition"), &p2, params).unwrap();
|
|
|
|
assert!(cs.is_satisfied());
|
|
|
|
assert!(p3.x.get_value().unwrap() == x2);
|
|
assert!(p3.y.get_value().unwrap() == y2);
|
|
|
|
cs.set("addition/yprime/num", Fr::random(rng));
|
|
assert_eq!(cs.which_is_unsatisfied(), Some("addition/evaluate yprime"));
|
|
cs.set("addition/yprime/num", y2);
|
|
assert!(cs.is_satisfied());
|
|
|
|
cs.set("addition/xprime/num", Fr::random(rng));
|
|
assert_eq!(cs.which_is_unsatisfied(), Some("addition/evaluate xprime"));
|
|
cs.set("addition/xprime/num", x2);
|
|
assert!(cs.is_satisfied());
|
|
|
|
cs.set("addition/lambda/num", Fr::random(rng));
|
|
assert_eq!(cs.which_is_unsatisfied(), Some("addition/evaluate lambda"));
|
|
}
|
|
}
|
|
}
|