Files
pirate-librustzcash/src/circuit/num.rs
2017-12-17 10:07:00 -07:00

493 lines
14 KiB
Rust

use pairing::{
Engine,
Field,
PrimeField,
BitIterator
};
use bellman::{
SynthesisError,
ConstraintSystem,
LinearCombination
};
use super::{
Assignment
};
use super::boolean::{
Boolean,
AllocatedBit
};
pub struct AllocatedNum<E: Engine, Var> {
value: Option<E::Fr>,
variable: Var
}
impl<Var: Copy, E: Engine> Clone for AllocatedNum<E, Var> {
fn clone(&self) -> Self {
AllocatedNum {
value: self.value,
variable: self.variable
}
}
}
impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
pub fn alloc<CS, F>(
mut cs: CS,
value: F,
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>,
F: FnOnce() -> Result<E::Fr, SynthesisError>
{
let mut new_value = None;
let var = cs.alloc(|| "num", || {
let tmp = value()?;
new_value = Some(tmp);
Ok(tmp)
})?;
Ok(AllocatedNum {
value: new_value,
variable: var
})
}
pub fn into_bits_strict<CS>(
&self,
mut cs: CS
) -> Result<Vec<Boolean<Var>>, SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>
{
let bits = self.into_bits(&mut cs)?;
Boolean::enforce_in_field::<_, _, E::Fr>(&mut cs, &bits)?;
Ok(bits)
}
pub fn into_bits<CS>(
&self,
mut cs: CS
) -> Result<Vec<Boolean<Var>>, SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>
{
let bit_values = match self.value {
Some(value) => {
let mut field_char = BitIterator::new(E::Fr::char());
let mut tmp = Vec::with_capacity(E::Fr::NUM_BITS as usize);
let mut found_one = false;
for b in BitIterator::new(value.into_repr()) {
// Skip leading bits
found_one |= field_char.next().unwrap();
if !found_one {
continue;
}
tmp.push(Some(b));
}
assert_eq!(tmp.len(), E::Fr::NUM_BITS as usize);
tmp
},
None => {
vec![None; E::Fr::NUM_BITS as usize]
}
};
let mut bits = vec![];
for (i, b) in bit_values.into_iter().enumerate() {
bits.push(AllocatedBit::alloc(
cs.namespace(|| format!("bit {}", i)),
b
)?);
}
let mut lc = LinearCombination::zero();
let mut coeff = E::Fr::one();
for bit in bits.iter().rev() {
lc = lc + (coeff, bit.get_variable());
coeff.double();
}
lc = lc - self.variable;
cs.enforce(
|| "unpacking constraint",
LinearCombination::zero(),
LinearCombination::zero(),
lc
);
Ok(bits.into_iter().map(|b| Boolean::from(b)).collect())
}
pub fn from_bits_strict<CS>(
mut cs: CS,
bits: &[Boolean<Var>]
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>
{
assert_eq!(bits.len(), E::Fr::NUM_BITS as usize);
Boolean::enforce_in_field::<_, _, E::Fr>(&mut cs, bits)?;
let one = cs.one();
let mut lc = LinearCombination::<Var, E>::zero();
let mut coeff = E::Fr::one();
let mut value = Some(E::Fr::zero());
for bit in bits.iter().rev() {
match bit {
&Boolean::Constant(false) => {},
&Boolean::Constant(true) => {
value.as_mut().map(|value| value.add_assign(&coeff));
lc = lc + (coeff, one);
},
&Boolean::Is(ref bit) => {
match bit.get_value() {
Some(bit) => {
if bit {
value.as_mut().map(|value| value.add_assign(&coeff));
}
},
None => {
value = None;
}
}
lc = lc + (coeff, bit.get_variable());
},
&Boolean::Not(ref bit) => {
match bit.get_value() {
Some(bit) => {
if !bit {
value.as_mut().map(|value| value.add_assign(&coeff));
}
},
None => {
value = None;
}
}
lc = lc + (coeff, one) - (coeff, bit.get_variable());
}
}
coeff.double();
}
let num = Self::alloc(&mut cs, || value.get().map(|v| *v))?;
lc = lc - num.get_variable();
cs.enforce(
|| "packing constraint",
LinearCombination::zero(),
LinearCombination::zero(),
lc
);
Ok(num)
}
pub fn mul<CS>(
&self,
mut cs: CS,
other: &Self
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>
{
let mut value = None;
let var = cs.alloc(|| "product num", || {
let mut tmp = *self.value.get()?;
tmp.mul_assign(other.value.get()?);
value = Some(tmp);
Ok(tmp)
})?;
// Constrain: a * b = ab
cs.enforce(
|| "multiplication constraint",
LinearCombination::zero() + self.variable,
LinearCombination::zero() + other.variable,
LinearCombination::zero() + var
);
Ok(AllocatedNum {
value: value,
variable: var
})
}
pub fn square<CS>(
&self,
mut cs: CS
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>
{
let mut value = None;
let var = cs.alloc(|| "squared num", || {
let mut tmp = *self.value.get()?;
tmp.square();
value = Some(tmp);
Ok(tmp)
})?;
// Constrain: a * a = aa
cs.enforce(
|| "squaring constraint",
LinearCombination::zero() + self.variable,
LinearCombination::zero() + self.variable,
LinearCombination::zero() + var
);
Ok(AllocatedNum {
value: value,
variable: var
})
}
pub fn assert_nonzero<CS>(
&self,
mut cs: CS
) -> Result<(), SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>
{
let inv = cs.alloc(|| "ephemeral inverse", || {
let tmp = *self.value.get()?;
if tmp.is_zero() {
// TODO: add a more descriptive error to bellman
Err(SynthesisError::AssignmentMissing)
} else {
Ok(tmp.inverse().unwrap())
}
})?;
// Constrain a * inv = 1, which is only valid
// iff a has a multiplicative inverse, untrue
// for zero.
let one = cs.one();
cs.enforce(
|| "nonzero assertion constraint",
LinearCombination::zero() + self.variable,
LinearCombination::zero() + inv,
LinearCombination::zero() + one
);
Ok(())
}
pub fn get_value(&self) -> Option<E::Fr> {
self.value
}
pub fn get_variable(&self) -> Var {
self.variable
}
}
#[cfg(test)]
mod test {
use rand::{SeedableRng, Rand, Rng, XorShiftRng};
use bellman::{ConstraintSystem};
use pairing::bls12_381::{Bls12, Fr};
use pairing::{Field, PrimeField, BitIterator};
use ::circuit::test::*;
use super::{AllocatedNum, Boolean};
use super::super::boolean::AllocatedBit;
#[test]
fn test_allocated_num() {
let mut cs = TestConstraintSystem::<Bls12>::new();
AllocatedNum::alloc(&mut cs, || Ok(Fr::one())).unwrap();
assert!(cs.get("num") == Fr::one());
}
#[test]
fn test_num_squaring() {
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(&mut cs, || Ok(Fr::from_str("3").unwrap())).unwrap();
let n2 = n.square(&mut cs).unwrap();
assert!(cs.is_satisfied());
assert!(cs.get("squared num") == Fr::from_str("9").unwrap());
assert!(n2.value.unwrap() == Fr::from_str("9").unwrap());
cs.set("squared num", Fr::from_str("10").unwrap());
assert!(!cs.is_satisfied());
}
#[test]
fn test_num_multiplication() {
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::from_str("12").unwrap())).unwrap();
let n2 = AllocatedNum::alloc(cs.namespace(|| "b"), || Ok(Fr::from_str("10").unwrap())).unwrap();
let n3 = n.mul(&mut cs, &n2).unwrap();
assert!(cs.is_satisfied());
assert!(cs.get("product num") == Fr::from_str("120").unwrap());
assert!(n3.value.unwrap() == Fr::from_str("120").unwrap());
cs.set("product num", Fr::from_str("121").unwrap());
assert!(!cs.is_satisfied());
}
#[test]
fn test_num_nonzero() {
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(&mut cs, || Ok(Fr::from_str("3").unwrap())).unwrap();
n.assert_nonzero(&mut cs).unwrap();
assert!(cs.is_satisfied());
cs.set("ephemeral inverse", Fr::from_str("3").unwrap());
assert!(cs.which_is_unsatisfied() == Some("nonzero assertion constraint"));
}
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(&mut cs, || Ok(Fr::zero())).unwrap();
assert!(n.assert_nonzero(&mut cs).is_err());
}
}
#[test]
fn test_into_bits_strict() {
let mut negone = Fr::one();
negone.negate();
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(&mut cs, || Ok(negone)).unwrap();
n.into_bits_strict(&mut cs).unwrap();
assert!(cs.is_satisfied());
// make the bit representation the characteristic
cs.set("bit 254/boolean", Fr::one());
// this makes the unpacking constraint fail
assert_eq!(cs.which_is_unsatisfied().unwrap(), "unpacking constraint");
// fix it by making the number zero (congruent to the characteristic)
cs.set("num", Fr::zero());
// and constraint is disturbed during enforce in field check
assert_eq!(cs.which_is_unsatisfied().unwrap(), "nand 121/AND 0/and constraint");
cs.set("nand 121/AND 0/and result", Fr::one());
// now the nand should fail (enforce in field is working)
assert_eq!(cs.which_is_unsatisfied().unwrap(), "nand 121/enforce nand");
}
#[test]
fn test_into_bits() {
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
for _ in 0..100 {
let r = Fr::rand(&mut rng);
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(&mut cs, || Ok(r)).unwrap();
let bits = n.into_bits(&mut cs).unwrap();
assert!(cs.is_satisfied());
for (b, a) in BitIterator::new(r.into_repr()).skip(1).zip(bits.iter()) {
if let &Boolean::Is(ref a) = a {
assert_eq!(b, a.get_value().unwrap());
} else {
unreachable!()
}
}
cs.set("num", Fr::rand(&mut rng));
assert!(!cs.is_satisfied());
cs.set("num", r);
assert!(cs.is_satisfied());
for i in 0..Fr::NUM_BITS {
let name = format!("bit {}/boolean", i);
let cur = cs.get(&name);
let mut tmp = Fr::one();
tmp.sub_assign(&cur);
cs.set(&name, tmp);
assert!(!cs.is_satisfied());
cs.set(&name, cur);
assert!(cs.is_satisfied());
}
}
}
#[test]
fn test_from_bits_strict() {
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let mut bits = vec![];
for (i, b) in BitIterator::new(Fr::char()).skip(1).enumerate() {
bits.push(Boolean::from(AllocatedBit::alloc(
cs.namespace(|| format!("bit {}", i)),
Some(b)
).unwrap()));
}
let num = AllocatedNum::from_bits_strict(&mut cs, &bits).unwrap();
assert!(num.value.unwrap().is_zero());
assert!(!cs.is_satisfied());
}
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
for _ in 0..1000 {
let r = Fr::rand(&mut rng);
let mut cs = TestConstraintSystem::<Bls12>::new();
let mut bits = vec![];
for (i, b) in BitIterator::new(r.into_repr()).skip(1).enumerate() {
let parity: bool = rng.gen();
if parity {
bits.push(Boolean::from(AllocatedBit::alloc(
cs.namespace(|| format!("bit {}", i)),
Some(b)
).unwrap()));
} else {
bits.push(Boolean::from(AllocatedBit::alloc(
cs.namespace(|| format!("bit {}", i)),
Some(!b)
).unwrap()).not());
}
}
let num = AllocatedNum::from_bits_strict(&mut cs, &bits).unwrap();
assert!(cs.is_satisfied());
assert_eq!(num.value.unwrap(), r);
assert_eq!(cs.get("num"), r);
cs.set("num", Fr::rand(&mut rng));
assert_eq!(cs.which_is_unsatisfied().unwrap(), "packing constraint");
}
}
}