pirate-librustzcash/pairing/src/bls12_381/fq2.rs
2019-12-12 22:52:17 +00:00

1040 lines
25 KiB
Rust

use super::fq::{Fq, FROBENIUS_COEFF_FQ2_C1, NEGATIVE_ONE};
use ff::{Field, SqrtField};
use rand_core::RngCore;
use std::cmp::Ordering;
use std::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
/// An element of Fq2, represented by c0 + c1 * u.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct Fq2 {
pub c0: Fq,
pub c1: Fq,
}
impl ::std::fmt::Display for Fq2 {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
write!(f, "Fq2({} + {} * u)", self.c0, self.c1)
}
}
/// `Fq2` elements are ordered lexicographically.
impl Ord for Fq2 {
#[inline(always)]
fn cmp(&self, other: &Fq2) -> Ordering {
match self.c1.cmp(&other.c1) {
Ordering::Greater => Ordering::Greater,
Ordering::Less => Ordering::Less,
Ordering::Equal => self.c0.cmp(&other.c0),
}
}
}
impl PartialOrd for Fq2 {
#[inline(always)]
fn partial_cmp(&self, other: &Fq2) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Fq2 {
/// Multiply this element by the cubic and quadratic nonresidue 1 + u.
pub fn mul_by_nonresidue(&mut self) {
let t0 = self.c0;
self.c0.sub_assign(&self.c1);
self.c1.add_assign(&t0);
}
/// Norm of Fq2 as extension field in i over Fq
pub fn norm(&self) -> Fq {
let mut t0 = self.c0;
let mut t1 = self.c1;
t0.square();
t1.square();
t1.add_assign(&t0);
t1
}
}
impl Neg for Fq2 {
type Output = Self;
fn neg(self) -> Self {
Fq2 {
c0: self.c0.neg(),
c1: self.c1.neg(),
}
}
}
impl<'r> Add<&'r Fq2> for Fq2 {
type Output = Self;
fn add(self, other: &Self) -> Self {
Fq2 {
c0: self.c0 + other.c0,
c1: self.c1 + other.c1,
}
}
}
impl Add for Fq2 {
type Output = Self;
fn add(self, other: Self) -> Self {
self + &other
}
}
impl<'r> AddAssign<&'r Fq2> for Fq2 {
fn add_assign(&mut self, other: &'r Self) {
self.c0.add_assign(&other.c0);
self.c1.add_assign(&other.c1);
}
}
impl AddAssign for Fq2 {
fn add_assign(&mut self, other: Self) {
self.add_assign(&other);
}
}
impl<'r> Sub<&'r Fq2> for Fq2 {
type Output = Self;
fn sub(self, other: &Self) -> Self {
Fq2 {
c0: self.c0 - other.c0,
c1: self.c1 - other.c1,
}
}
}
impl Sub for Fq2 {
type Output = Self;
fn sub(self, other: Self) -> Self {
self - &other
}
}
impl<'r> SubAssign<&'r Fq2> for Fq2 {
fn sub_assign(&mut self, other: &'r Self) {
self.c0.sub_assign(&other.c0);
self.c1.sub_assign(&other.c1);
}
}
impl SubAssign for Fq2 {
fn sub_assign(&mut self, other: Self) {
self.sub_assign(&other);
}
}
impl<'r> Mul<&'r Fq2> for Fq2 {
type Output = Self;
fn mul(self, other: &Self) -> Self {
let mut ret = self;
ret.mul_assign(other);
ret
}
}
impl Mul for Fq2 {
type Output = Self;
fn mul(self, other: Self) -> Self {
self * &other
}
}
impl<'r> MulAssign<&'r Fq2> for Fq2 {
fn mul_assign(&mut self, other: &Self) {
let mut aa = self.c0;
aa.mul_assign(&other.c0);
let mut bb = self.c1;
bb.mul_assign(&other.c1);
let mut o = other.c0;
o.add_assign(&other.c1);
self.c1.add_assign(&self.c0);
self.c1.mul_assign(&o);
self.c1.sub_assign(&aa);
self.c1.sub_assign(&bb);
self.c0 = aa;
self.c0.sub_assign(&bb);
}
}
impl MulAssign for Fq2 {
fn mul_assign(&mut self, other: Self) {
self.mul_assign(&other);
}
}
impl Field for Fq2 {
fn random<R: RngCore>(rng: &mut R) -> Self {
Fq2 {
c0: Fq::random(rng),
c1: Fq::random(rng),
}
}
fn zero() -> Self {
Fq2 {
c0: Fq::zero(),
c1: Fq::zero(),
}
}
fn one() -> Self {
Fq2 {
c0: Fq::one(),
c1: Fq::zero(),
}
}
fn is_zero(&self) -> bool {
self.c0.is_zero() && self.c1.is_zero()
}
fn square(&mut self) {
let mut ab = self.c0;
ab.mul_assign(&self.c1);
let mut c0c1 = self.c0;
c0c1.add_assign(&self.c1);
let mut c0 = self.c1.neg();
c0.add_assign(&self.c0);
c0.mul_assign(&c0c1);
c0.sub_assign(&ab);
self.c1 = ab;
self.c1.add_assign(&ab);
c0.add_assign(&ab);
self.c0 = c0;
}
fn double(&mut self) {
self.c0.double();
self.c1.double();
}
fn inverse(&self) -> Option<Self> {
let mut t1 = self.c1;
t1.square();
let mut t0 = self.c0;
t0.square();
t0.add_assign(&t1);
t0.inverse().map(|t| Fq2 {
c0: self.c0.mul(&t),
c1: self.c1.mul(&t).neg(),
})
}
fn frobenius_map(&mut self, power: usize) {
self.c1.mul_assign(&FROBENIUS_COEFF_FQ2_C1[power % 2]);
}
}
impl SqrtField for Fq2 {
fn legendre(&self) -> ::ff::LegendreSymbol {
self.norm().legendre()
}
fn sqrt(&self) -> Option<Self> {
// Algorithm 9, https://eprint.iacr.org/2012/685.pdf
if self.is_zero() {
Some(Self::zero())
} else {
// a1 = self^((q - 3) / 4)
let mut a1 = self.pow([
0xee7fbfffffffeaaa,
0x7aaffffac54ffff,
0xd9cc34a83dac3d89,
0xd91dd2e13ce144af,
0x92c6e9ed90d2eb35,
0x680447a8e5ff9a6,
]);
let mut alpha = a1;
alpha.square();
alpha.mul_assign(self);
let mut a0 = alpha;
a0.frobenius_map(1);
a0.mul_assign(&alpha);
let neg1 = Fq2 {
c0: NEGATIVE_ONE,
c1: Fq::zero(),
};
if a0 == neg1 {
None
} else {
a1.mul_assign(self);
if alpha == neg1 {
a1.mul_assign(&Fq2 {
c0: Fq::zero(),
c1: Fq::one(),
});
} else {
alpha.add_assign(&Fq2::one());
// alpha = alpha^((q - 1) / 2)
alpha = alpha.pow([
0xdcff7fffffffd555,
0xf55ffff58a9ffff,
0xb39869507b587b12,
0xb23ba5c279c2895f,
0x258dd3db21a5d66b,
0xd0088f51cbff34d,
]);
a1.mul_assign(&alpha);
}
Some(a1)
}
}
}
}
#[test]
fn test_fq2_ordering() {
let mut a = Fq2 {
c0: Fq::zero(),
c1: Fq::zero(),
};
let mut b = a.clone();
assert!(a.cmp(&b) == Ordering::Equal);
b.c0.add_assign(&Fq::one());
assert!(a.cmp(&b) == Ordering::Less);
a.c0.add_assign(&Fq::one());
assert!(a.cmp(&b) == Ordering::Equal);
b.c1.add_assign(&Fq::one());
assert!(a.cmp(&b) == Ordering::Less);
a.c0.add_assign(&Fq::one());
assert!(a.cmp(&b) == Ordering::Less);
a.c1.add_assign(&Fq::one());
assert!(a.cmp(&b) == Ordering::Greater);
b.c0.add_assign(&Fq::one());
assert!(a.cmp(&b) == Ordering::Equal);
}
#[test]
fn test_fq2_basics() {
assert_eq!(
Fq2 {
c0: Fq::zero(),
c1: Fq::zero(),
},
Fq2::zero()
);
assert_eq!(
Fq2 {
c0: Fq::one(),
c1: Fq::zero(),
},
Fq2::one()
);
assert!(Fq2::zero().is_zero());
assert!(!Fq2::one().is_zero());
assert!(!Fq2 {
c0: Fq::zero(),
c1: Fq::one(),
}
.is_zero());
}
#[test]
fn test_fq2_squaring() {
use super::fq::FqRepr;
use ff::PrimeField;
let mut a = Fq2 {
c0: Fq::one(),
c1: Fq::one(),
}; // u + 1
a.square();
assert_eq!(
a,
Fq2 {
c0: Fq::zero(),
c1: Fq::from_repr(FqRepr::from(2)).unwrap(),
}
); // 2u
let mut a = Fq2 {
c0: Fq::zero(),
c1: Fq::one(),
}; // u
a.square();
assert_eq!(a, {
Fq2 {
c0: Fq::one().neg(),
c1: Fq::zero(),
}
}); // -1
let mut a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x9c2c6309bbf8b598,
0x4eef5c946536f602,
0x90e34aab6fb6a6bd,
0xf7f295a94e58ae7c,
0x41b76dcc1c3fbe5e,
0x7080c5fa1d8e042,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x38f473b3c870a4ab,
0x6ad3291177c8c7e5,
0xdac5a4c911a4353e,
0xbfb99020604137a0,
0xfc58a7b7be815407,
0x10d1615e75250a21,
]))
.unwrap(),
};
a.square();
assert_eq!(
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0xf262c28c538bcf68,
0xb9f2a66eae1073ba,
0xdc46ab8fad67ae0,
0xcb674157618da176,
0x4cf17b5893c3d327,
0x7eac81369c43361
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0xc1579cf58e980cf8,
0xa23eb7e12dd54d98,
0xe75138bce4cec7aa,
0x38d0d7275a9689e1,
0x739c983042779a65,
0x1542a61c8a8db994
]))
.unwrap(),
}
);
}
#[test]
fn test_fq2_mul() {
use super::fq::FqRepr;
use ff::PrimeField;
let mut a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x85c9f989e1461f03,
0xa2e33c333449a1d6,
0x41e461154a7354a3,
0x9ee53e7e84d7532e,
0x1c202d8ed97afb45,
0x51d3f9253e2516f,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0xa7348a8b511aedcf,
0x143c215d8176b319,
0x4cc48081c09b8903,
0x9533e4a9a5158be,
0x7a5e1ecb676d65f9,
0x180c3ee46656b008,
]))
.unwrap(),
};
a.mul_assign(&Fq2 {
c0: Fq::from_repr(FqRepr([
0xe21f9169805f537e,
0xfc87e62e179c285d,
0x27ece175be07a531,
0xcd460f9f0c23e430,
0x6c9110292bfa409,
0x2c93a72eb8af83e,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x4b1c3f936d8992d4,
0x1d2a72916dba4c8a,
0x8871c508658d1e5f,
0x57a06d3135a752ae,
0x634cd3c6c565096d,
0x19e17334d4e93558,
]))
.unwrap(),
});
assert_eq!(
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x95b5127e6360c7e4,
0xde29c31a19a6937e,
0xf61a96dacf5a39bc,
0x5511fe4d84ee5f78,
0x5310a202d92f9963,
0x1751afbe166e5399
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x84af0e1bd630117a,
0x6c63cd4da2c2aa7,
0x5ba6e5430e883d40,
0xc975106579c275ee,
0x33a9ac82ce4c5083,
0x1ef1a36c201589d
]))
.unwrap(),
}
);
}
#[test]
fn test_fq2_inverse() {
use super::fq::FqRepr;
use ff::PrimeField;
assert!(Fq2::zero().inverse().is_none());
let a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x85c9f989e1461f03,
0xa2e33c333449a1d6,
0x41e461154a7354a3,
0x9ee53e7e84d7532e,
0x1c202d8ed97afb45,
0x51d3f9253e2516f,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0xa7348a8b511aedcf,
0x143c215d8176b319,
0x4cc48081c09b8903,
0x9533e4a9a5158be,
0x7a5e1ecb676d65f9,
0x180c3ee46656b008,
]))
.unwrap(),
};
let a = a.inverse().unwrap();
assert_eq!(
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x70300f9bcb9e594,
0xe5ecda5fdafddbb2,
0x64bef617d2915a8f,
0xdfba703293941c30,
0xa6c3d8f9586f2636,
0x1351ef01941b70c4
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x8c39fd76a8312cb4,
0x15d7b6b95defbff0,
0x947143f89faedee9,
0xcbf651a0f367afb2,
0xdf4e54f0d3ef15a6,
0x103bdf241afb0019
]))
.unwrap(),
}
);
}
#[test]
fn test_fq2_addition() {
use super::fq::FqRepr;
use ff::PrimeField;
let mut a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x977df6efcdaee0db,
0x946ae52d684fa7ed,
0xbe203411c66fb3a5,
0xb3f8afc0ee248cad,
0x4e464dea5bcfd41e,
0x12d1137b8a6a837,
]))
.unwrap(),
};
a.add_assign(&Fq2 {
c0: Fq::from_repr(FqRepr([
0x619a02d78dc70ef2,
0xb93adfc9119e33e8,
0x4bf0b99a9f0dca12,
0x3b88899a42a6318f,
0x986a4a62fa82a49d,
0x13ce433fa26027f5,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x66323bf80b58b9b9,
0xa1379b6facf6e596,
0x402aef1fb797e32f,
0x2236f55246d0d44d,
0x4c8c1800eb104566,
0x11d6e20e986c2085,
]))
.unwrap(),
});
assert_eq!(
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x8e9a7adaf6eb0eb9,
0xcb207e6b3341eaba,
0xd70b0c7b481d23ff,
0xf4ef57d604b6bca2,
0x65309427b3d5d090,
0x14c715d5553f01d2
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0xfdb032e7d9079a94,
0x35a2809d15468d83,
0xfe4b23317e0796d5,
0xd62fa51334f560fa,
0x9ad265eb46e01984,
0x1303f3465112c8bc
]))
.unwrap(),
}
);
}
#[test]
fn test_fq2_subtraction() {
use super::fq::FqRepr;
use ff::PrimeField;
let mut a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x977df6efcdaee0db,
0x946ae52d684fa7ed,
0xbe203411c66fb3a5,
0xb3f8afc0ee248cad,
0x4e464dea5bcfd41e,
0x12d1137b8a6a837,
]))
.unwrap(),
};
a.sub_assign(&Fq2 {
c0: Fq::from_repr(FqRepr([
0x619a02d78dc70ef2,
0xb93adfc9119e33e8,
0x4bf0b99a9f0dca12,
0x3b88899a42a6318f,
0x986a4a62fa82a49d,
0x13ce433fa26027f5,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x66323bf80b58b9b9,
0xa1379b6facf6e596,
0x402aef1fb797e32f,
0x2236f55246d0d44d,
0x4c8c1800eb104566,
0x11d6e20e986c2085,
]))
.unwrap(),
});
assert_eq!(
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x8565752bdb5c9b80,
0x7756bed7c15982e9,
0xa65a6be700b285fe,
0xe255902672ef6c43,
0x7f77a718021c342d,
0x72ba14049fe9881
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0xeb4abaf7c255d1cd,
0x11df49bc6cacc256,
0xe52617930588c69a,
0xf63905f39ad8cb1f,
0x4cd5dd9fb40b3b8f,
0x957411359ba6e4c
]))
.unwrap(),
}
);
}
#[test]
fn test_fq2_negation() {
use super::fq::FqRepr;
use ff::PrimeField;
let a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x977df6efcdaee0db,
0x946ae52d684fa7ed,
0xbe203411c66fb3a5,
0xb3f8afc0ee248cad,
0x4e464dea5bcfd41e,
0x12d1137b8a6a837,
]))
.unwrap(),
}
.neg();
assert_eq!(
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x8cfe87fc96dbaae4,
0xcc6615c8fb0492d,
0xdc167fc04da19c37,
0xab107d49317487ab,
0x7e555df189f880e3,
0x19083f5486a10cbd
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x228109103250c9d0,
0x8a411ad149045812,
0xa9109e8f3041427e,
0xb07e9bc405608611,
0xfcd559cbe77bd8b8,
0x18d400b280d93e62
]))
.unwrap(),
}
);
}
#[test]
fn test_fq2_doubling() {
use super::fq::FqRepr;
use ff::PrimeField;
let mut a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x977df6efcdaee0db,
0x946ae52d684fa7ed,
0xbe203411c66fb3a5,
0xb3f8afc0ee248cad,
0x4e464dea5bcfd41e,
0x12d1137b8a6a837,
]))
.unwrap(),
};
a.double();
assert_eq!(
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x5a00f006d247ff8e,
0x23cb3d4443476da4,
0x1634a5c1521eb3da,
0x72cd9c7784211627,
0x998c938972a657e7,
0x1f1a52b65bdb3b9
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x2efbeddf9b5dc1b6,
0x28d5ca5ad09f4fdb,
0x7c4068238cdf674b,
0x67f15f81dc49195b,
0x9c8c9bd4b79fa83d,
0x25a226f714d506e
]))
.unwrap(),
}
);
}
#[test]
fn test_fq2_frobenius_map() {
use super::fq::FqRepr;
use ff::PrimeField;
let mut a = Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc,
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x977df6efcdaee0db,
0x946ae52d684fa7ed,
0xbe203411c66fb3a5,
0xb3f8afc0ee248cad,
0x4e464dea5bcfd41e,
0x12d1137b8a6a837,
]))
.unwrap(),
};
a.frobenius_map(0);
assert_eq!(
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x977df6efcdaee0db,
0x946ae52d684fa7ed,
0xbe203411c66fb3a5,
0xb3f8afc0ee248cad,
0x4e464dea5bcfd41e,
0x12d1137b8a6a837
]))
.unwrap(),
}
);
a.frobenius_map(1);
assert_eq!(
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x228109103250c9d0,
0x8a411ad149045812,
0xa9109e8f3041427e,
0xb07e9bc405608611,
0xfcd559cbe77bd8b8,
0x18d400b280d93e62
]))
.unwrap(),
}
);
a.frobenius_map(1);
assert_eq!(
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x977df6efcdaee0db,
0x946ae52d684fa7ed,
0xbe203411c66fb3a5,
0xb3f8afc0ee248cad,
0x4e464dea5bcfd41e,
0x12d1137b8a6a837
]))
.unwrap(),
}
);
a.frobenius_map(2);
assert_eq!(
a,
Fq2 {
c0: Fq::from_repr(FqRepr([
0x2d0078036923ffc7,
0x11e59ea221a3b6d2,
0x8b1a52e0a90f59ed,
0xb966ce3bc2108b13,
0xccc649c4b9532bf3,
0xf8d295b2ded9dc
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0x977df6efcdaee0db,
0x946ae52d684fa7ed,
0xbe203411c66fb3a5,
0xb3f8afc0ee248cad,
0x4e464dea5bcfd41e,
0x12d1137b8a6a837
]))
.unwrap(),
}
);
}
#[test]
fn test_fq2_sqrt() {
use super::fq::FqRepr;
use ff::PrimeField;
assert_eq!(
Fq2 {
c0: Fq::from_repr(FqRepr([
0x476b4c309720e227,
0x34c2d04faffdab6,
0xa57e6fc1bab51fd9,
0xdb4a116b5bf74aa1,
0x1e58b2159dfe10e2,
0x7ca7da1f13606ac
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0xfa8de88b7516d2c3,
0x371a75ed14f41629,
0x4cec2dca577a3eb6,
0x212611bca4e99121,
0x8ee5394d77afb3d,
0xec92336650e49d5
]))
.unwrap(),
}
.sqrt()
.unwrap(),
Fq2 {
c0: Fq::from_repr(FqRepr([
0x40b299b2704258c5,
0x6ef7de92e8c68b63,
0x6d2ddbe552203e82,
0x8d7f1f723d02c1d3,
0x881b3e01b611c070,
0x10f6963bbad2ebc5
]))
.unwrap(),
c1: Fq::from_repr(FqRepr([
0xc099534fc209e752,
0x7670594665676447,
0x28a20faed211efe7,
0x6b852aeaf2afcb1b,
0xa4c93b08105d71a9,
0x8d7cfff94216330
]))
.unwrap(),
}
);
assert_eq!(
Fq2 {
c0: Fq::from_repr(FqRepr([
0xb9f78429d1517a6b,
0x1eabfffeb153ffff,
0x6730d2a0f6b0f624,
0x64774b84f38512bf,
0x4b1ba7b6434bacd7,
0x1a0111ea397fe69a
]))
.unwrap(),
c1: Fq::zero(),
}
.sqrt()
.unwrap(),
Fq2 {
c0: Fq::zero(),
c1: Fq::from_repr(FqRepr([
0xb9fefffffd4357a3,
0x1eabfffeb153ffff,
0x6730d2a0f6b0f624,
0x64774b84f38512bf,
0x4b1ba7b6434bacd7,
0x1a0111ea397fe69a
]))
.unwrap(),
}
);
}
#[test]
fn test_fq2_legendre() {
use ff::LegendreSymbol::*;
assert_eq!(Zero, Fq2::zero().legendre());
// i^2 = -1
let mut m1 = Fq2::one().neg();
assert_eq!(QuadraticResidue, m1.legendre());
m1.mul_by_nonresidue();
assert_eq!(QuadraticNonResidue, m1.legendre());
}
#[cfg(test)]
use rand_core::SeedableRng;
#[cfg(test)]
use rand_xorshift::XorShiftRng;
#[test]
fn test_fq2_mul_nonresidue() {
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
let nqr = Fq2 {
c0: Fq::one(),
c1: Fq::one(),
};
for _ in 0..1000 {
let mut a = Fq2::random(&mut rng);
let mut b = a;
a.mul_by_nonresidue();
b.mul_assign(&nqr);
assert_eq!(a, b);
}
}
#[test]
fn fq2_field_tests() {
use ff::PrimeField;
crate::tests::field::random_field_tests::<Fq2>();
crate::tests::field::random_sqrt_tests::<Fq2>();
crate::tests::field::random_frobenius_tests::<Fq2, _>(super::fq::Fq::char(), 13);
}