Files
pirate-librustzcash/zcash_primitives/src/jubjub/fs.rs
Jack Grigg 49f119fb03 ff: Remove PrimeFieldRepr trait
The ff::PrimeField::Repr associated type now has the minimal necessary
bounds, which can be satisfied by a newtype around a byte array.
2020-04-23 18:15:14 +12:00

1325 lines
35 KiB
Rust

use byteorder::{ByteOrder, LittleEndian};
use ff::{adc, mac_with_carry, sbb, BitIterator, Field, PowVartime, PrimeField, SqrtField};
use rand_core::RngCore;
use std::mem;
use std::ops::{Add, AddAssign, BitAnd, Mul, MulAssign, Neg, Shr, Sub, SubAssign};
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
use super::ToUniform;
// s = 6554484396890773809930967563523245729705921265872317281365359162392183254199
const MODULUS: FsRepr = FsRepr([
0xb7, 0x2c, 0xf7, 0xd6, 0x5e, 0x0e, 0x97, 0xd0, 0x82, 0x10, 0xc8, 0xcc, 0x93, 0x20, 0x68, 0xa6,
0x00, 0x3b, 0x34, 0x01, 0x01, 0x3b, 0x67, 0x06, 0xa9, 0xaf, 0x33, 0x65, 0xea, 0xb4, 0x7d, 0x0e,
]);
const MODULUS_LIMBS: Fs = Fs([
0xd0970e5ed6f72cb7,
0xa6682093ccc81082,
0x6673b0101343b00,
0xe7db4ea6533afa9,
]);
// The number of bits needed to represent the modulus.
const MODULUS_BITS: u32 = 252;
// The number of bits that must be shaved from the beginning of
// the representation when randomly sampling.
const REPR_SHAVE_BITS: u32 = 4;
// R = 2**256 % s
const R: Fs = Fs([
0x25f80bb3b99607d9,
0xf315d62f66b6e750,
0x932514eeeb8814f4,
0x9a6fc6f479155c6,
]);
// R2 = R^2 % s
const R2: Fs = Fs([
0x67719aa495e57731,
0x51b0cef09ce3fc26,
0x69dab7fac026e9a5,
0x4f6547b8d127688,
]);
// INV = -(s^{-1} mod 2^64) mod s
const INV: u64 = 0x1ba3a358ef788ef9;
// GENERATOR = 6 (multiplicative generator of r-1 order, that is also quadratic nonresidue)
const GENERATOR: Fs = Fs([
0x720b1b19d49ea8f1,
0xbf4aa36101f13a58,
0x5fa8cc968193ccbb,
0xe70cbdc7dccf3ac,
]);
// 2^S * t = MODULUS - 1 with t odd
const S: u32 = 1;
// 2^S root of unity computed by GENERATOR^t
const ROOT_OF_UNITY: Fs = Fs([
0xaa9f02ab1d6124de,
0xb3524a6466112932,
0x7342261215ac260b,
0x4d6b87b1da259e2,
]);
// -((2**256) mod s) mod s
const NEGATIVE_ONE: Fs = Fs([
0xaa9f02ab1d6124de,
0xb3524a6466112932,
0x7342261215ac260b,
0x4d6b87b1da259e2,
]);
/// This is the underlying representation of an element of `Fs`.
#[derive(Copy, Clone, PartialEq, Eq, Default, Debug)]
pub struct FsRepr(pub [u8; 32]);
impl ::std::fmt::Display for FsRepr {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
write!(f, "0x")?;
for i in self.0.iter().rev() {
write!(f, "{:02x}", *i)?;
}
Ok(())
}
}
impl AsRef<[u8]> for FsRepr {
#[inline(always)]
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl AsMut<[u8]> for FsRepr {
#[inline(always)]
fn as_mut(&mut self) -> &mut [u8] {
&mut self.0
}
}
/// This is an element of the scalar field of the Jubjub curve.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct Fs([u64; 4]);
impl Default for Fs {
fn default() -> Self {
Fs::zero()
}
}
impl ConstantTimeEq for Fs {
fn ct_eq(&self, other: &Fs) -> Choice {
self.0[0].ct_eq(&other.0[0])
& self.0[1].ct_eq(&other.0[1])
& self.0[2].ct_eq(&other.0[2])
& self.0[3].ct_eq(&other.0[3])
}
}
impl Ord for Fs {
#[inline(always)]
fn cmp(&self, other: &Fs) -> ::std::cmp::Ordering {
let mut a = *self;
a.mont_reduce(self.0[0], self.0[1], self.0[2], self.0[3], 0, 0, 0, 0);
let mut b = *other;
b.mont_reduce(other.0[0], other.0[1], other.0[2], other.0[3], 0, 0, 0, 0);
a.cmp_native(&b)
}
}
impl PartialOrd for Fs {
#[inline(always)]
fn partial_cmp(&self, other: &Fs) -> Option<::std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl ::std::fmt::Display for Fs {
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
write!(f, "Fs({})", self.into_repr())
}
}
impl From<u64> for Fs {
#[inline(always)]
fn from(val: u64) -> Fs {
let mut raw = [0u64; 4];
raw[0] = val;
Fs(raw) * R2
}
}
impl From<Fs> for FsRepr {
fn from(e: Fs) -> FsRepr {
e.into_repr()
}
}
impl<'a> From<&'a Fs> for FsRepr {
fn from(e: &'a Fs) -> FsRepr {
e.into_repr()
}
}
impl ConditionallySelectable for Fs {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Fs([
u64::conditional_select(&a.0[0], &b.0[0], choice),
u64::conditional_select(&a.0[1], &b.0[1], choice),
u64::conditional_select(&a.0[2], &b.0[2], choice),
u64::conditional_select(&a.0[3], &b.0[3], choice),
])
}
}
impl Neg for Fs {
type Output = Self;
#[inline]
fn neg(mut self) -> Self {
if !self.is_zero() {
let mut tmp = MODULUS_LIMBS;
tmp.sub_noborrow(&self);
self = tmp;
}
self
}
}
impl<'r> Add<&'r Fs> for Fs {
type Output = Self;
#[inline]
fn add(self, other: &Self) -> Self {
let mut ret = self;
ret.add_assign(other);
ret
}
}
impl Add for Fs {
type Output = Self;
#[inline]
fn add(self, other: Self) -> Self {
self + &other
}
}
impl<'r> AddAssign<&'r Fs> for Fs {
#[inline]
fn add_assign(&mut self, other: &Self) {
// This cannot exceed the backing capacity.
self.add_nocarry(&other);
// However, it may need to be reduced.
self.reduce();
}
}
impl AddAssign for Fs {
#[inline]
fn add_assign(&mut self, other: Self) {
self.add_assign(&other);
}
}
impl<'r> Sub<&'r Fs> for Fs {
type Output = Self;
#[inline]
fn sub(self, other: &Self) -> Self {
let mut ret = self;
ret.sub_assign(other);
ret
}
}
impl Sub for Fs {
type Output = Self;
#[inline]
fn sub(self, other: Self) -> Self {
self - &other
}
}
impl<'r> SubAssign<&'r Fs> for Fs {
#[inline]
fn sub_assign(&mut self, other: &Self) {
// If `other` is larger than `self`, we'll need to add the modulus to self first.
if other.cmp_native(self) == ::core::cmp::Ordering::Greater {
self.add_nocarry(&MODULUS_LIMBS);
}
self.sub_noborrow(&other);
}
}
impl SubAssign for Fs {
#[inline]
fn sub_assign(&mut self, other: Self) {
self.sub_assign(&other);
}
}
impl<'r> Mul<&'r Fs> for Fs {
type Output = Self;
#[inline]
fn mul(self, other: &Self) -> Self {
let mut ret = self;
ret.mul_assign(other);
ret
}
}
impl Mul for Fs {
type Output = Self;
#[inline]
fn mul(self, other: Self) -> Self {
self * &other
}
}
impl<'r> MulAssign<&'r Fs> for Fs {
#[inline]
fn mul_assign(&mut self, other: &Self) {
let mut carry = 0;
let r0 = mac_with_carry(0, self.0[0], other.0[0], &mut carry);
let r1 = mac_with_carry(0, self.0[0], other.0[1], &mut carry);
let r2 = mac_with_carry(0, self.0[0], other.0[2], &mut carry);
let r3 = mac_with_carry(0, self.0[0], other.0[3], &mut carry);
let r4 = carry;
let mut carry = 0;
let r1 = mac_with_carry(r1, self.0[1], other.0[0], &mut carry);
let r2 = mac_with_carry(r2, self.0[1], other.0[1], &mut carry);
let r3 = mac_with_carry(r3, self.0[1], other.0[2], &mut carry);
let r4 = mac_with_carry(r4, self.0[1], other.0[3], &mut carry);
let r5 = carry;
let mut carry = 0;
let r2 = mac_with_carry(r2, self.0[2], other.0[0], &mut carry);
let r3 = mac_with_carry(r3, self.0[2], other.0[1], &mut carry);
let r4 = mac_with_carry(r4, self.0[2], other.0[2], &mut carry);
let r5 = mac_with_carry(r5, self.0[2], other.0[3], &mut carry);
let r6 = carry;
let mut carry = 0;
let r3 = mac_with_carry(r3, self.0[3], other.0[0], &mut carry);
let r4 = mac_with_carry(r4, self.0[3], other.0[1], &mut carry);
let r5 = mac_with_carry(r5, self.0[3], other.0[2], &mut carry);
let r6 = mac_with_carry(r6, self.0[3], other.0[3], &mut carry);
let r7 = carry;
self.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7);
}
}
impl MulAssign for Fs {
#[inline]
fn mul_assign(&mut self, other: Self) {
self.mul_assign(&other);
}
}
impl BitAnd<u64> for Fs {
type Output = u64;
#[inline(always)]
fn bitand(mut self, rhs: u64) -> u64 {
self.mont_reduce(self.0[0], self.0[1], self.0[2], self.0[3], 0, 0, 0, 0);
self.0[0] & rhs
}
}
impl Shr<u32> for Fs {
type Output = Self;
#[inline(always)]
fn shr(mut self, mut n: u32) -> Self {
if n as usize >= 64 * 4 {
return Self::from(0);
}
// Convert from Montgomery to native representation.
self.mont_reduce(self.0[0], self.0[1], self.0[2], self.0[3], 0, 0, 0, 0);
while n >= 64 {
let mut t = 0;
for i in self.0.iter_mut().rev() {
mem::swap(&mut t, i);
}
n -= 64;
}
if n > 0 {
let mut t = 0;
for i in self.0.iter_mut().rev() {
let t2 = *i << (64 - n);
*i >>= n;
*i |= t;
t = t2;
}
}
// Convert back to Montgomery representation
self * R2
}
}
impl PrimeField for Fs {
type Repr = FsRepr;
fn from_repr(r: FsRepr) -> Option<Fs> {
let r = {
let mut inner = [0; 4];
LittleEndian::read_u64_into(r.as_ref(), &mut inner[..]);
Fs(inner)
};
if r.is_valid() {
Some(r * &R2)
} else {
None
}
}
fn into_repr(&self) -> FsRepr {
let mut r = *self;
r.mont_reduce(self.0[0], self.0[1], self.0[2], self.0[3], 0, 0, 0, 0);
let mut repr = [0; 32];
LittleEndian::write_u64_into(&r.0, &mut repr[..]);
FsRepr(repr)
}
#[inline(always)]
fn is_odd(&self) -> bool {
let mut r = *self;
r.mont_reduce(self.0[0], self.0[1], self.0[2], self.0[3], 0, 0, 0, 0);
r.0[0] & 1 == 1
}
fn char() -> FsRepr {
MODULUS
}
const NUM_BITS: u32 = MODULUS_BITS;
const CAPACITY: u32 = Self::NUM_BITS - 1;
fn multiplicative_generator() -> Self {
GENERATOR
}
const S: u32 = S;
fn root_of_unity() -> Self {
ROOT_OF_UNITY
}
}
impl Field for Fs {
fn random<R: RngCore + ?std::marker::Sized>(rng: &mut R) -> Self {
loop {
let mut tmp = {
let mut repr = [0u64; 4];
for limb in &mut repr {
*limb = rng.next_u64();
}
Fs(repr)
};
// Mask away the unused most-significant bits.
tmp.0.as_mut()[3] &= 0xffffffffffffffff >> REPR_SHAVE_BITS;
if tmp.is_valid() {
return tmp;
}
}
}
#[inline]
fn zero() -> Self {
Fs::from(0)
}
#[inline]
fn one() -> Self {
R
}
#[inline]
fn is_zero(&self) -> bool {
self.0.iter().all(|&e| e == 0)
}
#[inline]
fn double(&self) -> Self {
let mut ret = *self;
// This cannot exceed the backing capacity.
let mut last = 0;
for i in &mut ret.0 {
let tmp = *i >> 63;
*i <<= 1;
*i |= last;
last = tmp;
}
// However, it may need to be reduced.
ret.reduce();
ret
}
fn invert(&self) -> CtOption<Self> {
// We need to find b such that b * a ≡ 1 mod p. As we are in a prime
// field, we can apply Fermat's Little Theorem:
//
// a^p ≡ a mod p
// a^(p-1) ≡ 1 mod p
// a^(p-2) * a ≡ 1 mod p
//
// Thus inversion can be implemented with a single exponentiation.
let inverse = self.pow_vartime(&[
0xd097_0e5e_d6f7_2cb5u64,
0xa668_2093_ccc8_1082,
0x0667_3b01_0134_3b00,
0x0e7d_b4ea_6533_afa9,
]);
CtOption::new(inverse, Choice::from(if self.is_zero() { 0 } else { 1 }))
}
#[inline(always)]
fn frobenius_map(&mut self, _: usize) {
// This has no effect in a prime field.
}
#[inline]
fn square(&self) -> Self {
let mut carry = 0;
let r1 = mac_with_carry(0, self.0[0], self.0[1], &mut carry);
let r2 = mac_with_carry(0, self.0[0], self.0[2], &mut carry);
let r3 = mac_with_carry(0, self.0[0], self.0[3], &mut carry);
let r4 = carry;
let mut carry = 0;
let r3 = mac_with_carry(r3, self.0[1], self.0[2], &mut carry);
let r4 = mac_with_carry(r4, self.0[1], self.0[3], &mut carry);
let r5 = carry;
let mut carry = 0;
let r5 = mac_with_carry(r5, self.0[2], self.0[3], &mut carry);
let r6 = carry;
let r7 = r6 >> 63;
let r6 = (r6 << 1) | (r5 >> 63);
let r5 = (r5 << 1) | (r4 >> 63);
let r4 = (r4 << 1) | (r3 >> 63);
let r3 = (r3 << 1) | (r2 >> 63);
let r2 = (r2 << 1) | (r1 >> 63);
let r1 = r1 << 1;
let mut carry = 0;
let r0 = mac_with_carry(0, self.0[0], self.0[0], &mut carry);
let r1 = adc(r1, 0, &mut carry);
let r2 = mac_with_carry(r2, self.0[1], self.0[1], &mut carry);
let r3 = adc(r3, 0, &mut carry);
let r4 = mac_with_carry(r4, self.0[2], self.0[2], &mut carry);
let r5 = adc(r5, 0, &mut carry);
let r6 = mac_with_carry(r6, self.0[3], self.0[3], &mut carry);
let r7 = adc(r7, 0, &mut carry);
let mut ret = *self;
ret.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7);
ret
}
}
impl Fs {
/// Compares two elements in native representation. This is only used
/// internally.
#[inline(always)]
fn cmp_native(&self, other: &Fs) -> ::std::cmp::Ordering {
for (a, b) in self.0.iter().rev().zip(other.0.iter().rev()) {
if a < b {
return ::std::cmp::Ordering::Less;
} else if a > b {
return ::std::cmp::Ordering::Greater;
}
}
::std::cmp::Ordering::Equal
}
/// Determines if the element is really in the field. This is only used
/// internally.
#[inline(always)]
fn is_valid(&self) -> bool {
// The Ord impl calls `reduce`, which in turn calls `is_valid`, so we use
// this internal function to eliminate the cycle.
self.cmp_native(&MODULUS_LIMBS) == ::core::cmp::Ordering::Less
}
#[inline(always)]
fn add_nocarry(&mut self, other: &Fs) {
let mut carry = 0;
for (a, b) in self.0.iter_mut().zip(other.0.iter()) {
*a = adc(*a, *b, &mut carry);
}
}
#[inline(always)]
fn sub_noborrow(&mut self, other: &Fs) {
let mut borrow = 0;
for (a, b) in self.0.iter_mut().zip(other.0.iter()) {
*a = sbb(*a, *b, &mut borrow);
}
}
/// Subtracts the modulus from this element if this element is not in the
/// field. Only used internally.
#[inline(always)]
fn reduce(&mut self) {
if !self.is_valid() {
self.sub_noborrow(&MODULUS_LIMBS);
}
}
#[inline(always)]
fn mont_reduce(
&mut self,
r0: u64,
mut r1: u64,
mut r2: u64,
mut r3: u64,
mut r4: u64,
mut r5: u64,
mut r6: u64,
mut r7: u64,
) {
// The Montgomery reduction here is based on Algorithm 14.32 in
// Handbook of Applied Cryptography
// <http://cacr.uwaterloo.ca/hac/about/chap14.pdf>.
let k = r0.wrapping_mul(INV);
let mut carry = 0;
mac_with_carry(r0, k, MODULUS_LIMBS.0[0], &mut carry);
r1 = mac_with_carry(r1, k, MODULUS_LIMBS.0[1], &mut carry);
r2 = mac_with_carry(r2, k, MODULUS_LIMBS.0[2], &mut carry);
r3 = mac_with_carry(r3, k, MODULUS_LIMBS.0[3], &mut carry);
r4 = adc(r4, 0, &mut carry);
let carry2 = carry;
let k = r1.wrapping_mul(INV);
let mut carry = 0;
mac_with_carry(r1, k, MODULUS_LIMBS.0[0], &mut carry);
r2 = mac_with_carry(r2, k, MODULUS_LIMBS.0[1], &mut carry);
r3 = mac_with_carry(r3, k, MODULUS_LIMBS.0[2], &mut carry);
r4 = mac_with_carry(r4, k, MODULUS_LIMBS.0[3], &mut carry);
r5 = adc(r5, carry2, &mut carry);
let carry2 = carry;
let k = r2.wrapping_mul(INV);
let mut carry = 0;
mac_with_carry(r2, k, MODULUS_LIMBS.0[0], &mut carry);
r3 = mac_with_carry(r3, k, MODULUS_LIMBS.0[1], &mut carry);
r4 = mac_with_carry(r4, k, MODULUS_LIMBS.0[2], &mut carry);
r5 = mac_with_carry(r5, k, MODULUS_LIMBS.0[3], &mut carry);
r6 = adc(r6, carry2, &mut carry);
let carry2 = carry;
let k = r3.wrapping_mul(INV);
let mut carry = 0;
mac_with_carry(r3, k, MODULUS_LIMBS.0[0], &mut carry);
r4 = mac_with_carry(r4, k, MODULUS_LIMBS.0[1], &mut carry);
r5 = mac_with_carry(r5, k, MODULUS_LIMBS.0[2], &mut carry);
r6 = mac_with_carry(r6, k, MODULUS_LIMBS.0[3], &mut carry);
r7 = adc(r7, carry2, &mut carry);
self.0[0] = r4;
self.0[1] = r5;
self.0[2] = r6;
self.0[3] = r7;
self.reduce();
}
fn mul_bits<S: AsRef<[u8]>>(&self, bits: BitIterator<u8, S>) -> Self {
let mut res = Self::zero();
for bit in bits {
res = res.double();
if bit {
res.add_assign(self)
}
}
res
}
}
impl ToUniform for Fs {
/// Convert a little endian byte string into a uniform
/// field element. The number is reduced mod s. The caller
/// is responsible for ensuring the input is 64 bytes of
/// Random Oracle output.
fn to_uniform(digest: &[u8]) -> Self {
assert_eq!(digest.len(), 64);
Self::one().mul_bits(BitIterator::<u8, _>::new(digest))
}
}
impl SqrtField for Fs {
fn sqrt(&self) -> CtOption<Self> {
// Shank's algorithm for s mod 4 = 3
// https://eprint.iacr.org/2012/685.pdf (page 9, algorithm 2)
// a1 = self^((s - 3) // 4)
let mut a1 = self.pow_vartime([
0xb425c397b5bdcb2du64,
0x299a0824f3320420,
0x4199cec0404d0ec0,
0x39f6d3a994cebea,
]);
let mut a0 = a1.square();
a0.mul_assign(self);
a1.mul_assign(self);
CtOption::new(a1, !a0.ct_eq(&NEGATIVE_ONE))
}
}
#[test]
fn test_neg_one() {
let o = Fs::one().neg();
assert_eq!(NEGATIVE_ONE, o);
}
#[cfg(test)]
use rand_core::SeedableRng;
#[cfg(test)]
use rand_xorshift::XorShiftRng;
#[test]
fn test_fs_is_valid() {
let mut a = MODULUS_LIMBS;
assert!(!a.is_valid());
a.sub_noborrow(&Fs([1, 0, 0, 0]));
assert!(a.is_valid());
assert!(Fs::zero().is_valid());
assert!(Fs([
0xd0970e5ed6f72cb6,
0xa6682093ccc81082,
0x6673b0101343b00,
0xe7db4ea6533afa9
])
.is_valid());
assert!(!Fs([
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff
])
.is_valid());
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
for _ in 0..1000 {
let a = Fs::random(&mut rng);
assert!(a.is_valid());
}
}
#[test]
fn test_fs_add_assign() {
{
// Random number
let mut tmp = Fs::from_str(
"4577408157467272683998459759522778614363623736323078995109579213719612604198",
)
.unwrap();
assert!(tmp.is_valid());
// Test that adding zero has no effect.
tmp.add_assign(&Fs::zero());
assert_eq!(
tmp,
Fs([
0x8e6bfff4722d6e67,
0x5643da5c892044f9,
0x9465f4b281921a69,
0x25f752d3edd7162
])
);
// Add one and test for the result.
tmp.add_assign(&Fs([1, 0, 0, 0]));
assert_eq!(
tmp,
Fs([
0x8e6bfff4722d6e68,
0x5643da5c892044f9,
0x9465f4b281921a69,
0x25f752d3edd7162
])
);
// Add another random number that exercises the reduction.
tmp.add_assign(&Fs([
0xb634d07bc42d4a70,
0xf724f0c008411f5f,
0x456d4053d865af34,
0x24ce814e8c63027,
]));
assert_eq!(
tmp,
Fs([
0x44a0d070365ab8d8,
0x4d68cb1c91616459,
0xd9d3350659f7c99e,
0x4ac5d4227a3a189
])
);
// Add one to (s - 1) and test for the result.
tmp = Fs([
0xd0970e5ed6f72cb6,
0xa6682093ccc81082,
0x6673b0101343b00,
0xe7db4ea6533afa9,
]);
tmp.add_assign(&Fs([1, 0, 0, 0]));
assert!(tmp.is_zero());
// Add a random number to another one such that the result is s - 1
tmp = Fs([
0xa11fda5950ce3636,
0x922e0dbccfe0ca0e,
0xacebb6e215b82d4a,
0x97ffb8cdc3aee93,
]);
tmp.add_assign(&Fs([
0x2f7734058628f680,
0x143a12d6fce74674,
0x597b841eeb7c0db6,
0x4fdb95d88f8c115,
]));
assert_eq!(
tmp,
Fs([
0xd0970e5ed6f72cb6,
0xa6682093ccc81082,
0x6673b0101343b00,
0xe7db4ea6533afa9
])
);
// Add one to the result and test for it.
tmp.add_assign(&Fs([1, 0, 0, 0]));
assert!(tmp.is_zero());
}
// Test associativity
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
for _ in 0..1000 {
// Generate a, b, c and ensure (a + b) + c == a + (b + c).
let a = Fs::random(&mut rng);
let b = Fs::random(&mut rng);
let c = Fs::random(&mut rng);
let mut tmp1 = a;
tmp1.add_assign(&b);
tmp1.add_assign(&c);
let mut tmp2 = b;
tmp2.add_assign(&c);
tmp2.add_assign(&a);
assert!(tmp1.is_valid());
assert!(tmp2.is_valid());
assert_eq!(tmp1, tmp2);
}
}
#[test]
fn test_fs_sub_assign() {
{
// Test arbitrary subtraction that tests reduction.
let mut tmp = Fs([
0xb384d9f6877afd99,
0x4442513958e1a1c1,
0x352c4b8a95eccc3f,
0x2db62dee4b0f2,
]);
tmp.sub_assign(&Fs([
0xec5bd2d13ed6b05a,
0x2adc0ab3a39b5fa,
0x82d3360a493e637e,
0x53ccff4a64d6679,
]));
assert_eq!(
tmp,
Fs([
0x97c015841f9b79f6,
0xe7fcb121eb6ffc49,
0xb8c050814de2a3c1,
0x943c0589dcafa21
])
);
// Test the opposite subtraction which doesn't test reduction.
tmp = Fs([
0xec5bd2d13ed6b05a,
0x2adc0ab3a39b5fa,
0x82d3360a493e637e,
0x53ccff4a64d6679,
]);
tmp.sub_assign(&Fs([
0xb384d9f6877afd99,
0x4442513958e1a1c1,
0x352c4b8a95eccc3f,
0x2db62dee4b0f2,
]));
assert_eq!(
tmp,
Fs([
0x38d6f8dab75bb2c1,
0xbe6b6f71e1581439,
0x4da6ea7fb351973e,
0x539f491c768b587
])
);
// Test for sensible results with zero
tmp = Fs::zero();
tmp.sub_assign(&Fs::from(0));
assert!(tmp.is_zero());
tmp = Fs([
0x361e16aef5cce835,
0x55bbde2536e274c1,
0x4dc77a63fd15ee75,
0x1e14bb37c14f230,
]);
tmp.sub_assign(&Fs::from(0));
assert_eq!(
tmp,
Fs([
0x361e16aef5cce835,
0x55bbde2536e274c1,
0x4dc77a63fd15ee75,
0x1e14bb37c14f230
])
);
}
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
for _ in 0..1000 {
// Ensure that (a - b) + (b - a) = 0.
let a = Fs::random(&mut rng);
let b = Fs::random(&mut rng);
let mut tmp1 = a;
tmp1.sub_assign(&b);
let mut tmp2 = b;
tmp2.sub_assign(&a);
tmp1.add_assign(&tmp2);
assert!(tmp1.is_zero());
}
}
#[test]
fn test_fs_mul_assign() {
let mut tmp = Fs([
0xb433b01287f71744,
0x4eafb86728c4d108,
0xfdd52c14b9dfbe65,
0x2ff1f3434821118,
]);
tmp.mul_assign(&Fs([
0xdae00fc63c9fa90f,
0x5a5ed89b96ce21ce,
0x913cd26101bd6f58,
0x3f0822831697fe9,
]));
assert!(
tmp == Fs([
0xb68ecb61d54d2992,
0x5ff95874defce6a6,
0x3590eb053894657d,
0x53823a118515933
])
);
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
for _ in 0..1000000 {
// Ensure that (a * b) * c = a * (b * c)
let a = Fs::random(&mut rng);
let b = Fs::random(&mut rng);
let c = Fs::random(&mut rng);
let mut tmp1 = a;
tmp1.mul_assign(&b);
tmp1.mul_assign(&c);
let mut tmp2 = b;
tmp2.mul_assign(&c);
tmp2.mul_assign(&a);
assert_eq!(tmp1, tmp2);
}
for _ in 0..1000000 {
// Ensure that r * (a + b + c) = r*a + r*b + r*c
let r = Fs::random(&mut rng);
let mut a = Fs::random(&mut rng);
let mut b = Fs::random(&mut rng);
let mut c = Fs::random(&mut rng);
let mut tmp1 = a;
tmp1.add_assign(&b);
tmp1.add_assign(&c);
tmp1.mul_assign(&r);
a.mul_assign(&r);
b.mul_assign(&r);
c.mul_assign(&r);
a.add_assign(&b);
a.add_assign(&c);
assert_eq!(tmp1, a);
}
}
#[test]
fn test_fs_shr() {
let mut a = Fs::from_repr(FsRepr([
0x3f, 0x28, 0x2a, 0x48, 0xec, 0xba, 0x3f, 0xb3, 0xdf, 0xb3, 0x8c, 0xa8, 0xd3, 0xe0, 0x7d,
0x99, 0x25, 0x55, 0x0e, 0x9a, 0x2a, 0x2d, 0xf6, 0x9a, 0xa1, 0x0d, 0xe7, 0x8d, 0xb0, 0x3a,
0x00, 0x06,
]))
.unwrap();
a = a >> 0;
assert_eq!(
a.into_repr(),
FsRepr([
0x3f, 0x28, 0x2a, 0x48, 0xec, 0xba, 0x3f, 0xb3, 0xdf, 0xb3, 0x8c, 0xa8, 0xd3, 0xe0,
0x7d, 0x99, 0x25, 0x55, 0x0e, 0x9a, 0x2a, 0x2d, 0xf6, 0x9a, 0xa1, 0x0d, 0xe7, 0x8d,
0xb0, 0x3a, 0x00, 0x06,
])
);
a = a >> 1;
assert_eq!(
a.into_repr(),
FsRepr([
0x1f, 0x14, 0x15, 0x24, 0x76, 0xdd, 0x9f, 0xd9, 0xef, 0x59, 0x46, 0xd4, 0x69, 0xf0,
0xbe, 0xcc, 0x92, 0x2a, 0x07, 0x4d, 0x95, 0x16, 0x7b, 0xcd, 0xd0, 0x86, 0xf3, 0x46,
0x58, 0x1d, 0x00, 0x03,
])
);
a = a >> 50;
assert_eq!(
a.into_repr(),
FsRepr([
0x67, 0xf6, 0x7b, 0x96, 0x11, 0x75, 0x1a, 0xbc, 0x2f, 0xb3, 0xa4, 0xca, 0x41, 0x53,
0xa5, 0xc5, 0x5e, 0x33, 0xb4, 0xe1, 0xbc, 0x11, 0x56, 0x07, 0xc0, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
);
a = a >> 130;
assert_eq!(
a.into_repr(),
FsRepr([
0xd7, 0x0c, 0x6d, 0x38, 0x6f, 0x84, 0xd5, 0x01, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
);
a = a >> 64;
assert_eq!(
a.into_repr(),
FsRepr([
0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
])
);
}
#[test]
fn test_fs_squaring() {
let a = Fs([
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff,
0xe7db4ea6533afa8,
]);
assert!(a.is_valid());
assert_eq!(
a.square(),
Fs::from_repr(FsRepr([
0xaa, 0xfb, 0x52, 0xbc, 0x5c, 0xf5, 0xc7, 0x12, 0x9e, 0xce, 0xe6, 0xb5, 0xa0, 0x98,
0xdc, 0xde, 0x6a, 0x39, 0xa5, 0x26, 0x27, 0x89, 0xd2, 0x0a, 0xb3, 0x77, 0xee, 0x8f,
0xaf, 0x82, 0xfe, 0x09,
]))
.unwrap()
);
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
for _ in 0..1000000 {
// Ensure that (a * a) = a^2
let a = Fs::random(&mut rng);
let tmp = a.square();
let mut tmp2 = a;
tmp2.mul_assign(&a);
assert_eq!(tmp, tmp2);
}
}
#[test]
fn test_fs_invert() {
assert!(bool::from(Fs::zero().invert().is_none()));
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
let one = Fs::one();
for _ in 0..1000 {
// Ensure that a * a^-1 = 1
let mut a = Fs::random(&mut rng);
let ainv = a.invert().unwrap();
a.mul_assign(&ainv);
assert_eq!(a, one);
}
}
#[test]
fn test_fs_double() {
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
for _ in 0..1000 {
// Ensure doubling a is equivalent to adding a to itself.
let a = Fs::random(&mut rng);
assert_eq!(a.double(), a + a);
}
}
#[test]
fn test_fs_neg() {
{
let a = Fs::zero().neg();
assert!(a.is_zero());
}
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
for _ in 0..1000 {
// Ensure (a - (-a)) = 0.
let mut a = Fs::random(&mut rng);
let b = a.neg();
a.add_assign(&b);
assert!(a.is_zero());
}
}
#[test]
fn test_fs_pow() {
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
for i in 0u64..1000 {
// Exponentiate by various small numbers and ensure it consists with repeated
// multiplication.
let a = Fs::random(&mut rng);
let target = a.pow_vartime(&[i]);
let mut c = Fs::one();
for _ in 0..i {
c.mul_assign(&a);
}
assert_eq!(c, target);
}
for _ in 0..1000 {
// Exponentiating by the modulus should have no effect in a prime field.
let a = Fs::random(&mut rng);
assert_eq!(a, a.pow_vartime(Fs::char()));
}
}
#[test]
fn test_fs_sqrt() {
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
assert_eq!(Fs::zero().sqrt().unwrap(), Fs::zero());
for _ in 0..1000 {
// Ensure sqrt(a^2) = a or -a
let a = Fs::random(&mut rng);
let nega = a.neg();
let b = a.square();
let b = b.sqrt().unwrap();
assert!(a == b || nega == b);
}
for _ in 0..1000 {
// Ensure sqrt(a)^2 = a for random a
let a = Fs::random(&mut rng);
let tmp = a.sqrt();
if tmp.is_some().into() {
assert_eq!(a, tmp.unwrap().square());
}
}
}
#[test]
fn test_fs_from_into_repr() {
// r + 1 should not be in the field
assert!(Fs::from_repr(FsRepr([
0xb8, 0x2c, 0xf7, 0xd6, 0x5e, 0x0e, 0x97, 0xd0, 0x82, 0x10, 0xc8, 0xcc, 0x93, 0x20, 0x68,
0xa6, 0x00, 0x3b, 0x34, 0x01, 0x01, 0x3b, 0x67, 0x06, 0xa9, 0xaf, 0x33, 0x65, 0xea, 0xb4,
0x7d, 0x0e,
]))
.is_none());
// r should not be in the field
assert!(Fs::from_repr(Fs::char()).is_none());
// Multiply some arbitrary representations to see if the result is as expected.
let mut a_fs = Fs::from_repr(FsRepr([
0x71, 0x7b, 0x33, 0xd0, 0x05, 0x0c, 0x2d, 0x5f, 0x79, 0x04, 0xa2, 0xf8, 0xb0, 0xf2, 0x1d,
0x0a, 0x63, 0xb8, 0x1b, 0xe7, 0x85, 0x37, 0xd7, 0x0a, 0xec, 0xac, 0xc9, 0x80, 0x04, 0xa0,
0x04, 0x05,
]))
.unwrap();
let b_fs = Fs::from_repr(FsRepr([
0x62, 0x75, 0x47, 0x1e, 0xf5, 0x6f, 0x35, 0x66, 0x03, 0x76, 0xcf, 0x55, 0xab, 0x92, 0x0a,
0x06, 0x92, 0xd1, 0x4d, 0x36, 0xc7, 0x73, 0x42, 0x8e, 0xc5, 0x4d, 0x34, 0x4a, 0x84, 0xf8,
0x6d, 0x03,
]))
.unwrap();
let c_fs = Fs::from_repr(FsRepr([
0x68, 0x28, 0x4f, 0x8f, 0x70, 0x61, 0xef, 0x7e, 0xfb, 0x46, 0x29, 0xf5, 0x6c, 0x7e, 0x7a,
0x74, 0x17, 0x00, 0x12, 0xc9, 0xd7, 0x75, 0xdd, 0x83, 0xf7, 0x3d, 0x0f, 0x7f, 0x17, 0xf5,
0x62, 0x07,
]))
.unwrap();
a_fs.mul_assign(&b_fs);
assert_eq!(a_fs, c_fs);
// Zero should be in the field.
assert!(Fs::from_repr(FsRepr::default()).unwrap().is_zero());
let mut rng = XorShiftRng::from_seed([
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
0xe5,
]);
for _ in 0..1000 {
// Try to turn Fs elements into representations and back again, and compare.
let a = Fs::random(&mut rng);
let a_repr = a.into_repr();
let b_repr = FsRepr::from(a);
assert_eq!(a_repr, b_repr);
let a_again = Fs::from_repr(a_repr).unwrap();
assert_eq!(a, a_again);
}
}
#[test]
fn test_fs_display() {
assert_eq!(
format!(
"{}",
Fs::from_repr(FsRepr([
0xa3, 0x01, 0x8a, 0x99, 0xb9, 0xef, 0x28, 0x55, 0x89, 0x70, 0x35, 0xcb, 0xd5, 0xad,
0xd2, 0x5b, 0x98, 0x1f, 0x49, 0xdb, 0x6a, 0xfa, 0x61, 0xc0, 0xd9, 0x03, 0xdb, 0x43,
0xd1, 0xb9, 0x0d, 0x07,
]))
.unwrap()
),
"Fs(0x070db9d143db03d9c061fa6adb491f985bd2add5cb3570895528efb9998a01a3)".to_string()
);
assert_eq!(
format!(
"{}",
Fs::from_repr(FsRepr([
0x9e, 0x99, 0x17, 0x27, 0x5e, 0x74, 0x74, 0xd6, 0x38, 0xf3, 0x96, 0x3e, 0x2d, 0xf5,
0xb1, 0xbe, 0xb9, 0x82, 0x94, 0x54, 0x47, 0xe1, 0x7a, 0x9c, 0x22, 0x0d, 0x53, 0x24,
0x60, 0x70, 0x99, 0x09,
]))
.unwrap()
),
"Fs(0x0999706024530d229c7ae147549482b9beb1f52d3e96f338d674745e2717999e)".to_string()
);
}
#[test]
fn test_fs_num_bits() {
assert_eq!(Fs::NUM_BITS, 252);
assert_eq!(Fs::CAPACITY, 251);
}
#[test]
fn test_fs_root_of_unity() {
assert_eq!(Fs::S, 1);
assert_eq!(Fs::multiplicative_generator(), Fs::from(6));
assert_eq!(
Fs::multiplicative_generator().pow_vartime([
0x684b872f6b7b965bu64,
0x53341049e6640841,
0x83339d80809a1d80,
0x73eda753299d7d4
]),
Fs::root_of_unity()
);
assert_eq!(Fs::root_of_unity().pow_vartime([1u64 << Fs::S]), Fs::one());
assert!(bool::from(Fs::multiplicative_generator().sqrt().is_none()));
}