mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-08-01 12:51:30 +00:00
821 lines
27 KiB
Rust
821 lines
27 KiB
Rust
use pairing::{
|
|
PrimeField,
|
|
PrimeFieldRepr,
|
|
Field,
|
|
};
|
|
|
|
use bellman::{
|
|
SynthesisError,
|
|
ConstraintSystem,
|
|
Circuit
|
|
};
|
|
|
|
use jubjub::{
|
|
JubjubEngine,
|
|
FixedGenerators
|
|
};
|
|
|
|
use constants;
|
|
|
|
use primitives::{
|
|
ValueCommitment,
|
|
ProofGenerationKey,
|
|
PaymentAddress
|
|
};
|
|
|
|
use super::Assignment;
|
|
use super::boolean;
|
|
use super::ecc;
|
|
use super::pedersen_hash;
|
|
use super::blake2s;
|
|
use super::num;
|
|
use super::multipack;
|
|
|
|
/// This is an instance of the `Spend` circuit.
|
|
pub struct Spend<'a, E: JubjubEngine> {
|
|
pub params: &'a E::Params,
|
|
|
|
/// Pedersen commitment to the value being spent
|
|
pub value_commitment: Option<ValueCommitment<E>>,
|
|
|
|
/// Key required to construct proofs for spending notes
|
|
/// for a particular spending key
|
|
pub proof_generation_key: Option<ProofGenerationKey<E>>,
|
|
|
|
/// The payment address associated with the note
|
|
pub payment_address: Option<PaymentAddress<E>>,
|
|
|
|
/// The randomness of the note commitment
|
|
pub commitment_randomness: Option<E::Fs>,
|
|
|
|
/// Re-randomization of the public key
|
|
pub ar: Option<E::Fs>,
|
|
|
|
/// The authentication path of the commitment in the tree
|
|
pub auth_path: Vec<Option<(E::Fr, bool)>>,
|
|
|
|
/// The anchor; the root of the tree. If the note being
|
|
/// spent is zero-value, this can be anything.
|
|
pub anchor: Option<E::Fr>
|
|
}
|
|
|
|
/// This is an output circuit instance.
|
|
pub struct Output<'a, E: JubjubEngine> {
|
|
pub params: &'a E::Params,
|
|
|
|
/// Pedersen commitment to the value being spent
|
|
pub value_commitment: Option<ValueCommitment<E>>,
|
|
|
|
/// The payment address of the recipient
|
|
pub payment_address: Option<PaymentAddress<E>>,
|
|
|
|
/// The randomness used to hide the note commitment data
|
|
pub commitment_randomness: Option<E::Fs>,
|
|
|
|
/// The ephemeral secret key for DH with recipient
|
|
pub esk: Option<E::Fs>
|
|
}
|
|
|
|
/// Exposes a Pedersen commitment to the value as an
|
|
/// input to the circuit
|
|
fn expose_value_commitment<E, CS>(
|
|
mut cs: CS,
|
|
value_commitment: Option<ValueCommitment<E>>,
|
|
params: &E::Params
|
|
) -> Result<Vec<boolean::Boolean>, SynthesisError>
|
|
where E: JubjubEngine,
|
|
CS: ConstraintSystem<E>
|
|
{
|
|
// Booleanize the value into little-endian bit order
|
|
let value_bits = boolean::u64_into_boolean_vec_le(
|
|
cs.namespace(|| "value"),
|
|
value_commitment.as_ref().map(|c| c.value)
|
|
)?;
|
|
|
|
// Compute the note value in the exponent
|
|
let value = ecc::fixed_base_multiplication(
|
|
cs.namespace(|| "compute the value in the exponent"),
|
|
FixedGenerators::ValueCommitmentValue,
|
|
&value_bits,
|
|
params
|
|
)?;
|
|
|
|
// Booleanize the randomness. This does not ensure
|
|
// the bit representation is "in the field" because
|
|
// it doesn't matter for security.
|
|
let rcv = boolean::field_into_boolean_vec_le(
|
|
cs.namespace(|| "rcv"),
|
|
value_commitment.as_ref().map(|c| c.randomness)
|
|
)?;
|
|
|
|
// Compute the randomness in the exponent
|
|
let rcv = ecc::fixed_base_multiplication(
|
|
cs.namespace(|| "computation of rcv"),
|
|
FixedGenerators::ValueCommitmentRandomness,
|
|
&rcv,
|
|
params
|
|
)?;
|
|
|
|
// Compute the Pedersen commitment to the value
|
|
let cv = value.add(
|
|
cs.namespace(|| "computation of cv"),
|
|
&rcv,
|
|
params
|
|
)?;
|
|
|
|
// Expose the commitment as an input to the circuit
|
|
cv.inputize(cs.namespace(|| "commitment point"))?;
|
|
|
|
Ok(value_bits)
|
|
}
|
|
|
|
impl<'a, E: JubjubEngine> Circuit<E> for Spend<'a, E> {
|
|
fn synthesize<CS: ConstraintSystem<E>>(self, cs: &mut CS) -> Result<(), SynthesisError>
|
|
{
|
|
// Prover witnesses ak (ensures that it's on the curve)
|
|
let ak = ecc::EdwardsPoint::witness(
|
|
cs.namespace(|| "ak"),
|
|
self.proof_generation_key.as_ref().map(|k| k.ak.clone()),
|
|
self.params
|
|
)?;
|
|
|
|
// There are no sensible attacks on small order points
|
|
// of ak (that we're aware of!) but it's a cheap check,
|
|
// so we do it.
|
|
ak.assert_not_small_order(
|
|
cs.namespace(|| "ak not small order"),
|
|
self.params
|
|
)?;
|
|
|
|
// Rerandomize ak and expose it as an input to the circuit
|
|
{
|
|
let ar = boolean::field_into_boolean_vec_le(
|
|
cs.namespace(|| "ar"),
|
|
self.ar
|
|
)?;
|
|
|
|
// Compute the randomness in the exponent
|
|
let ar = ecc::fixed_base_multiplication(
|
|
cs.namespace(|| "computation of randomization for the signing key"),
|
|
FixedGenerators::SpendingKeyGenerator,
|
|
&ar,
|
|
self.params
|
|
)?;
|
|
|
|
let rk = ak.add(
|
|
cs.namespace(|| "computation of rk"),
|
|
&ar,
|
|
self.params
|
|
)?;
|
|
|
|
rk.inputize(cs.namespace(|| "rk"))?;
|
|
}
|
|
|
|
// Compute nk = [nsk] ProofGenerationKey
|
|
let nk;
|
|
{
|
|
// Witness nsk as bits
|
|
let nsk = boolean::field_into_boolean_vec_le(
|
|
cs.namespace(|| "nsk"),
|
|
self.proof_generation_key.as_ref().map(|k| k.nsk.clone())
|
|
)?;
|
|
|
|
// NB: We don't ensure that the bit representation of nsk
|
|
// is "in the field" (Fs) because it's not used except to
|
|
// demonstrate the prover knows it. If they know a
|
|
// congruency then that's equivalent.
|
|
|
|
// Compute nk = [nsk] ProvingPublicKey
|
|
nk = ecc::fixed_base_multiplication(
|
|
cs.namespace(|| "computation of nk"),
|
|
FixedGenerators::ProofGenerationKey,
|
|
&nsk,
|
|
self.params
|
|
)?;
|
|
}
|
|
|
|
// This is the "viewing key" preimage for CRH^ivk
|
|
let mut ivk_preimage = vec![];
|
|
|
|
// Place ak in the preimage for CRH^ivk
|
|
ivk_preimage.extend(
|
|
ak.repr(cs.namespace(|| "representation of ak"))?
|
|
);
|
|
|
|
// This is the nullifier preimage for PRF^nf
|
|
let mut nf_preimage = vec![];
|
|
|
|
// Extend ivk and nf preimages with the representation of
|
|
// nk.
|
|
{
|
|
let repr_nk = nk.repr(
|
|
cs.namespace(|| "representation of nk")
|
|
)?;
|
|
|
|
ivk_preimage.extend(repr_nk.iter().cloned());
|
|
nf_preimage.extend(repr_nk);
|
|
}
|
|
|
|
assert_eq!(ivk_preimage.len(), 512);
|
|
assert_eq!(nf_preimage.len(), 256);
|
|
|
|
// Compute the incoming viewing key ivk
|
|
let mut ivk = blake2s::blake2s(
|
|
cs.namespace(|| "computation of ivk"),
|
|
&ivk_preimage,
|
|
constants::CRH_IVK_PERSONALIZATION
|
|
)?;
|
|
|
|
// Swap bit-endianness in each byte
|
|
for ivk_byte in ivk.chunks_mut(8) {
|
|
ivk_byte.reverse();
|
|
}
|
|
|
|
// drop_5 to ensure it's in the field
|
|
ivk.truncate(E::Fs::CAPACITY as usize);
|
|
|
|
// Witness g_d, checking that it's on the curve.
|
|
let g_d = {
|
|
// This binding is to avoid a weird edge case in Rust's
|
|
// ownership/borrowing rules. self is partially moved
|
|
// above, but the closure for and_then will have to
|
|
// move self (or a reference to self) to reference
|
|
// self.params, so we have to copy self.params here.
|
|
let params = self.params;
|
|
|
|
ecc::EdwardsPoint::witness(
|
|
cs.namespace(|| "witness g_d"),
|
|
self.payment_address.as_ref().and_then(|a| a.g_d(params)),
|
|
self.params
|
|
)?
|
|
};
|
|
|
|
// Check that g_d is not small order. Technically, this check
|
|
// is already done in the Output circuit, and this proof ensures
|
|
// g_d is bound to a product of that check, but for defense in
|
|
// depth let's check it anyway. It's cheap.
|
|
g_d.assert_not_small_order(
|
|
cs.namespace(|| "g_d not small order"),
|
|
self.params
|
|
)?;
|
|
|
|
// Compute pk_d = g_d^ivk
|
|
let pk_d = g_d.mul(
|
|
cs.namespace(|| "compute pk_d"),
|
|
&ivk,
|
|
self.params
|
|
)?;
|
|
|
|
// Compute note contents:
|
|
// value (in big endian) followed by g_d and pk_d
|
|
let mut note_contents = vec![];
|
|
|
|
// Handle the value; we'll need it later for the
|
|
// dummy input check.
|
|
let mut value_num = num::Num::zero();
|
|
{
|
|
// Get the value in little-endian bit order
|
|
let value_bits = expose_value_commitment(
|
|
cs.namespace(|| "value commitment"),
|
|
self.value_commitment,
|
|
self.params
|
|
)?;
|
|
|
|
// Compute the note's value as a linear combination
|
|
// of the bits.
|
|
let mut coeff = E::Fr::one();
|
|
for bit in &value_bits {
|
|
value_num = value_num.add_bool_with_coeff(
|
|
CS::one(),
|
|
bit,
|
|
coeff
|
|
);
|
|
coeff.double();
|
|
}
|
|
|
|
// Place the value in the note
|
|
note_contents.extend(value_bits);
|
|
}
|
|
|
|
// Place g_d in the note
|
|
note_contents.extend(
|
|
g_d.repr(cs.namespace(|| "representation of g_d"))?
|
|
);
|
|
|
|
// Place pk_d in the note
|
|
note_contents.extend(
|
|
pk_d.repr(cs.namespace(|| "representation of pk_d"))?
|
|
);
|
|
|
|
assert_eq!(
|
|
note_contents.len(),
|
|
64 + // value
|
|
256 + // g_d
|
|
256 // p_d
|
|
);
|
|
|
|
// Compute the hash of the note contents
|
|
let mut cm = pedersen_hash::pedersen_hash(
|
|
cs.namespace(|| "note content hash"),
|
|
pedersen_hash::Personalization::NoteCommitment,
|
|
¬e_contents,
|
|
self.params
|
|
)?;
|
|
|
|
{
|
|
// Booleanize the randomness for the note commitment
|
|
let rcm = boolean::field_into_boolean_vec_le(
|
|
cs.namespace(|| "rcm"),
|
|
self.commitment_randomness
|
|
)?;
|
|
|
|
// Compute the note commitment randomness in the exponent
|
|
let rcm = ecc::fixed_base_multiplication(
|
|
cs.namespace(|| "computation of commitment randomness"),
|
|
FixedGenerators::NoteCommitmentRandomness,
|
|
&rcm,
|
|
self.params
|
|
)?;
|
|
|
|
// Randomize the note commitment. Pedersen hashes are not
|
|
// themselves hiding commitments.
|
|
cm = cm.add(
|
|
cs.namespace(|| "randomization of note commitment"),
|
|
&rcm,
|
|
self.params
|
|
)?;
|
|
}
|
|
|
|
// This will store (least significant bit first)
|
|
// the position of the note in the tree, for use
|
|
// in nullifier computation.
|
|
let mut position_bits = vec![];
|
|
|
|
// This is an injective encoding, as cur is a
|
|
// point in the prime order subgroup.
|
|
let mut cur = cm.get_x().clone();
|
|
|
|
// Ascend the merkle tree authentication path
|
|
for (i, e) in self.auth_path.into_iter().enumerate() {
|
|
let cs = &mut cs.namespace(|| format!("merkle tree hash {}", i));
|
|
|
|
// Determines if the current subtree is the "right" leaf at this
|
|
// depth of the tree.
|
|
let cur_is_right = boolean::Boolean::from(boolean::AllocatedBit::alloc(
|
|
cs.namespace(|| "position bit"),
|
|
e.map(|e| e.1)
|
|
)?);
|
|
|
|
// Push this boolean for nullifier computation later
|
|
position_bits.push(cur_is_right.clone());
|
|
|
|
// Witness the authentication path element adjacent
|
|
// at this depth.
|
|
let path_element = num::AllocatedNum::alloc(
|
|
cs.namespace(|| "path element"),
|
|
|| {
|
|
Ok(e.get()?.0)
|
|
}
|
|
)?;
|
|
|
|
// Swap the two if the current subtree is on the right
|
|
let (xl, xr) = num::AllocatedNum::conditionally_reverse(
|
|
cs.namespace(|| "conditional reversal of preimage"),
|
|
&cur,
|
|
&path_element,
|
|
&cur_is_right
|
|
)?;
|
|
|
|
// We don't need to be strict, because the function is
|
|
// collision-resistant. If the prover witnesses a congruency,
|
|
// they will be unable to find an authentication path in the
|
|
// tree with high probability.
|
|
let mut preimage = vec![];
|
|
preimage.extend(xl.into_bits_le(cs.namespace(|| "xl into bits"))?);
|
|
preimage.extend(xr.into_bits_le(cs.namespace(|| "xr into bits"))?);
|
|
|
|
// Compute the new subtree value
|
|
cur = pedersen_hash::pedersen_hash(
|
|
cs.namespace(|| "computation of pedersen hash"),
|
|
pedersen_hash::Personalization::MerkleTree(i),
|
|
&preimage,
|
|
self.params
|
|
)?.get_x().clone(); // Injective encoding
|
|
}
|
|
|
|
{
|
|
let real_anchor_value = self.anchor;
|
|
|
|
// Allocate the "real" anchor that will be exposed.
|
|
let rt = num::AllocatedNum::alloc(
|
|
cs.namespace(|| "conditional anchor"),
|
|
|| {
|
|
Ok(*real_anchor_value.get()?)
|
|
}
|
|
)?;
|
|
|
|
// (cur - rt) * value = 0
|
|
// if value is zero, cur and rt can be different
|
|
// if value is nonzero, they must be equal
|
|
cs.enforce(
|
|
|| "conditionally enforce correct root",
|
|
|lc| lc + cur.get_variable() - rt.get_variable(),
|
|
|lc| lc + &value_num.lc(E::Fr::one()),
|
|
|lc| lc
|
|
);
|
|
|
|
// Expose the anchor
|
|
rt.inputize(cs.namespace(|| "anchor"))?;
|
|
}
|
|
|
|
// Compute the cm + g^position for preventing
|
|
// faerie gold attacks
|
|
let mut rho = cm;
|
|
{
|
|
// Compute the position in the exponent
|
|
let position = ecc::fixed_base_multiplication(
|
|
cs.namespace(|| "g^position"),
|
|
FixedGenerators::NullifierPosition,
|
|
&position_bits,
|
|
self.params
|
|
)?;
|
|
|
|
// Add the position to the commitment
|
|
rho = rho.add(
|
|
cs.namespace(|| "faerie gold prevention"),
|
|
&position,
|
|
self.params
|
|
)?;
|
|
}
|
|
|
|
// Let's compute nf = BLAKE2s(nk || rho)
|
|
nf_preimage.extend(
|
|
rho.repr(cs.namespace(|| "representation of rho"))?
|
|
);
|
|
|
|
assert_eq!(nf_preimage.len(), 512);
|
|
|
|
// Compute nf
|
|
let nf = blake2s::blake2s(
|
|
cs.namespace(|| "nf computation"),
|
|
&nf_preimage,
|
|
constants::PRF_NF_PERSONALIZATION
|
|
)?;
|
|
|
|
multipack::pack_into_inputs(cs.namespace(|| "pack nullifier"), &nf)
|
|
}
|
|
}
|
|
|
|
impl<'a, E: JubjubEngine> Circuit<E> for Output<'a, E> {
|
|
fn synthesize<CS: ConstraintSystem<E>>(self, cs: &mut CS) -> Result<(), SynthesisError>
|
|
{
|
|
// Let's start to construct our note, which contains
|
|
// value (big endian)
|
|
let mut note_contents = vec![];
|
|
|
|
// Expose the value commitment and place the value
|
|
// in the note.
|
|
note_contents.extend(expose_value_commitment(
|
|
cs.namespace(|| "value commitment"),
|
|
self.value_commitment,
|
|
self.params
|
|
)?);
|
|
|
|
// Let's deal with g_d
|
|
{
|
|
let params = self.params;
|
|
|
|
// Prover witnesses g_d, ensuring it's on the
|
|
// curve.
|
|
let g_d = ecc::EdwardsPoint::witness(
|
|
cs.namespace(|| "witness g_d"),
|
|
self.payment_address.as_ref().and_then(|a| a.g_d(params)),
|
|
self.params
|
|
)?;
|
|
|
|
// g_d is ensured to be large order. The relationship
|
|
// between g_d and pk_d ultimately binds ivk to the
|
|
// note. If this were a small order point, it would
|
|
// not do this correctly, and the prover could
|
|
// double-spend by finding random ivk's that satisfy
|
|
// the relationship.
|
|
//
|
|
// Further, if it were small order, epk would be
|
|
// small order too!
|
|
g_d.assert_not_small_order(
|
|
cs.namespace(|| "g_d not small order"),
|
|
self.params
|
|
)?;
|
|
|
|
// Extend our note contents with the representation of
|
|
// g_d.
|
|
note_contents.extend(
|
|
g_d.repr(cs.namespace(|| "representation of g_d"))?
|
|
);
|
|
|
|
// Booleanize our ephemeral secret key
|
|
let esk = boolean::field_into_boolean_vec_le(
|
|
cs.namespace(|| "esk"),
|
|
self.esk
|
|
)?;
|
|
|
|
// Create the ephemeral public key from g_d.
|
|
let epk = g_d.mul(
|
|
cs.namespace(|| "epk computation"),
|
|
&esk,
|
|
self.params
|
|
)?;
|
|
|
|
// Expose epk publicly.
|
|
epk.inputize(cs.namespace(|| "epk"))?;
|
|
}
|
|
|
|
// Now let's deal with pk_d. We don't do any checks and
|
|
// essentially allow the prover to witness any 256 bits
|
|
// they would like.
|
|
{
|
|
// Just grab pk_d from the witness
|
|
let pk_d = self.payment_address.as_ref().map(|e| e.pk_d.into_xy());
|
|
|
|
// Witness the y-coordinate, encoded as little
|
|
// endian bits (to match the representation)
|
|
let y_contents = boolean::field_into_boolean_vec_le(
|
|
cs.namespace(|| "pk_d bits of y"),
|
|
pk_d.map(|e| e.1)
|
|
)?;
|
|
|
|
// Witness the sign bit
|
|
let sign_bit = boolean::Boolean::from(boolean::AllocatedBit::alloc(
|
|
cs.namespace(|| "pk_d bit of x"),
|
|
pk_d.map(|e| e.0.into_repr().is_odd())
|
|
)?);
|
|
|
|
// Extend the note with pk_d representation
|
|
note_contents.extend(y_contents);
|
|
note_contents.push(sign_bit);
|
|
}
|
|
|
|
assert_eq!(
|
|
note_contents.len(),
|
|
64 + // value
|
|
256 + // g_d
|
|
256 // pk_d
|
|
);
|
|
|
|
// Compute the hash of the note contents
|
|
let mut cm = pedersen_hash::pedersen_hash(
|
|
cs.namespace(|| "note content hash"),
|
|
pedersen_hash::Personalization::NoteCommitment,
|
|
¬e_contents,
|
|
self.params
|
|
)?;
|
|
|
|
{
|
|
// Booleanize the randomness
|
|
let rcm = boolean::field_into_boolean_vec_le(
|
|
cs.namespace(|| "rcm"),
|
|
self.commitment_randomness
|
|
)?;
|
|
|
|
// Compute the note commitment randomness in the exponent
|
|
let rcm = ecc::fixed_base_multiplication(
|
|
cs.namespace(|| "computation of commitment randomness"),
|
|
FixedGenerators::NoteCommitmentRandomness,
|
|
&rcm,
|
|
self.params
|
|
)?;
|
|
|
|
// Randomize our note commitment
|
|
cm = cm.add(
|
|
cs.namespace(|| "randomization of note commitment"),
|
|
&rcm,
|
|
self.params
|
|
)?;
|
|
}
|
|
|
|
// Only the x-coordinate of the output is revealed,
|
|
// since we know it is prime order, and we know that
|
|
// the x-coordinate is an injective encoding for
|
|
// prime-order elements.
|
|
cm.get_x().inputize(cs.namespace(|| "commitment"))?;
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_input_circuit_with_bls12_381() {
|
|
use pairing::{Field, BitIterator};
|
|
use pairing::bls12_381::*;
|
|
use rand::{SeedableRng, Rng, XorShiftRng};
|
|
use ::circuit::test::*;
|
|
use jubjub::{JubjubBls12, fs, edwards};
|
|
|
|
let params = &JubjubBls12::new();
|
|
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
|
|
|
let tree_depth = 32;
|
|
|
|
for _ in 0..10 {
|
|
let value_commitment = ValueCommitment {
|
|
value: rng.gen(),
|
|
randomness: rng.gen()
|
|
};
|
|
|
|
let nsk: fs::Fs = rng.gen();
|
|
let ak = edwards::Point::rand(rng, params).mul_by_cofactor(params);
|
|
|
|
let proof_generation_key = ::primitives::ProofGenerationKey {
|
|
ak: ak.clone(),
|
|
nsk: nsk.clone()
|
|
};
|
|
|
|
let viewing_key = proof_generation_key.into_viewing_key(params);
|
|
|
|
let payment_address;
|
|
|
|
loop {
|
|
let diversifier = ::primitives::Diversifier(rng.gen());
|
|
|
|
if let Some(p) = viewing_key.into_payment_address(
|
|
diversifier,
|
|
params
|
|
)
|
|
{
|
|
payment_address = p;
|
|
break;
|
|
}
|
|
}
|
|
|
|
let g_d = payment_address.diversifier.g_d(params).unwrap();
|
|
let commitment_randomness: fs::Fs = rng.gen();
|
|
let auth_path = vec![Some((rng.gen(), rng.gen())); tree_depth];
|
|
let ar: fs::Fs = rng.gen();
|
|
|
|
{
|
|
let rk = viewing_key.rk(ar, params).into_xy();
|
|
let expected_value_cm = value_commitment.cm(params).into_xy();
|
|
let note = ::primitives::Note {
|
|
value: value_commitment.value,
|
|
g_d: g_d.clone(),
|
|
pk_d: payment_address.pk_d.clone(),
|
|
r: commitment_randomness.clone()
|
|
};
|
|
|
|
let mut position = 0u64;
|
|
let cm: Fr = note.cm(params);
|
|
let mut cur = cm.clone();
|
|
|
|
for (i, val) in auth_path.clone().into_iter().enumerate()
|
|
{
|
|
let (uncle, b) = val.unwrap();
|
|
|
|
let mut lhs = cur;
|
|
let mut rhs = uncle;
|
|
|
|
if b {
|
|
::std::mem::swap(&mut lhs, &mut rhs);
|
|
}
|
|
|
|
let mut lhs: Vec<bool> = BitIterator::new(lhs.into_repr()).collect();
|
|
let mut rhs: Vec<bool> = BitIterator::new(rhs.into_repr()).collect();
|
|
|
|
lhs.reverse();
|
|
rhs.reverse();
|
|
|
|
cur = ::pedersen_hash::pedersen_hash::<Bls12, _>(
|
|
::pedersen_hash::Personalization::MerkleTree(i),
|
|
lhs.into_iter()
|
|
.take(Fr::NUM_BITS as usize)
|
|
.chain(rhs.into_iter().take(Fr::NUM_BITS as usize)),
|
|
params
|
|
).into_xy().0;
|
|
|
|
if b {
|
|
position |= 1 << i;
|
|
}
|
|
}
|
|
|
|
let expected_nf = note.nf(&viewing_key, position, params);
|
|
let expected_nf = multipack::bytes_to_bits(&expected_nf);
|
|
let expected_nf = multipack::compute_multipacking::<Bls12>(&expected_nf);
|
|
assert_eq!(expected_nf.len(), 2);
|
|
|
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
|
|
|
let instance = Spend {
|
|
params: params,
|
|
value_commitment: Some(value_commitment.clone()),
|
|
proof_generation_key: Some(proof_generation_key.clone()),
|
|
payment_address: Some(payment_address.clone()),
|
|
commitment_randomness: Some(commitment_randomness),
|
|
ar: Some(ar),
|
|
auth_path: auth_path.clone(),
|
|
anchor: Some(cur)
|
|
};
|
|
|
|
instance.synthesize(&mut cs).unwrap();
|
|
|
|
assert!(cs.is_satisfied());
|
|
assert_eq!(cs.num_constraints(), 98777);
|
|
assert_eq!(cs.hash(), "499305e409599a3e4fe0a885f6adf674e9f49ba4a21e47362356d2a89f15dc1f");
|
|
|
|
assert_eq!(cs.get("randomization of note commitment/x3/num"), cm);
|
|
|
|
assert_eq!(cs.num_inputs(), 8);
|
|
assert_eq!(cs.get_input(0, "ONE"), Fr::one());
|
|
assert_eq!(cs.get_input(1, "rk/x/input variable"), rk.0);
|
|
assert_eq!(cs.get_input(2, "rk/y/input variable"), rk.1);
|
|
assert_eq!(cs.get_input(3, "value commitment/commitment point/x/input variable"), expected_value_cm.0);
|
|
assert_eq!(cs.get_input(4, "value commitment/commitment point/y/input variable"), expected_value_cm.1);
|
|
assert_eq!(cs.get_input(5, "anchor/input variable"), cur);
|
|
assert_eq!(cs.get_input(6, "pack nullifier/input 0"), expected_nf[0]);
|
|
assert_eq!(cs.get_input(7, "pack nullifier/input 1"), expected_nf[1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_output_circuit_with_bls12_381() {
|
|
use pairing::{Field};
|
|
use pairing::bls12_381::*;
|
|
use rand::{SeedableRng, Rng, XorShiftRng};
|
|
use ::circuit::test::*;
|
|
use jubjub::{JubjubBls12, fs, edwards};
|
|
|
|
let params = &JubjubBls12::new();
|
|
let rng = &mut XorShiftRng::from_seed([0x3dbe6258, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
|
|
|
for _ in 0..100 {
|
|
let value_commitment = ValueCommitment {
|
|
value: rng.gen(),
|
|
randomness: rng.gen()
|
|
};
|
|
|
|
let nsk: fs::Fs = rng.gen();
|
|
let ak = edwards::Point::rand(rng, params).mul_by_cofactor(params);
|
|
|
|
let proof_generation_key = ::primitives::ProofGenerationKey {
|
|
ak: ak.clone(),
|
|
nsk: nsk.clone()
|
|
};
|
|
|
|
let viewing_key = proof_generation_key.into_viewing_key(params);
|
|
|
|
let payment_address;
|
|
|
|
loop {
|
|
let diversifier = ::primitives::Diversifier(rng.gen());
|
|
|
|
if let Some(p) = viewing_key.into_payment_address(
|
|
diversifier,
|
|
params
|
|
)
|
|
{
|
|
payment_address = p;
|
|
break;
|
|
}
|
|
}
|
|
|
|
let commitment_randomness: fs::Fs = rng.gen();
|
|
let esk: fs::Fs = rng.gen();
|
|
|
|
{
|
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
|
|
|
let instance = Output {
|
|
params: params,
|
|
value_commitment: Some(value_commitment.clone()),
|
|
payment_address: Some(payment_address.clone()),
|
|
commitment_randomness: Some(commitment_randomness),
|
|
esk: Some(esk.clone())
|
|
};
|
|
|
|
instance.synthesize(&mut cs).unwrap();
|
|
|
|
assert!(cs.is_satisfied());
|
|
assert_eq!(cs.num_constraints(), 7827);
|
|
assert_eq!(cs.hash(), "d18e83255220328a688134038ba4f82d5ce67ffe9f97b2ae2678042da0efad43");
|
|
|
|
let expected_cm = payment_address.create_note(
|
|
value_commitment.value,
|
|
commitment_randomness,
|
|
params
|
|
).expect("should be valid").cm(params);
|
|
|
|
let expected_value_cm = value_commitment.cm(params).into_xy();
|
|
|
|
let expected_epk = payment_address.g_d(params).expect("should be valid").mul(esk, params);
|
|
let expected_epk_xy = expected_epk.into_xy();
|
|
|
|
assert_eq!(cs.num_inputs(), 6);
|
|
assert_eq!(cs.get_input(0, "ONE"), Fr::one());
|
|
assert_eq!(cs.get_input(1, "value commitment/commitment point/x/input variable"), expected_value_cm.0);
|
|
assert_eq!(cs.get_input(2, "value commitment/commitment point/y/input variable"), expected_value_cm.1);
|
|
assert_eq!(cs.get_input(3, "epk/x/input variable"), expected_epk_xy.0);
|
|
assert_eq!(cs.get_input(4, "epk/y/input variable"), expected_epk_xy.1);
|
|
assert_eq!(cs.get_input(5, "commitment/input variable"), expected_cm);
|
|
}
|
|
}
|
|
}
|