mirror of
				https://github.com/Qortal/qortal-ui.git
				synced 2025-11-04 14:47:29 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2620 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			2620 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
/**!!!
 | 
						|
* Elliptic Curve and BigInteger implementation
 | 
						|
* 
 | 
						|
* Copyright for each portion of code are included in their respective portions.
 | 
						|
* Compiled and Put together by LOTW (^_^)
 | 
						|
*/
 | 
						|
 | 
						|
(function () {
 | 
						|
 | 
						|
 | 
						|
    // Copyright (c) 2005  Tom Wu
 | 
						|
    // All Rights Reserved.
 | 
						|
    // See "LICENSE" for details.
 | 
						|
 | 
						|
    // Basic JavaScript BN library - subset useful for RSA encryption.
 | 
						|
 | 
						|
    // Bits per digit
 | 
						|
    var dbits;
 | 
						|
 | 
						|
    // JavaScript engine analysis
 | 
						|
    var canary = 0xdeadbeefcafe;
 | 
						|
    var j_lm = (canary & 0xffffff) == 0xefcafe;
 | 
						|
 | 
						|
    // (public) Constructor
 | 
						|
    function BigInteger(a, b, c) {
 | 
						|
        if (a != null)
 | 
						|
            if ('number' == typeof a) this.fromNumber(a, b, c);
 | 
						|
            else if (b == null && 'string' != typeof a) this.fromString(a, 256);
 | 
						|
            else this.fromString(a, b);
 | 
						|
    }
 | 
						|
 | 
						|
    // return new, unset BigInteger
 | 
						|
    function nbi() {
 | 
						|
        return new BigInteger(null);
 | 
						|
    }
 | 
						|
 | 
						|
    // am: Compute w_j += (x*this_i), propagate carries,
 | 
						|
    // c is initial carry, returns final carry.
 | 
						|
    // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
 | 
						|
    // We need to select the fastest one that works in this environment.
 | 
						|
 | 
						|
    // am1: use a single mult and divide to get the high bits,
 | 
						|
    // max digit bits should be 26 because
 | 
						|
    // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
 | 
						|
    function am1(i, x, w, j, c, n) {
 | 
						|
        while (--n >= 0) {
 | 
						|
            var v = x * this[i++] + w[j] + c;
 | 
						|
            c = Math.floor(v / 0x4000000);
 | 
						|
            w[j++] = v & 0x3ffffff;
 | 
						|
        }
 | 
						|
        return c;
 | 
						|
    }
 | 
						|
    // am2 avoids a big mult-and-extract completely.
 | 
						|
    // Max digit bits should be <= 30 because we do bitwise ops
 | 
						|
    // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
 | 
						|
    function am2(i, x, w, j, c, n) {
 | 
						|
        var xl = x & 0x7fff,
 | 
						|
            xh = x >> 15;
 | 
						|
        while (--n >= 0) {
 | 
						|
            var l = this[i] & 0x7fff;
 | 
						|
            var h = this[i++] >> 15;
 | 
						|
            var m = xh * l + h * xl;
 | 
						|
            l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff);
 | 
						|
            c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30);
 | 
						|
            w[j++] = l & 0x3fffffff;
 | 
						|
        }
 | 
						|
        return c;
 | 
						|
    }
 | 
						|
    // Alternately, set max digit bits to 28 since some
 | 
						|
    // browsers slow down when dealing with 32-bit numbers.
 | 
						|
    function am3(i, x, w, j, c, n) {
 | 
						|
        var xl = x & 0x3fff,
 | 
						|
            xh = x >> 14;
 | 
						|
        while (--n >= 0) {
 | 
						|
            var l = this[i] & 0x3fff;
 | 
						|
            var h = this[i++] >> 14;
 | 
						|
            var m = xh * l + h * xl;
 | 
						|
            l = xl * l + ((m & 0x3fff) << 14) + w[j] + c;
 | 
						|
            c = (l >> 28) + (m >> 14) + xh * h;
 | 
						|
            w[j++] = l & 0xfffffff;
 | 
						|
        }
 | 
						|
        return c;
 | 
						|
    }
 | 
						|
    var inBrowser = typeof navigator !== 'undefined';
 | 
						|
    if (inBrowser && j_lm && navigator.appName == 'Microsoft Internet Explorer') {
 | 
						|
        BigInteger.prototype.am = am2;
 | 
						|
        dbits = 30;
 | 
						|
    } else if (inBrowser && j_lm && navigator.appName != 'Netscape') {
 | 
						|
        BigInteger.prototype.am = am1;
 | 
						|
        dbits = 26;
 | 
						|
    } else {
 | 
						|
        // Mozilla/Netscape seems to prefer am3
 | 
						|
        BigInteger.prototype.am = am3;
 | 
						|
        dbits = 28;
 | 
						|
    }
 | 
						|
 | 
						|
    BigInteger.prototype.DB = dbits;
 | 
						|
    BigInteger.prototype.DM = (1 << dbits) - 1;
 | 
						|
    BigInteger.prototype.DV = 1 << dbits;
 | 
						|
 | 
						|
    var BI_FP = 52;
 | 
						|
    BigInteger.prototype.FV = Math.pow(2, BI_FP);
 | 
						|
    BigInteger.prototype.F1 = BI_FP - dbits;
 | 
						|
    BigInteger.prototype.F2 = 2 * dbits - BI_FP;
 | 
						|
 | 
						|
    // Digit conversions
 | 
						|
    var BI_RM = '0123456789abcdefghijklmnopqrstuvwxyz';
 | 
						|
    var BI_RC = new Array();
 | 
						|
    var rr, vv;
 | 
						|
    rr = '0'.charCodeAt(0);
 | 
						|
    for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
 | 
						|
    rr = 'a'.charCodeAt(0);
 | 
						|
    for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
 | 
						|
    rr = 'A'.charCodeAt(0);
 | 
						|
    for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
 | 
						|
 | 
						|
    function int2char(n) {
 | 
						|
        return BI_RM.charAt(n);
 | 
						|
    }
 | 
						|
    function intAt(s, i) {
 | 
						|
        var c = BI_RC[s.charCodeAt(i)];
 | 
						|
        return c == null ? -1 : c;
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) copy this to r
 | 
						|
    function bnpCopyTo(r) {
 | 
						|
        for (var i = this.t - 1; i >= 0; --i) r[i] = this[i];
 | 
						|
        r.t = this.t;
 | 
						|
        r.s = this.s;
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) set from integer value x, -DV <= x < DV
 | 
						|
    function bnpFromInt(x) {
 | 
						|
        this.t = 1;
 | 
						|
        this.s = x < 0 ? -1 : 0;
 | 
						|
        if (x > 0) this[0] = x;
 | 
						|
        else if (x < -1) this[0] = x + this.DV;
 | 
						|
        else this.t = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // return bigint initialized to value
 | 
						|
    function nbv(i) {
 | 
						|
        var r = nbi();
 | 
						|
        r.fromInt(i);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) set from string and radix
 | 
						|
    function bnpFromString(s, b) {
 | 
						|
        // Auto-detect string notations
 | 
						|
        if (!b && s.length >= 2 && s[0] === '0') {
 | 
						|
            var isDetected = true;
 | 
						|
            switch (s[1]) {
 | 
						|
                case 'x': // Hexadecimal notation
 | 
						|
                    b = 16;
 | 
						|
                    break;
 | 
						|
                case 'b': // Binary notation
 | 
						|
                    b = 2;
 | 
						|
                    break;
 | 
						|
                case 'o': // Octal notation
 | 
						|
                    b = 8;
 | 
						|
                    break;
 | 
						|
                default:
 | 
						|
                    isDetected = false;
 | 
						|
            }
 | 
						|
 | 
						|
            // Remove the notation string if any has been detected
 | 
						|
            if (isDetected) {
 | 
						|
                s = s.substr(2);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        var k;
 | 
						|
        if (b == 16) k = 4;
 | 
						|
        else if (b == 8) k = 3;
 | 
						|
        else if (b == 256) k = 8;
 | 
						|
        // byte array
 | 
						|
        else if (b == 2) k = 1;
 | 
						|
        else if (b == 32) k = 5;
 | 
						|
        else if (b == 4) k = 2;
 | 
						|
        else {
 | 
						|
            this.fromRadix(s, b);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        this.t = 0;
 | 
						|
        this.s = 0;
 | 
						|
        var i = s.length,
 | 
						|
            mi = false,
 | 
						|
            sh = 0;
 | 
						|
        while (--i >= 0) {
 | 
						|
            var x = k == 8 ? s[i] & 0xff : intAt(s, i);
 | 
						|
            if (x < 0) {
 | 
						|
                if (s.charAt(i) == '-') mi = true;
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            mi = false;
 | 
						|
            if (sh == 0) this[this.t++] = x;
 | 
						|
            else if (sh + k > this.DB) {
 | 
						|
                this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh;
 | 
						|
                this[this.t++] = x >> (this.DB - sh);
 | 
						|
            } else this[this.t - 1] |= x << sh;
 | 
						|
            sh += k;
 | 
						|
            if (sh >= this.DB) sh -= this.DB;
 | 
						|
        }
 | 
						|
        if (k == 8 && (s[0] & 0x80) != 0) {
 | 
						|
            this.s = -1;
 | 
						|
            if (sh > 0) this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh;
 | 
						|
        }
 | 
						|
        this.clamp();
 | 
						|
        if (mi) BigInteger.ZERO.subTo(this, this);
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) clamp off excess high words
 | 
						|
    function bnpClamp() {
 | 
						|
        var c = this.s & this.DM;
 | 
						|
        while (this.t > 0 && this[this.t - 1] == c) --this.t;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) return string representation in given radix
 | 
						|
    function bnToString(b) {
 | 
						|
        if (this.s < 0) return '-' + this.negate().toString(b);
 | 
						|
        var k;
 | 
						|
        if (b == 16) k = 4;
 | 
						|
        else if (b == 8) k = 3;
 | 
						|
        else if (b == 2) k = 1;
 | 
						|
        else if (b == 32) k = 5;
 | 
						|
        else if (b == 4) k = 2;
 | 
						|
        else return this.toRadix(b);
 | 
						|
        var km = (1 << k) - 1,
 | 
						|
            d,
 | 
						|
            m = false,
 | 
						|
            r = '',
 | 
						|
            i = this.t;
 | 
						|
        var p = this.DB - ((i * this.DB) % k);
 | 
						|
        if (i-- > 0) {
 | 
						|
            if (p < this.DB && (d = this[i] >> p) > 0) {
 | 
						|
                m = true;
 | 
						|
                r = int2char(d);
 | 
						|
            }
 | 
						|
            while (i >= 0) {
 | 
						|
                if (p < k) {
 | 
						|
                    d = (this[i] & ((1 << p) - 1)) << (k - p);
 | 
						|
                    d |= this[--i] >> (p += this.DB - k);
 | 
						|
                } else {
 | 
						|
                    d = (this[i] >> (p -= k)) & km;
 | 
						|
                    if (p <= 0) {
 | 
						|
                        p += this.DB;
 | 
						|
                        --i;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                if (d > 0) m = true;
 | 
						|
                if (m) r += int2char(d);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return m ? r : '0';
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) -this
 | 
						|
    function bnNegate() {
 | 
						|
        var r = nbi();
 | 
						|
        BigInteger.ZERO.subTo(this, r);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) |this|
 | 
						|
    function bnAbs() {
 | 
						|
        return this.s < 0 ? this.negate() : this;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) return + if this > a, - if this < a, 0 if equal
 | 
						|
    function bnCompareTo(a) {
 | 
						|
        var r = this.s - a.s;
 | 
						|
        if (r != 0) return r;
 | 
						|
        var i = this.t;
 | 
						|
        r = i - a.t;
 | 
						|
        if (r != 0) return this.s < 0 ? -r : r;
 | 
						|
        while (--i >= 0) if ((r = this[i] - a[i]) != 0) return r;
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // returns bit length of the integer x
 | 
						|
    function nbits(x) {
 | 
						|
        var r = 1,
 | 
						|
            t;
 | 
						|
        if ((t = x >>> 16) != 0) {
 | 
						|
            x = t;
 | 
						|
            r += 16;
 | 
						|
        }
 | 
						|
        if ((t = x >> 8) != 0) {
 | 
						|
            x = t;
 | 
						|
            r += 8;
 | 
						|
        }
 | 
						|
        if ((t = x >> 4) != 0) {
 | 
						|
            x = t;
 | 
						|
            r += 4;
 | 
						|
        }
 | 
						|
        if ((t = x >> 2) != 0) {
 | 
						|
            x = t;
 | 
						|
            r += 2;
 | 
						|
        }
 | 
						|
        if ((t = x >> 1) != 0) {
 | 
						|
            x = t;
 | 
						|
            r += 1;
 | 
						|
        }
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) return the number of bits in "this"
 | 
						|
    function bnBitLength() {
 | 
						|
        if (this.t <= 0) return 0;
 | 
						|
        return (
 | 
						|
            this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM))
 | 
						|
        );
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) r = this << n*DB
 | 
						|
    function bnpDLShiftTo(n, r) {
 | 
						|
        var i;
 | 
						|
        for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i];
 | 
						|
        for (i = n - 1; i >= 0; --i) r[i] = 0;
 | 
						|
        r.t = this.t + n;
 | 
						|
        r.s = this.s;
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) r = this >> n*DB
 | 
						|
    function bnpDRShiftTo(n, r) {
 | 
						|
        for (var i = n; i < this.t; ++i) r[i - n] = this[i];
 | 
						|
        r.t = Math.max(this.t - n, 0);
 | 
						|
        r.s = this.s;
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) r = this << n
 | 
						|
    function bnpLShiftTo(n, r) {
 | 
						|
        var bs = n % this.DB;
 | 
						|
        var cbs = this.DB - bs;
 | 
						|
        var bm = (1 << cbs) - 1;
 | 
						|
        var ds = Math.floor(n / this.DB),
 | 
						|
            c = (this.s << bs) & this.DM,
 | 
						|
            i;
 | 
						|
        for (i = this.t - 1; i >= 0; --i) {
 | 
						|
            r[i + ds + 1] = (this[i] >> cbs) | c;
 | 
						|
            c = (this[i] & bm) << bs;
 | 
						|
        }
 | 
						|
        for (i = ds - 1; i >= 0; --i) r[i] = 0;
 | 
						|
        r[ds] = c;
 | 
						|
        r.t = this.t + ds + 1;
 | 
						|
        r.s = this.s;
 | 
						|
        r.clamp();
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) r = this >> n
 | 
						|
    function bnpRShiftTo(n, r) {
 | 
						|
        r.s = this.s;
 | 
						|
        var ds = Math.floor(n / this.DB);
 | 
						|
        if (ds >= this.t) {
 | 
						|
            r.t = 0;
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        var bs = n % this.DB;
 | 
						|
        var cbs = this.DB - bs;
 | 
						|
        var bm = (1 << bs) - 1;
 | 
						|
        r[0] = this[ds] >> bs;
 | 
						|
        for (var i = ds + 1; i < this.t; ++i) {
 | 
						|
            r[i - ds - 1] |= (this[i] & bm) << cbs;
 | 
						|
            r[i - ds] = this[i] >> bs;
 | 
						|
        }
 | 
						|
        if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs;
 | 
						|
        r.t = this.t - ds;
 | 
						|
        r.clamp();
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) r = this - a
 | 
						|
    function bnpSubTo(a, r) {
 | 
						|
        var i = 0,
 | 
						|
            c = 0,
 | 
						|
            m = Math.min(a.t, this.t);
 | 
						|
        while (i < m) {
 | 
						|
            c += this[i] - a[i];
 | 
						|
            r[i++] = c & this.DM;
 | 
						|
            c >>= this.DB;
 | 
						|
        }
 | 
						|
        if (a.t < this.t) {
 | 
						|
            c -= a.s;
 | 
						|
            while (i < this.t) {
 | 
						|
                c += this[i];
 | 
						|
                r[i++] = c & this.DM;
 | 
						|
                c >>= this.DB;
 | 
						|
            }
 | 
						|
            c += this.s;
 | 
						|
        } else {
 | 
						|
            c += this.s;
 | 
						|
            while (i < a.t) {
 | 
						|
                c -= a[i];
 | 
						|
                r[i++] = c & this.DM;
 | 
						|
                c >>= this.DB;
 | 
						|
            }
 | 
						|
            c -= a.s;
 | 
						|
        }
 | 
						|
        r.s = c < 0 ? -1 : 0;
 | 
						|
        if (c < -1) r[i++] = this.DV + c;
 | 
						|
        else if (c > 0) r[i++] = c;
 | 
						|
        r.t = i;
 | 
						|
        r.clamp();
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) r = this * a, r != this,a (HAC 14.12)
 | 
						|
    // "this" should be the larger one if appropriate.
 | 
						|
    function bnpMultiplyTo(a, r) {
 | 
						|
        var x = this.abs(),
 | 
						|
            y = a.abs();
 | 
						|
        var i = x.t;
 | 
						|
        r.t = i + y.t;
 | 
						|
        while (--i >= 0) r[i] = 0;
 | 
						|
        for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t);
 | 
						|
        r.s = 0;
 | 
						|
        r.clamp();
 | 
						|
        if (this.s != a.s) BigInteger.ZERO.subTo(r, r);
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) r = this^2, r != this (HAC 14.16)
 | 
						|
    function bnpSquareTo(r) {
 | 
						|
        var x = this.abs();
 | 
						|
        var i = (r.t = 2 * x.t);
 | 
						|
        while (--i >= 0) r[i] = 0;
 | 
						|
        for (i = 0; i < x.t - 1; ++i) {
 | 
						|
            var c = x.am(i, x[i], r, 2 * i, 0, 1);
 | 
						|
            if (
 | 
						|
                (r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >=
 | 
						|
                x.DV
 | 
						|
            ) {
 | 
						|
                r[i + x.t] -= x.DV;
 | 
						|
                r[i + x.t + 1] = 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1);
 | 
						|
        r.s = 0;
 | 
						|
        r.clamp();
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
 | 
						|
    // r != q, this != m.  q or r may be null.
 | 
						|
    function bnpDivRemTo(m, q, r) {
 | 
						|
        var pm = m.abs();
 | 
						|
        if (pm.t <= 0) return;
 | 
						|
        var pt = this.abs();
 | 
						|
        if (pt.t < pm.t) {
 | 
						|
            if (q != null) q.fromInt(0);
 | 
						|
            if (r != null) this.copyTo(r);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        if (r == null) r = nbi();
 | 
						|
        var y = nbi(),
 | 
						|
            ts = this.s,
 | 
						|
            ms = m.s;
 | 
						|
        var nsh = this.DB - nbits(pm[pm.t - 1]); // normalize modulus
 | 
						|
        if (nsh > 0) {
 | 
						|
            pm.lShiftTo(nsh, y);
 | 
						|
            pt.lShiftTo(nsh, r);
 | 
						|
        } else {
 | 
						|
            pm.copyTo(y);
 | 
						|
            pt.copyTo(r);
 | 
						|
        }
 | 
						|
        var ys = y.t;
 | 
						|
        var y0 = y[ys - 1];
 | 
						|
        if (y0 == 0) return;
 | 
						|
        var yt = y0 * (1 << this.F1) + (ys > 1 ? y[ys - 2] >> this.F2 : 0);
 | 
						|
        var d1 = this.FV / yt,
 | 
						|
            d2 = (1 << this.F1) / yt,
 | 
						|
            e = 1 << this.F2;
 | 
						|
        var i = r.t,
 | 
						|
            j = i - ys,
 | 
						|
            t = q == null ? nbi() : q;
 | 
						|
        y.dlShiftTo(j, t);
 | 
						|
        if (r.compareTo(t) >= 0) {
 | 
						|
            r[r.t++] = 1;
 | 
						|
            r.subTo(t, r);
 | 
						|
        }
 | 
						|
        BigInteger.ONE.dlShiftTo(ys, t);
 | 
						|
        t.subTo(y, y); // "negative" y so we can replace sub with am later
 | 
						|
        while (y.t < ys) y[y.t++] = 0;
 | 
						|
        while (--j >= 0) {
 | 
						|
            // Estimate quotient digit
 | 
						|
            var qd =
 | 
						|
                r[--i] == y0 ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2);
 | 
						|
            if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) {
 | 
						|
                // Try it out
 | 
						|
                y.dlShiftTo(j, t);
 | 
						|
                r.subTo(t, r);
 | 
						|
                while (r[i] < --qd) r.subTo(t, r);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (q != null) {
 | 
						|
            r.drShiftTo(ys, q);
 | 
						|
            if (ts != ms) BigInteger.ZERO.subTo(q, q);
 | 
						|
        }
 | 
						|
        r.t = ys;
 | 
						|
        r.clamp();
 | 
						|
        if (nsh > 0) r.rShiftTo(nsh, r); // Denormalize remainder
 | 
						|
        if (ts < 0) BigInteger.ZERO.subTo(r, r);
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) this mod a
 | 
						|
    function bnMod(a) {
 | 
						|
        var r = nbi();
 | 
						|
        this.abs().divRemTo(a, null, r);
 | 
						|
        if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // Modular reduction using "classic" algorithm
 | 
						|
    function Classic(m) {
 | 
						|
        this.m = m;
 | 
						|
    }
 | 
						|
    function cConvert(x) {
 | 
						|
        if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
 | 
						|
        else return x;
 | 
						|
    }
 | 
						|
    function cRevert(x) {
 | 
						|
        return x;
 | 
						|
    }
 | 
						|
    function cReduce(x) {
 | 
						|
        x.divRemTo(this.m, null, x);
 | 
						|
    }
 | 
						|
    function cMulTo(x, y, r) {
 | 
						|
        x.multiplyTo(y, r);
 | 
						|
        this.reduce(r);
 | 
						|
    }
 | 
						|
    function cSqrTo(x, r) {
 | 
						|
        x.squareTo(r);
 | 
						|
        this.reduce(r);
 | 
						|
    }
 | 
						|
 | 
						|
    Classic.prototype.convert = cConvert;
 | 
						|
    Classic.prototype.revert = cRevert;
 | 
						|
    Classic.prototype.reduce = cReduce;
 | 
						|
    Classic.prototype.mulTo = cMulTo;
 | 
						|
    Classic.prototype.sqrTo = cSqrTo;
 | 
						|
 | 
						|
    // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
 | 
						|
    // justification:
 | 
						|
    //         xy == 1 (mod m)
 | 
						|
    //         xy =  1+km
 | 
						|
    //   xy(2-xy) = (1+km)(1-km)
 | 
						|
    // x[y(2-xy)] = 1-k^2m^2
 | 
						|
    // x[y(2-xy)] == 1 (mod m^2)
 | 
						|
    // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
 | 
						|
    // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
 | 
						|
    // JS multiply "overflows" differently from C/C++, so care is needed here.
 | 
						|
    function bnpInvDigit() {
 | 
						|
        if (this.t < 1) return 0;
 | 
						|
        var x = this[0];
 | 
						|
        if ((x & 1) == 0) return 0;
 | 
						|
        var y = x & 3; // y == 1/x mod 2^2
 | 
						|
        y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4
 | 
						|
        y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8
 | 
						|
        y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16
 | 
						|
        // last step - calculate inverse mod DV directly;
 | 
						|
        // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
 | 
						|
        y = (y * (2 - ((x * y) % this.DV))) % this.DV; // y == 1/x mod 2^dbits
 | 
						|
        // we really want the negative inverse, and -DV < y < DV
 | 
						|
        return y > 0 ? this.DV - y : -y;
 | 
						|
    }
 | 
						|
 | 
						|
    // Montgomery reduction
 | 
						|
    function Montgomery(m) {
 | 
						|
        this.m = m;
 | 
						|
        this.mp = m.invDigit();
 | 
						|
        this.mpl = this.mp & 0x7fff;
 | 
						|
        this.mph = this.mp >> 15;
 | 
						|
        this.um = (1 << (m.DB - 15)) - 1;
 | 
						|
        this.mt2 = 2 * m.t;
 | 
						|
    }
 | 
						|
 | 
						|
    // xR mod m
 | 
						|
    function montConvert(x) {
 | 
						|
        var r = nbi();
 | 
						|
        x.abs().dlShiftTo(this.m.t, r);
 | 
						|
        r.divRemTo(this.m, null, r);
 | 
						|
        if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // x/R mod m
 | 
						|
    function montRevert(x) {
 | 
						|
        var r = nbi();
 | 
						|
        x.copyTo(r);
 | 
						|
        this.reduce(r);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // x = x/R mod m (HAC 14.32)
 | 
						|
    function montReduce(x) {
 | 
						|
        while (
 | 
						|
            x.t <= this.mt2 // pad x so am has enough room later
 | 
						|
        )
 | 
						|
            x[x.t++] = 0;
 | 
						|
        for (var i = 0; i < this.m.t; ++i) {
 | 
						|
            // faster way of calculating u0 = x[i]*mp mod DV
 | 
						|
            var j = x[i] & 0x7fff;
 | 
						|
            var u0 =
 | 
						|
                (j * this.mpl +
 | 
						|
                    (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) &
 | 
						|
                x.DM;
 | 
						|
            // use am to combine the multiply-shift-add into one call
 | 
						|
            j = i + this.m.t;
 | 
						|
            x[j] += this.m.am(0, u0, x, i, 0, this.m.t);
 | 
						|
            // propagate carry
 | 
						|
            while (x[j] >= x.DV) {
 | 
						|
                x[j] -= x.DV;
 | 
						|
                x[++j]++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        x.clamp();
 | 
						|
        x.drShiftTo(this.m.t, x);
 | 
						|
        if (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
 | 
						|
    }
 | 
						|
 | 
						|
    // r = "x^2/R mod m"; x != r
 | 
						|
    function montSqrTo(x, r) {
 | 
						|
        x.squareTo(r);
 | 
						|
        this.reduce(r);
 | 
						|
    }
 | 
						|
 | 
						|
    // r = "xy/R mod m"; x,y != r
 | 
						|
    function montMulTo(x, y, r) {
 | 
						|
        x.multiplyTo(y, r);
 | 
						|
        this.reduce(r);
 | 
						|
    }
 | 
						|
 | 
						|
    Montgomery.prototype.convert = montConvert;
 | 
						|
    Montgomery.prototype.revert = montRevert;
 | 
						|
    Montgomery.prototype.reduce = montReduce;
 | 
						|
    Montgomery.prototype.mulTo = montMulTo;
 | 
						|
    Montgomery.prototype.sqrTo = montSqrTo;
 | 
						|
 | 
						|
    // (protected) true iff this is even
 | 
						|
    function bnpIsEven() {
 | 
						|
        return (this.t > 0 ? this[0] & 1 : this.s) == 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
 | 
						|
    function bnpExp(e, z) {
 | 
						|
        if (e > 0xffffffff || e < 1) return BigInteger.ONE;
 | 
						|
        var r = nbi(),
 | 
						|
            r2 = nbi(),
 | 
						|
            g = z.convert(this),
 | 
						|
            i = nbits(e) - 1;
 | 
						|
        g.copyTo(r);
 | 
						|
        while (--i >= 0) {
 | 
						|
            z.sqrTo(r, r2);
 | 
						|
            if ((e & (1 << i)) > 0) z.mulTo(r2, g, r);
 | 
						|
            else {
 | 
						|
                var t = r;
 | 
						|
                r = r2;
 | 
						|
                r2 = t;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return z.revert(r);
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) this^e % m, 0 <= e < 2^32
 | 
						|
    function bnModPowInt(e, m) {
 | 
						|
        var z;
 | 
						|
        if (e < 256 || m.isEven()) z = new Classic(m);
 | 
						|
        else z = new Montgomery(m);
 | 
						|
        return this.exp(e, z);
 | 
						|
    }
 | 
						|
 | 
						|
    // protected
 | 
						|
    BigInteger.prototype.copyTo = bnpCopyTo;
 | 
						|
    BigInteger.prototype.fromInt = bnpFromInt;
 | 
						|
    BigInteger.prototype.fromString = bnpFromString;
 | 
						|
    BigInteger.prototype.clamp = bnpClamp;
 | 
						|
    BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
 | 
						|
    BigInteger.prototype.drShiftTo = bnpDRShiftTo;
 | 
						|
    BigInteger.prototype.lShiftTo = bnpLShiftTo;
 | 
						|
    BigInteger.prototype.rShiftTo = bnpRShiftTo;
 | 
						|
    BigInteger.prototype.subTo = bnpSubTo;
 | 
						|
    BigInteger.prototype.multiplyTo = bnpMultiplyTo;
 | 
						|
    BigInteger.prototype.squareTo = bnpSquareTo;
 | 
						|
    BigInteger.prototype.divRemTo = bnpDivRemTo;
 | 
						|
    BigInteger.prototype.invDigit = bnpInvDigit;
 | 
						|
    BigInteger.prototype.isEven = bnpIsEven;
 | 
						|
    BigInteger.prototype.exp = bnpExp;
 | 
						|
 | 
						|
    // public
 | 
						|
    BigInteger.prototype.toString = bnToString;
 | 
						|
    BigInteger.prototype.negate = bnNegate;
 | 
						|
    BigInteger.prototype.abs = bnAbs;
 | 
						|
    BigInteger.prototype.compareTo = bnCompareTo;
 | 
						|
    BigInteger.prototype.bitLength = bnBitLength;
 | 
						|
    BigInteger.prototype.mod = bnMod;
 | 
						|
    BigInteger.prototype.modPowInt = bnModPowInt;
 | 
						|
 | 
						|
    // "constants"
 | 
						|
    BigInteger.ZERO = nbv(0);
 | 
						|
    BigInteger.ONE = nbv(1);
 | 
						|
    BigInteger.valueOf = nbv;
 | 
						|
 | 
						|
    // Copyright (c) 2005-2009  Tom Wu
 | 
						|
    // All Rights Reserved.
 | 
						|
    // See "LICENSE" for details.
 | 
						|
 | 
						|
    // Extended JavaScript BN functions, required for RSA private ops.
 | 
						|
 | 
						|
    // Version 1.1: new BigInteger("0", 10) returns "proper" zero
 | 
						|
    // Version 1.2: square() API, isProbablePrime fix
 | 
						|
 | 
						|
    // (public)
 | 
						|
    function bnClone() {
 | 
						|
        var r = nbi();
 | 
						|
        this.copyTo(r);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) return value as integer
 | 
						|
    function bnIntValue() {
 | 
						|
        if (this.s < 0) {
 | 
						|
            if (this.t == 1) return this[0] - this.DV;
 | 
						|
            else if (this.t == 0) return -1;
 | 
						|
        } else if (this.t == 1) return this[0];
 | 
						|
        else if (this.t == 0) return 0;
 | 
						|
        // assumes 16 < DB < 32
 | 
						|
        return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0];
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) return value as byte
 | 
						|
    function bnByteValue() {
 | 
						|
        return this.t == 0 ? this.s : (this[0] << 24) >> 24;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) return value as short (assumes DB>=16)
 | 
						|
    function bnShortValue() {
 | 
						|
        return this.t == 0 ? this.s : (this[0] << 16) >> 16;
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) return x s.t. r^x < DV
 | 
						|
    function bnpChunkSize(r) {
 | 
						|
        return Math.floor((Math.LN2 * this.DB) / Math.log(r));
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) 0 if this == 0, 1 if this > 0
 | 
						|
    function bnSigNum() {
 | 
						|
        if (this.s < 0) return -1;
 | 
						|
        else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
 | 
						|
        else return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) convert to radix string
 | 
						|
    function bnpToRadix(b) {
 | 
						|
        if (b == null) b = 10;
 | 
						|
        if (this.signum() == 0 || b < 2 || b > 36) return '0';
 | 
						|
        var cs = this.chunkSize(b);
 | 
						|
        var a = Math.pow(b, cs);
 | 
						|
        var d = nbv(a),
 | 
						|
            y = nbi(),
 | 
						|
            z = nbi(),
 | 
						|
            r = '';
 | 
						|
        this.divRemTo(d, y, z);
 | 
						|
        while (y.signum() > 0) {
 | 
						|
            r = (a + z.intValue()).toString(b).substr(1) + r;
 | 
						|
            y.divRemTo(d, y, z);
 | 
						|
        }
 | 
						|
        return z.intValue().toString(b) + r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) convert from radix string
 | 
						|
    function bnpFromRadix(s, b) {
 | 
						|
        this.fromInt(0);
 | 
						|
        if (b == null) b = 10;
 | 
						|
        var cs = this.chunkSize(b);
 | 
						|
        var d = Math.pow(b, cs),
 | 
						|
            mi = false,
 | 
						|
            j = 0,
 | 
						|
            w = 0;
 | 
						|
        for (var i = 0; i < s.length; ++i) {
 | 
						|
            var x = intAt(s, i);
 | 
						|
            if (x < 0) {
 | 
						|
                if (s.charAt(i) == '-' && this.signum() == 0) mi = true;
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            w = b * w + x;
 | 
						|
            if (++j >= cs) {
 | 
						|
                this.dMultiply(d);
 | 
						|
                this.dAddOffset(w, 0);
 | 
						|
                j = 0;
 | 
						|
                w = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (j > 0) {
 | 
						|
            this.dMultiply(Math.pow(b, j));
 | 
						|
            this.dAddOffset(w, 0);
 | 
						|
        }
 | 
						|
        if (mi) BigInteger.ZERO.subTo(this, this);
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) alternate constructor
 | 
						|
    function bnpFromNumber(a, b, c) {
 | 
						|
        if ('number' == typeof b) {
 | 
						|
            // new BigInteger(int,int,RNG)
 | 
						|
            if (a < 2) this.fromInt(1);
 | 
						|
            else {
 | 
						|
                this.fromNumber(a, c);
 | 
						|
                if (!this.testBit(a - 1))
 | 
						|
                    // force MSB set
 | 
						|
                    this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this);
 | 
						|
                if (this.isEven()) this.dAddOffset(1, 0); // force odd
 | 
						|
                while (!this.isProbablePrime(b)) {
 | 
						|
                    this.dAddOffset(2, 0);
 | 
						|
                    if (this.bitLength() > a)
 | 
						|
                        this.subTo(BigInteger.ONE.shiftLeft(a - 1), this);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            // new BigInteger(int,RNG)
 | 
						|
            var x = new Array(),
 | 
						|
                t = a & 7;
 | 
						|
            x.length = (a >> 3) + 1;
 | 
						|
            b.nextBytes(x);
 | 
						|
            if (t > 0) x[0] &= (1 << t) - 1;
 | 
						|
            else x[0] = 0;
 | 
						|
            this.fromString(x, 256);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) convert to bigendian byte array
 | 
						|
    function bnToByteArray() {
 | 
						|
        var i = this.t,
 | 
						|
            r = new Array();
 | 
						|
        r[0] = this.s;
 | 
						|
        var p = this.DB - ((i * this.DB) % 8),
 | 
						|
            d,
 | 
						|
            k = 0;
 | 
						|
        if (i-- > 0) {
 | 
						|
            if (p < this.DB && (d = this[i] >> p) != (this.s & this.DM) >> p)
 | 
						|
                r[k++] = d | (this.s << (this.DB - p));
 | 
						|
            while (i >= 0) {
 | 
						|
                if (p < 8) {
 | 
						|
                    d = (this[i] & ((1 << p) - 1)) << (8 - p);
 | 
						|
                    d |= this[--i] >> (p += this.DB - 8);
 | 
						|
                } else {
 | 
						|
                    d = (this[i] >> (p -= 8)) & 0xff;
 | 
						|
                    if (p <= 0) {
 | 
						|
                        p += this.DB;
 | 
						|
                        --i;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                if ((d & 0x80) != 0) d |= -256;
 | 
						|
                if (k == 0 && (this.s & 0x80) != (d & 0x80)) ++k;
 | 
						|
                if (k > 0 || d != this.s) r[k++] = d;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    function bnEquals(a) {
 | 
						|
        return this.compareTo(a) == 0;
 | 
						|
    }
 | 
						|
    function bnMin(a) {
 | 
						|
        return this.compareTo(a) < 0 ? this : a;
 | 
						|
    }
 | 
						|
    function bnMax(a) {
 | 
						|
        return this.compareTo(a) > 0 ? this : a;
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) r = this op a (bitwise)
 | 
						|
    function bnpBitwiseTo(a, op, r) {
 | 
						|
        var i,
 | 
						|
            f,
 | 
						|
            m = Math.min(a.t, this.t);
 | 
						|
        for (i = 0; i < m; ++i) r[i] = op(this[i], a[i]);
 | 
						|
        if (a.t < this.t) {
 | 
						|
            f = a.s & this.DM;
 | 
						|
            for (i = m; i < this.t; ++i) r[i] = op(this[i], f);
 | 
						|
            r.t = this.t;
 | 
						|
        } else {
 | 
						|
            f = this.s & this.DM;
 | 
						|
            for (i = m; i < a.t; ++i) r[i] = op(f, a[i]);
 | 
						|
            r.t = a.t;
 | 
						|
        }
 | 
						|
        r.s = op(this.s, a.s);
 | 
						|
        r.clamp();
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) this & a
 | 
						|
    function op_and(x, y) {
 | 
						|
        return x & y;
 | 
						|
    }
 | 
						|
    function bnAnd(a) {
 | 
						|
        var r = nbi();
 | 
						|
        this.bitwiseTo(a, op_and, r);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) this | a
 | 
						|
    function op_or(x, y) {
 | 
						|
        return x | y;
 | 
						|
    }
 | 
						|
    function bnOr(a) {
 | 
						|
        var r = nbi();
 | 
						|
        this.bitwiseTo(a, op_or, r);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) this ^ a
 | 
						|
    function op_xor(x, y) {
 | 
						|
        return x ^ y;
 | 
						|
    }
 | 
						|
    function bnXor(a) {
 | 
						|
        var r = nbi();
 | 
						|
        this.bitwiseTo(a, op_xor, r);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) this & ~a
 | 
						|
    function op_andnot(x, y) {
 | 
						|
        return x & ~y;
 | 
						|
    }
 | 
						|
    function bnAndNot(a) {
 | 
						|
        var r = nbi();
 | 
						|
        this.bitwiseTo(a, op_andnot, r);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) ~this
 | 
						|
    function bnNot() {
 | 
						|
        var r = nbi();
 | 
						|
        for (var i = 0; i < this.t; ++i) r[i] = this.DM & ~this[i];
 | 
						|
        r.t = this.t;
 | 
						|
        r.s = ~this.s;
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) this << n
 | 
						|
    function bnShiftLeft(n) {
 | 
						|
        var r = nbi();
 | 
						|
        if (n < 0) this.rShiftTo(-n, r);
 | 
						|
        else this.lShiftTo(n, r);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) this >> n
 | 
						|
    function bnShiftRight(n) {
 | 
						|
        var r = nbi();
 | 
						|
        if (n < 0) this.lShiftTo(-n, r);
 | 
						|
        else this.rShiftTo(n, r);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // return index of lowest 1-bit in x, x < 2^31
 | 
						|
    function lbit(x) {
 | 
						|
        if (x == 0) return -1;
 | 
						|
        var r = 0;
 | 
						|
        if ((x & 0xffff) == 0) {
 | 
						|
            x >>= 16;
 | 
						|
            r += 16;
 | 
						|
        }
 | 
						|
        if ((x & 0xff) == 0) {
 | 
						|
            x >>= 8;
 | 
						|
            r += 8;
 | 
						|
        }
 | 
						|
        if ((x & 0xf) == 0) {
 | 
						|
            x >>= 4;
 | 
						|
            r += 4;
 | 
						|
        }
 | 
						|
        if ((x & 3) == 0) {
 | 
						|
            x >>= 2;
 | 
						|
            r += 2;
 | 
						|
        }
 | 
						|
        if ((x & 1) == 0) ++r;
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) returns index of lowest 1-bit (or -1 if none)
 | 
						|
    function bnGetLowestSetBit() {
 | 
						|
        for (var i = 0; i < this.t; ++i)
 | 
						|
            if (this[i] != 0) return i * this.DB + lbit(this[i]);
 | 
						|
        if (this.s < 0) return this.t * this.DB;
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    // return number of 1 bits in x
 | 
						|
    function cbit(x) {
 | 
						|
        var r = 0;
 | 
						|
        while (x != 0) {
 | 
						|
            x &= x - 1;
 | 
						|
            ++r;
 | 
						|
        }
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) return number of set bits
 | 
						|
    function bnBitCount() {
 | 
						|
        var r = 0,
 | 
						|
            x = this.s & this.DM;
 | 
						|
        for (var i = 0; i < this.t; ++i) r += cbit(this[i] ^ x);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) true iff nth bit is set
 | 
						|
    function bnTestBit(n) {
 | 
						|
        var j = Math.floor(n / this.DB);
 | 
						|
        if (j >= this.t) return this.s != 0;
 | 
						|
        return (this[j] & (1 << n % this.DB)) != 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) this op (1<<n)
 | 
						|
    function bnpChangeBit(n, op) {
 | 
						|
        var r = BigInteger.ONE.shiftLeft(n);
 | 
						|
        this.bitwiseTo(r, op, r);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) this | (1<<n)
 | 
						|
    function bnSetBit(n) {
 | 
						|
        return this.changeBit(n, op_or);
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) this & ~(1<<n)
 | 
						|
    function bnClearBit(n) {
 | 
						|
        return this.changeBit(n, op_andnot);
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) this ^ (1<<n)
 | 
						|
    function bnFlipBit(n) {
 | 
						|
        return this.changeBit(n, op_xor);
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) r = this + a
 | 
						|
    function bnpAddTo(a, r) {
 | 
						|
        var i = 0,
 | 
						|
            c = 0,
 | 
						|
            m = Math.min(a.t, this.t);
 | 
						|
        while (i < m) {
 | 
						|
            c += this[i] + a[i];
 | 
						|
            r[i++] = c & this.DM;
 | 
						|
            c >>= this.DB;
 | 
						|
        }
 | 
						|
        if (a.t < this.t) {
 | 
						|
            c += a.s;
 | 
						|
            while (i < this.t) {
 | 
						|
                c += this[i];
 | 
						|
                r[i++] = c & this.DM;
 | 
						|
                c >>= this.DB;
 | 
						|
            }
 | 
						|
            c += this.s;
 | 
						|
        } else {
 | 
						|
            c += this.s;
 | 
						|
            while (i < a.t) {
 | 
						|
                c += a[i];
 | 
						|
                r[i++] = c & this.DM;
 | 
						|
                c >>= this.DB;
 | 
						|
            }
 | 
						|
            c += a.s;
 | 
						|
        }
 | 
						|
        r.s = c < 0 ? -1 : 0;
 | 
						|
        if (c > 0) r[i++] = c;
 | 
						|
        else if (c < -1) r[i++] = this.DV + c;
 | 
						|
        r.t = i;
 | 
						|
        r.clamp();
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) this + a
 | 
						|
    function bnAdd(a) {
 | 
						|
        var r = nbi();
 | 
						|
        this.addTo(a, r);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) this - a
 | 
						|
    function bnSubtract(a) {
 | 
						|
        var r = nbi();
 | 
						|
        this.subTo(a, r);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) this * a
 | 
						|
    function bnMultiply(a) {
 | 
						|
        var r = nbi();
 | 
						|
        this.multiplyTo(a, r);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) this^2
 | 
						|
    function bnSquare() {
 | 
						|
        var r = nbi();
 | 
						|
        this.squareTo(r);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) this / a
 | 
						|
    function bnDivide(a) {
 | 
						|
        var r = nbi();
 | 
						|
        this.divRemTo(a, r, null);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) this % a
 | 
						|
    function bnRemainder(a) {
 | 
						|
        var r = nbi();
 | 
						|
        this.divRemTo(a, null, r);
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) [this/a,this%a]
 | 
						|
    function bnDivideAndRemainder(a) {
 | 
						|
        var q = nbi(),
 | 
						|
            r = nbi();
 | 
						|
        this.divRemTo(a, q, r);
 | 
						|
        return new Array(q, r);
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) this *= n, this >= 0, 1 < n < DV
 | 
						|
    function bnpDMultiply(n) {
 | 
						|
        this[this.t] = this.am(0, n - 1, this, 0, 0, this.t);
 | 
						|
        ++this.t;
 | 
						|
        this.clamp();
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) this += n << w words, this >= 0
 | 
						|
    function bnpDAddOffset(n, w) {
 | 
						|
        if (n == 0) return;
 | 
						|
        while (this.t <= w) this[this.t++] = 0;
 | 
						|
        this[w] += n;
 | 
						|
        while (this[w] >= this.DV) {
 | 
						|
            this[w] -= this.DV;
 | 
						|
            if (++w >= this.t) this[this.t++] = 0;
 | 
						|
            ++this[w];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // A "null" reducer
 | 
						|
    function NullExp() { }
 | 
						|
    function nNop(x) {
 | 
						|
        return x;
 | 
						|
    }
 | 
						|
    function nMulTo(x, y, r) {
 | 
						|
        x.multiplyTo(y, r);
 | 
						|
    }
 | 
						|
    function nSqrTo(x, r) {
 | 
						|
        x.squareTo(r);
 | 
						|
    }
 | 
						|
 | 
						|
    NullExp.prototype.convert = nNop;
 | 
						|
    NullExp.prototype.revert = nNop;
 | 
						|
    NullExp.prototype.mulTo = nMulTo;
 | 
						|
    NullExp.prototype.sqrTo = nSqrTo;
 | 
						|
 | 
						|
    // (public) this^e
 | 
						|
    function bnPow(e) {
 | 
						|
        return this.exp(e, new NullExp());
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) r = lower n words of "this * a", a.t <= n
 | 
						|
    // "this" should be the larger one if appropriate.
 | 
						|
    function bnpMultiplyLowerTo(a, n, r) {
 | 
						|
        var i = Math.min(this.t + a.t, n);
 | 
						|
        r.s = 0; // assumes a,this >= 0
 | 
						|
        r.t = i;
 | 
						|
        while (i > 0) r[--i] = 0;
 | 
						|
        var j;
 | 
						|
        for (j = r.t - this.t; i < j; ++i)
 | 
						|
            r[i + this.t] = this.am(0, a[i], r, i, 0, this.t);
 | 
						|
        for (j = Math.min(a.t, n); i < j; ++i) this.am(0, a[i], r, i, 0, n - i);
 | 
						|
        r.clamp();
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) r = "this * a" without lower n words, n > 0
 | 
						|
    // "this" should be the larger one if appropriate.
 | 
						|
    function bnpMultiplyUpperTo(a, n, r) {
 | 
						|
        --n;
 | 
						|
        var i = (r.t = this.t + a.t - n);
 | 
						|
        r.s = 0; // assumes a,this >= 0
 | 
						|
        while (--i >= 0) r[i] = 0;
 | 
						|
        for (i = Math.max(n - this.t, 0); i < a.t; ++i)
 | 
						|
            r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n);
 | 
						|
        r.clamp();
 | 
						|
        r.drShiftTo(1, r);
 | 
						|
    }
 | 
						|
 | 
						|
    // Barrett modular reduction
 | 
						|
    function Barrett(m) {
 | 
						|
        // setup Barrett
 | 
						|
        this.r2 = nbi();
 | 
						|
        this.q3 = nbi();
 | 
						|
        BigInteger.ONE.dlShiftTo(2 * m.t, this.r2);
 | 
						|
        this.mu = this.r2.divide(m);
 | 
						|
        this.m = m;
 | 
						|
    }
 | 
						|
 | 
						|
    function barrettConvert(x) {
 | 
						|
        if (x.s < 0 || x.t > 2 * this.m.t) return x.mod(this.m);
 | 
						|
        else if (x.compareTo(this.m) < 0) return x;
 | 
						|
        else {
 | 
						|
            var r = nbi();
 | 
						|
            x.copyTo(r);
 | 
						|
            this.reduce(r);
 | 
						|
            return r;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    function barrettRevert(x) {
 | 
						|
        return x;
 | 
						|
    }
 | 
						|
 | 
						|
    // x = x mod m (HAC 14.42)
 | 
						|
    function barrettReduce(x) {
 | 
						|
        x.drShiftTo(this.m.t - 1, this.r2);
 | 
						|
        if (x.t > this.m.t + 1) {
 | 
						|
            x.t = this.m.t + 1;
 | 
						|
            x.clamp();
 | 
						|
        }
 | 
						|
        this.mu.multiplyUpperTo(this.r2, this.m.t + 1, this.q3);
 | 
						|
        this.m.multiplyLowerTo(this.q3, this.m.t + 1, this.r2);
 | 
						|
        while (x.compareTo(this.r2) < 0) x.dAddOffset(1, this.m.t + 1);
 | 
						|
        x.subTo(this.r2, x);
 | 
						|
        while (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
 | 
						|
    }
 | 
						|
 | 
						|
    // r = x^2 mod m; x != r
 | 
						|
    function barrettSqrTo(x, r) {
 | 
						|
        x.squareTo(r);
 | 
						|
        this.reduce(r);
 | 
						|
    }
 | 
						|
 | 
						|
    // r = x*y mod m; x,y != r
 | 
						|
    function barrettMulTo(x, y, r) {
 | 
						|
        x.multiplyTo(y, r);
 | 
						|
        this.reduce(r);
 | 
						|
    }
 | 
						|
 | 
						|
    Barrett.prototype.convert = barrettConvert;
 | 
						|
    Barrett.prototype.revert = barrettRevert;
 | 
						|
    Barrett.prototype.reduce = barrettReduce;
 | 
						|
    Barrett.prototype.mulTo = barrettMulTo;
 | 
						|
    Barrett.prototype.sqrTo = barrettSqrTo;
 | 
						|
 | 
						|
    // (public) this^e % m (HAC 14.85)
 | 
						|
    function bnModPow(e, m) {
 | 
						|
        var i = e.bitLength(),
 | 
						|
            k,
 | 
						|
            r = nbv(1),
 | 
						|
            z;
 | 
						|
        if (i <= 0) return r;
 | 
						|
        else if (i < 18) k = 1;
 | 
						|
        else if (i < 48) k = 3;
 | 
						|
        else if (i < 144) k = 4;
 | 
						|
        else if (i < 768) k = 5;
 | 
						|
        else k = 6;
 | 
						|
        if (i < 8) z = new Classic(m);
 | 
						|
        else if (m.isEven()) z = new Barrett(m);
 | 
						|
        else z = new Montgomery(m);
 | 
						|
 | 
						|
        // precomputation
 | 
						|
        var g = new Array(),
 | 
						|
            n = 3,
 | 
						|
            k1 = k - 1,
 | 
						|
            km = (1 << k) - 1;
 | 
						|
        g[1] = z.convert(this);
 | 
						|
        if (k > 1) {
 | 
						|
            var g2 = nbi();
 | 
						|
            z.sqrTo(g[1], g2);
 | 
						|
            while (n <= km) {
 | 
						|
                g[n] = nbi();
 | 
						|
                z.mulTo(g2, g[n - 2], g[n]);
 | 
						|
                n += 2;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        var j = e.t - 1,
 | 
						|
            w,
 | 
						|
            is1 = true,
 | 
						|
            r2 = nbi(),
 | 
						|
            t;
 | 
						|
        i = nbits(e[j]) - 1;
 | 
						|
        while (j >= 0) {
 | 
						|
            if (i >= k1) w = (e[j] >> (i - k1)) & km;
 | 
						|
            else {
 | 
						|
                w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i);
 | 
						|
                if (j > 0) w |= e[j - 1] >> (this.DB + i - k1);
 | 
						|
            }
 | 
						|
 | 
						|
            n = k;
 | 
						|
            while ((w & 1) == 0) {
 | 
						|
                w >>= 1;
 | 
						|
                --n;
 | 
						|
            }
 | 
						|
            if ((i -= n) < 0) {
 | 
						|
                i += this.DB;
 | 
						|
                --j;
 | 
						|
            }
 | 
						|
            if (is1) {
 | 
						|
                // ret == 1, don't bother squaring or multiplying it
 | 
						|
                g[w].copyTo(r);
 | 
						|
                is1 = false;
 | 
						|
            } else {
 | 
						|
                while (n > 1) {
 | 
						|
                    z.sqrTo(r, r2);
 | 
						|
                    z.sqrTo(r2, r);
 | 
						|
                    n -= 2;
 | 
						|
                }
 | 
						|
                if (n > 0) z.sqrTo(r, r2);
 | 
						|
                else {
 | 
						|
                    t = r;
 | 
						|
                    r = r2;
 | 
						|
                    r2 = t;
 | 
						|
                }
 | 
						|
                z.mulTo(r2, g[w], r);
 | 
						|
            }
 | 
						|
 | 
						|
            while (j >= 0 && (e[j] & (1 << i)) == 0) {
 | 
						|
                z.sqrTo(r, r2);
 | 
						|
                t = r;
 | 
						|
                r = r2;
 | 
						|
                r2 = t;
 | 
						|
                if (--i < 0) {
 | 
						|
                    i = this.DB - 1;
 | 
						|
                    --j;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return z.revert(r);
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) gcd(this,a) (HAC 14.54)
 | 
						|
    function bnGCD(a) {
 | 
						|
        var x = this.s < 0 ? this.negate() : this.clone();
 | 
						|
        var y = a.s < 0 ? a.negate() : a.clone();
 | 
						|
        if (x.compareTo(y) < 0) {
 | 
						|
            var t = x;
 | 
						|
            x = y;
 | 
						|
            y = t;
 | 
						|
        }
 | 
						|
        var i = x.getLowestSetBit(),
 | 
						|
            g = y.getLowestSetBit();
 | 
						|
        if (g < 0) return x;
 | 
						|
        if (i < g) g = i;
 | 
						|
        if (g > 0) {
 | 
						|
            x.rShiftTo(g, x);
 | 
						|
            y.rShiftTo(g, y);
 | 
						|
        }
 | 
						|
        while (x.signum() > 0) {
 | 
						|
            if ((i = x.getLowestSetBit()) > 0) x.rShiftTo(i, x);
 | 
						|
            if ((i = y.getLowestSetBit()) > 0) y.rShiftTo(i, y);
 | 
						|
            if (x.compareTo(y) >= 0) {
 | 
						|
                x.subTo(y, x);
 | 
						|
                x.rShiftTo(1, x);
 | 
						|
            } else {
 | 
						|
                y.subTo(x, y);
 | 
						|
                y.rShiftTo(1, y);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (g > 0) y.lShiftTo(g, y);
 | 
						|
        return y;
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) this % n, n < 2^26
 | 
						|
    function bnpModInt(n) {
 | 
						|
        if (n <= 0) return 0;
 | 
						|
        var d = this.DV % n,
 | 
						|
            r = this.s < 0 ? n - 1 : 0;
 | 
						|
        if (this.t > 0)
 | 
						|
            if (d == 0) r = this[0] % n;
 | 
						|
            else for (var i = this.t - 1; i >= 0; --i) r = (d * r + this[i]) % n;
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    // (public) 1/this % m (HAC 14.61)
 | 
						|
    function bnModInverse(m) {
 | 
						|
        var ac = m.isEven();
 | 
						|
        if ((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
 | 
						|
        var u = m.clone(),
 | 
						|
            v = this.clone();
 | 
						|
        var a = nbv(1),
 | 
						|
            b = nbv(0),
 | 
						|
            c = nbv(0),
 | 
						|
            d = nbv(1);
 | 
						|
        while (u.signum() != 0) {
 | 
						|
            while (u.isEven()) {
 | 
						|
                u.rShiftTo(1, u);
 | 
						|
                if (ac) {
 | 
						|
                    if (!a.isEven() || !b.isEven()) {
 | 
						|
                        a.addTo(this, a);
 | 
						|
                        b.subTo(m, b);
 | 
						|
                    }
 | 
						|
                    a.rShiftTo(1, a);
 | 
						|
                } else if (!b.isEven()) b.subTo(m, b);
 | 
						|
                b.rShiftTo(1, b);
 | 
						|
            }
 | 
						|
            while (v.isEven()) {
 | 
						|
                v.rShiftTo(1, v);
 | 
						|
                if (ac) {
 | 
						|
                    if (!c.isEven() || !d.isEven()) {
 | 
						|
                        c.addTo(this, c);
 | 
						|
                        d.subTo(m, d);
 | 
						|
                    }
 | 
						|
                    c.rShiftTo(1, c);
 | 
						|
                } else if (!d.isEven()) d.subTo(m, d);
 | 
						|
                d.rShiftTo(1, d);
 | 
						|
            }
 | 
						|
            if (u.compareTo(v) >= 0) {
 | 
						|
                u.subTo(v, u);
 | 
						|
                if (ac) a.subTo(c, a);
 | 
						|
                b.subTo(d, b);
 | 
						|
            } else {
 | 
						|
                v.subTo(u, v);
 | 
						|
                if (ac) c.subTo(a, c);
 | 
						|
                d.subTo(b, d);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
 | 
						|
        if (d.compareTo(m) >= 0) return d.subtract(m);
 | 
						|
        if (d.signum() < 0) d.addTo(m, d);
 | 
						|
        else return d;
 | 
						|
        if (d.signum() < 0) return d.add(m);
 | 
						|
        else return d;
 | 
						|
    }
 | 
						|
 | 
						|
    var lowprimes = [
 | 
						|
        2,
 | 
						|
        3,
 | 
						|
        5,
 | 
						|
        7,
 | 
						|
        11,
 | 
						|
        13,
 | 
						|
        17,
 | 
						|
        19,
 | 
						|
        23,
 | 
						|
        29,
 | 
						|
        31,
 | 
						|
        37,
 | 
						|
        41,
 | 
						|
        43,
 | 
						|
        47,
 | 
						|
        53,
 | 
						|
        59,
 | 
						|
        61,
 | 
						|
        67,
 | 
						|
        71,
 | 
						|
        73,
 | 
						|
        79,
 | 
						|
        83,
 | 
						|
        89,
 | 
						|
        97,
 | 
						|
        101,
 | 
						|
        103,
 | 
						|
        107,
 | 
						|
        109,
 | 
						|
        113,
 | 
						|
        127,
 | 
						|
        131,
 | 
						|
        137,
 | 
						|
        139,
 | 
						|
        149,
 | 
						|
        151,
 | 
						|
        157,
 | 
						|
        163,
 | 
						|
        167,
 | 
						|
        173,
 | 
						|
        179,
 | 
						|
        181,
 | 
						|
        191,
 | 
						|
        193,
 | 
						|
        197,
 | 
						|
        199,
 | 
						|
        211,
 | 
						|
        223,
 | 
						|
        227,
 | 
						|
        229,
 | 
						|
        233,
 | 
						|
        239,
 | 
						|
        241,
 | 
						|
        251,
 | 
						|
        257,
 | 
						|
        263,
 | 
						|
        269,
 | 
						|
        271,
 | 
						|
        277,
 | 
						|
        281,
 | 
						|
        283,
 | 
						|
        293,
 | 
						|
        307,
 | 
						|
        311,
 | 
						|
        313,
 | 
						|
        317,
 | 
						|
        331,
 | 
						|
        337,
 | 
						|
        347,
 | 
						|
        349,
 | 
						|
        353,
 | 
						|
        359,
 | 
						|
        367,
 | 
						|
        373,
 | 
						|
        379,
 | 
						|
        383,
 | 
						|
        389,
 | 
						|
        397,
 | 
						|
        401,
 | 
						|
        409,
 | 
						|
        419,
 | 
						|
        421,
 | 
						|
        431,
 | 
						|
        433,
 | 
						|
        439,
 | 
						|
        443,
 | 
						|
        449,
 | 
						|
        457,
 | 
						|
        461,
 | 
						|
        463,
 | 
						|
        467,
 | 
						|
        479,
 | 
						|
        487,
 | 
						|
        491,
 | 
						|
        499,
 | 
						|
        503,
 | 
						|
        509,
 | 
						|
        521,
 | 
						|
        523,
 | 
						|
        541,
 | 
						|
        547,
 | 
						|
        557,
 | 
						|
        563,
 | 
						|
        569,
 | 
						|
        571,
 | 
						|
        577,
 | 
						|
        587,
 | 
						|
        593,
 | 
						|
        599,
 | 
						|
        601,
 | 
						|
        607,
 | 
						|
        613,
 | 
						|
        617,
 | 
						|
        619,
 | 
						|
        631,
 | 
						|
        641,
 | 
						|
        643,
 | 
						|
        647,
 | 
						|
        653,
 | 
						|
        659,
 | 
						|
        661,
 | 
						|
        673,
 | 
						|
        677,
 | 
						|
        683,
 | 
						|
        691,
 | 
						|
        701,
 | 
						|
        709,
 | 
						|
        719,
 | 
						|
        727,
 | 
						|
        733,
 | 
						|
        739,
 | 
						|
        743,
 | 
						|
        751,
 | 
						|
        757,
 | 
						|
        761,
 | 
						|
        769,
 | 
						|
        773,
 | 
						|
        787,
 | 
						|
        797,
 | 
						|
        809,
 | 
						|
        811,
 | 
						|
        821,
 | 
						|
        823,
 | 
						|
        827,
 | 
						|
        829,
 | 
						|
        839,
 | 
						|
        853,
 | 
						|
        857,
 | 
						|
        859,
 | 
						|
        863,
 | 
						|
        877,
 | 
						|
        881,
 | 
						|
        883,
 | 
						|
        887,
 | 
						|
        907,
 | 
						|
        911,
 | 
						|
        919,
 | 
						|
        929,
 | 
						|
        937,
 | 
						|
        941,
 | 
						|
        947,
 | 
						|
        953,
 | 
						|
        967,
 | 
						|
        971,
 | 
						|
        977,
 | 
						|
        983,
 | 
						|
        991,
 | 
						|
        997,
 | 
						|
    ];
 | 
						|
    var lplim = (1 << 26) / lowprimes[lowprimes.length - 1];
 | 
						|
 | 
						|
    // (public) test primality with certainty >= 1-.5^t
 | 
						|
    function bnIsProbablePrime(t) {
 | 
						|
        var i,
 | 
						|
            x = this.abs();
 | 
						|
        if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1]) {
 | 
						|
            for (i = 0; i < lowprimes.length; ++i)
 | 
						|
                if (x[0] == lowprimes[i]) return true;
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        if (x.isEven()) return false;
 | 
						|
        i = 1;
 | 
						|
        while (i < lowprimes.length) {
 | 
						|
            var m = lowprimes[i],
 | 
						|
                j = i + 1;
 | 
						|
            while (j < lowprimes.length && m < lplim) m *= lowprimes[j++];
 | 
						|
            m = x.modInt(m);
 | 
						|
            while (i < j) if (m % lowprimes[i++] == 0) return false;
 | 
						|
        }
 | 
						|
        return x.millerRabin(t);
 | 
						|
    }
 | 
						|
 | 
						|
    // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
 | 
						|
    function bnpMillerRabin(t) {
 | 
						|
        var n1 = this.subtract(BigInteger.ONE);
 | 
						|
        var k = n1.getLowestSetBit();
 | 
						|
        if (k <= 0) return false;
 | 
						|
        var r = n1.shiftRight(k);
 | 
						|
        t = (t + 1) >> 1;
 | 
						|
        if (t > lowprimes.length) t = lowprimes.length;
 | 
						|
        var a = nbi();
 | 
						|
        for (var i = 0; i < t; ++i) {
 | 
						|
            //Pick bases at random, instead of starting at 2
 | 
						|
            a.fromInt(lowprimes[Math.floor(Math.random() * lowprimes.length)]);
 | 
						|
            var y = a.modPow(r, this);
 | 
						|
            if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
 | 
						|
                var j = 1;
 | 
						|
                while (j++ < k && y.compareTo(n1) != 0) {
 | 
						|
                    y = y.modPowInt(2, this);
 | 
						|
                    if (y.compareTo(BigInteger.ONE) == 0) return false;
 | 
						|
                }
 | 
						|
                if (y.compareTo(n1) != 0) return false;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // protected
 | 
						|
    BigInteger.prototype.chunkSize = bnpChunkSize;
 | 
						|
    BigInteger.prototype.toRadix = bnpToRadix;
 | 
						|
    BigInteger.prototype.fromRadix = bnpFromRadix;
 | 
						|
    BigInteger.prototype.fromNumber = bnpFromNumber;
 | 
						|
    BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
 | 
						|
    BigInteger.prototype.changeBit = bnpChangeBit;
 | 
						|
    BigInteger.prototype.addTo = bnpAddTo;
 | 
						|
    BigInteger.prototype.dMultiply = bnpDMultiply;
 | 
						|
    BigInteger.prototype.dAddOffset = bnpDAddOffset;
 | 
						|
    BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
 | 
						|
    BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
 | 
						|
    BigInteger.prototype.modInt = bnpModInt;
 | 
						|
    BigInteger.prototype.millerRabin = bnpMillerRabin;
 | 
						|
 | 
						|
    // public
 | 
						|
    BigInteger.prototype.clone = bnClone;
 | 
						|
    BigInteger.prototype.intValue = bnIntValue;
 | 
						|
    BigInteger.prototype.byteValue = bnByteValue;
 | 
						|
    BigInteger.prototype.shortValue = bnShortValue;
 | 
						|
    BigInteger.prototype.signum = bnSigNum;
 | 
						|
    BigInteger.prototype.toByteArray = bnToByteArray;
 | 
						|
    BigInteger.prototype.equals = bnEquals;
 | 
						|
    BigInteger.prototype.min = bnMin;
 | 
						|
    BigInteger.prototype.max = bnMax;
 | 
						|
    BigInteger.prototype.and = bnAnd;
 | 
						|
    BigInteger.prototype.or = bnOr;
 | 
						|
    BigInteger.prototype.xor = bnXor;
 | 
						|
    BigInteger.prototype.andNot = bnAndNot;
 | 
						|
    BigInteger.prototype.not = bnNot;
 | 
						|
    BigInteger.prototype.shiftLeft = bnShiftLeft;
 | 
						|
    BigInteger.prototype.shiftRight = bnShiftRight;
 | 
						|
    BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
 | 
						|
    BigInteger.prototype.bitCount = bnBitCount;
 | 
						|
    BigInteger.prototype.testBit = bnTestBit;
 | 
						|
    BigInteger.prototype.setBit = bnSetBit;
 | 
						|
    BigInteger.prototype.clearBit = bnClearBit;
 | 
						|
    BigInteger.prototype.flipBit = bnFlipBit;
 | 
						|
    BigInteger.prototype.add = bnAdd;
 | 
						|
    BigInteger.prototype.subtract = bnSubtract;
 | 
						|
    BigInteger.prototype.multiply = bnMultiply;
 | 
						|
    BigInteger.prototype.divide = bnDivide;
 | 
						|
    BigInteger.prototype.remainder = bnRemainder;
 | 
						|
    BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
 | 
						|
    BigInteger.prototype.modPow = bnModPow;
 | 
						|
    BigInteger.prototype.modInverse = bnModInverse;
 | 
						|
    BigInteger.prototype.pow = bnPow;
 | 
						|
    BigInteger.prototype.gcd = bnGCD;
 | 
						|
    BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
 | 
						|
 | 
						|
    // JSBN-specific extension
 | 
						|
    BigInteger.prototype.square = bnSquare;
 | 
						|
 | 
						|
    // Expose the Barrett function
 | 
						|
    BigInteger.prototype.Barrett = Barrett;
 | 
						|
 | 
						|
    // BigInteger interfaces not implemented in jsbn:
 | 
						|
 | 
						|
    // BigInteger(int signum, byte[] magnitude)
 | 
						|
    // double doubleValue()
 | 
						|
    // float floatValue()
 | 
						|
    // int hashCode()
 | 
						|
    // long longValue()
 | 
						|
    // static BigInteger valueOf(long val)
 | 
						|
 | 
						|
    // Imported from bitcoinjs-lib
 | 
						|
 | 
						|
    /**
 | 
						|
     * Turns a byte array into a big integer.
 | 
						|
     *
 | 
						|
     * This function will interpret a byte array as a big integer in big
 | 
						|
     * endian notation and ignore leading zeros.
 | 
						|
     */
 | 
						|
 | 
						|
    BigInteger.fromByteArrayUnsigned = function (ba) {
 | 
						|
 | 
						|
        if (!ba.length) {
 | 
						|
            return new BigInteger.valueOf(0);
 | 
						|
        } else if (ba[0] & 0x80) {
 | 
						|
            // Prepend a zero so the BigInteger class doesn't mistake this
 | 
						|
            // for a negative integer.
 | 
						|
            return new BigInteger([0].concat(ba));
 | 
						|
        } else {
 | 
						|
            return new BigInteger(ba);
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
    /**
 | 
						|
     * Parse a signed big integer byte representation.
 | 
						|
     *
 | 
						|
     * For details on the format please see BigInteger.toByteArraySigned.
 | 
						|
     */
 | 
						|
 | 
						|
    BigInteger.fromByteArraySigned = function (ba) {
 | 
						|
        // Check for negative value
 | 
						|
        if (ba[0] & 0x80) {
 | 
						|
            // Remove sign bit
 | 
						|
            ba[0] &= 0x7f;
 | 
						|
 | 
						|
            return BigInteger.fromByteArrayUnsigned(ba).negate();
 | 
						|
        } else {
 | 
						|
            return BigInteger.fromByteArrayUnsigned(ba);
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns a byte array representation of the big integer.
 | 
						|
     *
 | 
						|
     * This returns the absolute of the contained value in big endian
 | 
						|
     * form. A value of zero results in an empty array.
 | 
						|
     */
 | 
						|
 | 
						|
    BigInteger.prototype.toByteArrayUnsigned = function () {
 | 
						|
        var ba = this.abs().toByteArray();
 | 
						|
 | 
						|
        // Empty array, nothing to do
 | 
						|
        if (!ba.length) {
 | 
						|
            return ba;
 | 
						|
        }
 | 
						|
 | 
						|
        // remove leading 0
 | 
						|
        if (ba[0] === 0) {
 | 
						|
            ba = ba.slice(1);
 | 
						|
        }
 | 
						|
 | 
						|
        // all values must be positive
 | 
						|
        for (var i = 0; i < ba.length; ++i) {
 | 
						|
            ba[i] = (ba[i] < 0) ? ba[i] + 256 : ba[i];
 | 
						|
        }
 | 
						|
 | 
						|
        return ba;
 | 
						|
    };
 | 
						|
 | 
						|
    /*
 | 
						|
     * Converts big integer to signed byte representation.
 | 
						|
     *
 | 
						|
     * The format for this value uses the most significant bit as a sign
 | 
						|
     * bit. If the most significant bit is already occupied by the
 | 
						|
     * absolute value, an extra byte is prepended and the sign bit is set
 | 
						|
     * there.
 | 
						|
     *
 | 
						|
     * Examples:
 | 
						|
     *
 | 
						|
     *      0 =>     0x00
 | 
						|
     *      1 =>     0x01
 | 
						|
     *     -1 =>     0x81
 | 
						|
     *    127 =>     0x7f
 | 
						|
     *   -127 =>     0xff
 | 
						|
     *    128 =>   0x0080
 | 
						|
     *   -128 =>   0x8080
 | 
						|
     *    255 =>   0x00ff
 | 
						|
     *   -255 =>   0x80ff
 | 
						|
     *  16300 =>   0x3fac
 | 
						|
     * -16300 =>   0xbfac
 | 
						|
     *  62300 => 0x00f35c
 | 
						|
     * -62300 => 0x80f35c
 | 
						|
    */
 | 
						|
 | 
						|
    BigInteger.prototype.toByteArraySigned = function () {
 | 
						|
        var val = this.toByteArrayUnsigned();
 | 
						|
        var neg = this.s < 0;
 | 
						|
 | 
						|
        // if the first bit is set, we always unshift
 | 
						|
        // either unshift 0x80 or 0x00
 | 
						|
        if (val[0] & 0x80) {
 | 
						|
            val.unshift((neg) ? 0x80 : 0x00);
 | 
						|
        }
 | 
						|
        // if the first bit isn't set, set it if negative
 | 
						|
        else if (neg) {
 | 
						|
            val[0] |= 0x80;
 | 
						|
        }
 | 
						|
 | 
						|
        return val;
 | 
						|
    };
 | 
						|
 | 
						|
    // Random number generator - requires a PRNG backend, e.g. prng4.js
 | 
						|
 | 
						|
    // For best results, put code like
 | 
						|
    // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
 | 
						|
    // in your main HTML document.
 | 
						|
 | 
						|
    var rng_state;
 | 
						|
    var rng_pool;
 | 
						|
    var rng_pptr;
 | 
						|
 | 
						|
    // Mix in a 32-bit integer into the pool
 | 
						|
    function rng_seed_int(x) {
 | 
						|
        rng_pool[rng_pptr++] ^= x & 255;
 | 
						|
        rng_pool[rng_pptr++] ^= (x >> 8) & 255;
 | 
						|
        rng_pool[rng_pptr++] ^= (x >> 16) & 255;
 | 
						|
        rng_pool[rng_pptr++] ^= (x >> 24) & 255;
 | 
						|
        if (rng_pptr >= rng_psize) rng_pptr -= rng_psize;
 | 
						|
    }
 | 
						|
 | 
						|
    // Mix in the current time (w/milliseconds) into the pool
 | 
						|
    function rng_seed_time() {
 | 
						|
        rng_seed_int(new Date().getTime());
 | 
						|
    }
 | 
						|
 | 
						|
    // Initialize the pool with junk if needed.
 | 
						|
    if (rng_pool == null) {
 | 
						|
        rng_pool = new Array();
 | 
						|
        rng_pptr = 0;
 | 
						|
        var t;
 | 
						|
        if (typeof window !== 'undefined' && window.crypto) {
 | 
						|
            if (window.crypto.getRandomValues) {
 | 
						|
                // Use webcrypto if available
 | 
						|
                var ua = new Uint8Array(32);
 | 
						|
                window.crypto.getRandomValues(ua);
 | 
						|
                for (t = 0; t < 32; ++t) rng_pool[rng_pptr++] = ua[t];
 | 
						|
            } else if (
 | 
						|
                navigator.appName == 'Netscape' &&
 | 
						|
                navigator.appVersion < '5'
 | 
						|
            ) {
 | 
						|
                // Extract entropy (256 bits) from NS4 RNG if available
 | 
						|
                var z = window.crypto.random(32);
 | 
						|
                for (t = 0; t < z.length; ++t)
 | 
						|
                    rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        while (rng_pptr < rng_psize) {
 | 
						|
            // extract some randomness from Math.random()
 | 
						|
            t = Math.floor(65536 * Math.random());
 | 
						|
            rng_pool[rng_pptr++] = t >>> 8;
 | 
						|
            rng_pool[rng_pptr++] = t & 255;
 | 
						|
        }
 | 
						|
        rng_pptr = 0;
 | 
						|
        rng_seed_time();
 | 
						|
        //rng_seed_int(window.screenX);
 | 
						|
        //rng_seed_int(window.screenY);
 | 
						|
    }
 | 
						|
 | 
						|
    function rng_get_byte() {
 | 
						|
        if (rng_state == null) {
 | 
						|
            rng_seed_time();
 | 
						|
            rng_state = prng_newstate();
 | 
						|
            rng_state.init(rng_pool);
 | 
						|
            for (rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
 | 
						|
                rng_pool[rng_pptr] = 0;
 | 
						|
            rng_pptr = 0;
 | 
						|
            //rng_pool = null;
 | 
						|
        }
 | 
						|
        // TODO: allow reseeding after first request
 | 
						|
        return rng_state.next();
 | 
						|
    }
 | 
						|
 | 
						|
    function rng_get_bytes(ba) {
 | 
						|
        var i;
 | 
						|
        for (i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
 | 
						|
    }
 | 
						|
 | 
						|
    function SecureRandom() { }
 | 
						|
 | 
						|
    SecureRandom.prototype.nextBytes = rng_get_bytes;
 | 
						|
 | 
						|
    // prng4.js - uses Arcfour as a PRNG
 | 
						|
 | 
						|
    function Arcfour() {
 | 
						|
        this.i = 0;
 | 
						|
        this.j = 0;
 | 
						|
        this.S = new Array();
 | 
						|
    }
 | 
						|
 | 
						|
    // Initialize arcfour context from key, an array of ints, each from [0..255]
 | 
						|
    function ARC4init(key) {
 | 
						|
        var i, j, t;
 | 
						|
        for (i = 0; i < 256; ++i) this.S[i] = i;
 | 
						|
        j = 0;
 | 
						|
        for (i = 0; i < 256; ++i) {
 | 
						|
            j = (j + this.S[i] + key[i % key.length]) & 255;
 | 
						|
            t = this.S[i];
 | 
						|
            this.S[i] = this.S[j];
 | 
						|
            this.S[j] = t;
 | 
						|
        }
 | 
						|
        this.i = 0;
 | 
						|
        this.j = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    function ARC4next() {
 | 
						|
        var t;
 | 
						|
        this.i = (this.i + 1) & 255;
 | 
						|
        this.j = (this.j + this.S[this.i]) & 255;
 | 
						|
        t = this.S[this.i];
 | 
						|
        this.S[this.i] = this.S[this.j];
 | 
						|
        this.S[this.j] = t;
 | 
						|
        return this.S[(t + this.S[this.i]) & 255];
 | 
						|
    }
 | 
						|
 | 
						|
    Arcfour.prototype.init = ARC4init;
 | 
						|
    Arcfour.prototype.next = ARC4next;
 | 
						|
 | 
						|
    // Plug in your RNG constructor here
 | 
						|
    function prng_newstate() {
 | 
						|
        return new Arcfour();
 | 
						|
    }
 | 
						|
 | 
						|
    // Pool size must be a multiple of 4 and greater than 32.
 | 
						|
    // An array of bytes the size of the pool will be passed to init()
 | 
						|
    var rng_psize = 256;
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    /*!
 | 
						|
    * Basic Javascript Elliptic Curve implementation
 | 
						|
    * Ported loosely from BouncyCastle's Java EC code
 | 
						|
    * Only Fp curves implemented for now
 | 
						|
    *
 | 
						|
    * Copyright Tom Wu, bitaddress.org  BSD License.
 | 
						|
    * http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
 | 
						|
    */
 | 
						|
 | 
						|
    // Constructor function of Global EllipticCurve object
 | 
						|
    var ec = function () { };
 | 
						|
 | 
						|
 | 
						|
    // ----------------
 | 
						|
    // ECFieldElementFp constructor
 | 
						|
    // q instanceof BigInteger
 | 
						|
    // x instanceof BigInteger
 | 
						|
    ec.FieldElementFp = function (q, x) {
 | 
						|
        this.x = x;
 | 
						|
        // TODO if(x.compareTo(q) >= 0) error
 | 
						|
        this.q = q;
 | 
						|
    };
 | 
						|
 | 
						|
    ec.FieldElementFp.prototype.equals = function (other) {
 | 
						|
        if (other == this) return true;
 | 
						|
        return (this.q.equals(other.q) && this.x.equals(other.x));
 | 
						|
    };
 | 
						|
 | 
						|
    ec.FieldElementFp.prototype.toBigInteger = function () {
 | 
						|
        return this.x;
 | 
						|
    };
 | 
						|
 | 
						|
    ec.FieldElementFp.prototype.negate = function () {
 | 
						|
        return new ec.FieldElementFp(this.q, this.x.negate().mod(this.q));
 | 
						|
    };
 | 
						|
 | 
						|
    ec.FieldElementFp.prototype.add = function (b) {
 | 
						|
        return new ec.FieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q));
 | 
						|
    };
 | 
						|
 | 
						|
    ec.FieldElementFp.prototype.subtract = function (b) {
 | 
						|
        return new ec.FieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q));
 | 
						|
    };
 | 
						|
 | 
						|
    ec.FieldElementFp.prototype.multiply = function (b) {
 | 
						|
        return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q));
 | 
						|
    };
 | 
						|
 | 
						|
    ec.FieldElementFp.prototype.square = function () {
 | 
						|
        return new ec.FieldElementFp(this.q, this.x.square().mod(this.q));
 | 
						|
    };
 | 
						|
 | 
						|
    ec.FieldElementFp.prototype.divide = function (b) {
 | 
						|
        return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q));
 | 
						|
    };
 | 
						|
 | 
						|
    ec.FieldElementFp.prototype.getByteLength = function () {
 | 
						|
        return Math.floor((this.toBigInteger().bitLength() + 7) / 8);
 | 
						|
    };
 | 
						|
 | 
						|
    // D.1.4 91
 | 
						|
	/**
 | 
						|
	* return a sqrt root - the routine verifies that the calculation
 | 
						|
	* returns the right value - if none exists it returns null.
 | 
						|
	* 
 | 
						|
	* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
 | 
						|
	* Ported to JavaScript by bitaddress.org
 | 
						|
	*/
 | 
						|
    ec.FieldElementFp.prototype.sqrt = function () {
 | 
						|
        if (!this.q.testBit(0)) throw new Error("even value of q");
 | 
						|
 | 
						|
        // p mod 4 == 3
 | 
						|
        if (this.q.testBit(1)) {
 | 
						|
            // z = g^(u+1) + p, p = 4u + 3
 | 
						|
            var z = new ec.FieldElementFp(this.q, this.x.modPow(this.q.shiftRight(2).add(BigInteger.ONE), this.q));
 | 
						|
            return z.square().equals(this) ? z : null;
 | 
						|
        }
 | 
						|
 | 
						|
        // p mod 4 == 1
 | 
						|
        var qMinusOne = this.q.subtract(BigInteger.ONE);
 | 
						|
        var legendreExponent = qMinusOne.shiftRight(1);
 | 
						|
        if (!(this.x.modPow(legendreExponent, this.q).equals(BigInteger.ONE))) return null;
 | 
						|
        var u = qMinusOne.shiftRight(2);
 | 
						|
        var k = u.shiftLeft(1).add(BigInteger.ONE);
 | 
						|
        var Q = this.x;
 | 
						|
        var fourQ = Q.shiftLeft(2).mod(this.q);
 | 
						|
        var U, V;
 | 
						|
 | 
						|
        do {
 | 
						|
            var rand = new SecureRandom();
 | 
						|
            var P;
 | 
						|
            do {
 | 
						|
                P = new BigInteger(this.q.bitLength(), rand);
 | 
						|
            }
 | 
						|
            while (P.compareTo(this.q) >= 0 || !(P.multiply(P).subtract(fourQ).modPow(legendreExponent, this.q).equals(qMinusOne)));
 | 
						|
 | 
						|
            var result = ec.FieldElementFp.fastLucasSequence(this.q, P, Q, k);
 | 
						|
 | 
						|
            U = result[0];
 | 
						|
            V = result[1];
 | 
						|
            if (V.multiply(V).mod(this.q).equals(fourQ)) {
 | 
						|
                // Integer division by 2, mod q
 | 
						|
                if (V.testBit(0)) {
 | 
						|
                    V = V.add(this.q);
 | 
						|
                }
 | 
						|
                V = V.shiftRight(1);
 | 
						|
                return new ec.FieldElementFp(this.q, V);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        while (U.equals(BigInteger.ONE) || U.equals(qMinusOne));
 | 
						|
 | 
						|
        return null;
 | 
						|
    };
 | 
						|
 | 
						|
	/*
 | 
						|
	* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
 | 
						|
	* Ported to JavaScript by bitaddress.org
 | 
						|
	*/
 | 
						|
    ec.FieldElementFp.fastLucasSequence = function (p, P, Q, k) {
 | 
						|
        // TODO Research and apply "common-multiplicand multiplication here"
 | 
						|
 | 
						|
        var n = k.bitLength();
 | 
						|
        var s = k.getLowestSetBit();
 | 
						|
        var Uh = BigInteger.ONE;
 | 
						|
        var Vl = BigInteger.TWO;
 | 
						|
        var Vh = P;
 | 
						|
        var Ql = BigInteger.ONE;
 | 
						|
        var Qh = BigInteger.ONE;
 | 
						|
 | 
						|
        for (var j = n - 1; j >= s + 1; --j) {
 | 
						|
            Ql = Ql.multiply(Qh).mod(p);
 | 
						|
            if (k.testBit(j)) {
 | 
						|
                Qh = Ql.multiply(Q).mod(p);
 | 
						|
                Uh = Uh.multiply(Vh).mod(p);
 | 
						|
                Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
 | 
						|
                Vh = Vh.multiply(Vh).subtract(Qh.shiftLeft(1)).mod(p);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                Qh = Ql;
 | 
						|
                Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
 | 
						|
                Vh = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
 | 
						|
                Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        Ql = Ql.multiply(Qh).mod(p);
 | 
						|
        Qh = Ql.multiply(Q).mod(p);
 | 
						|
        Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
 | 
						|
        Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
 | 
						|
        Ql = Ql.multiply(Qh).mod(p);
 | 
						|
 | 
						|
        for (var j = 1; j <= s; ++j) {
 | 
						|
            Uh = Uh.multiply(Vl).mod(p);
 | 
						|
            Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
 | 
						|
            Ql = Ql.multiply(Ql).mod(p);
 | 
						|
        }
 | 
						|
 | 
						|
        return [Uh, Vl];
 | 
						|
    };
 | 
						|
 | 
						|
    // ----------------
 | 
						|
    // ECPointFp constructor
 | 
						|
    ec.PointFp = function (curve, x, y, z, compressed) {
 | 
						|
        this.curve = curve;
 | 
						|
        this.x = x;
 | 
						|
        this.y = y;
 | 
						|
        // Projective coordinates: either zinv == null or z * zinv == 1
 | 
						|
        // z and zinv are just BigIntegers, not fieldElements
 | 
						|
        if (z == null) {
 | 
						|
            this.z = BigInteger.ONE;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            this.z = z;
 | 
						|
        }
 | 
						|
        this.zinv = null;
 | 
						|
        // compression flag
 | 
						|
        this.compressed = !!compressed;
 | 
						|
    };
 | 
						|
 | 
						|
    ec.PointFp.prototype.getX = function () {
 | 
						|
        if (this.zinv == null) {
 | 
						|
            this.zinv = this.z.modInverse(this.curve.q);
 | 
						|
        }
 | 
						|
        var r = this.x.toBigInteger().multiply(this.zinv);
 | 
						|
        this.curve.reduce(r);
 | 
						|
        return this.curve.fromBigInteger(r);
 | 
						|
    };
 | 
						|
 | 
						|
    ec.PointFp.prototype.getY = function () {
 | 
						|
        if (this.zinv == null) {
 | 
						|
            this.zinv = this.z.modInverse(this.curve.q);
 | 
						|
        }
 | 
						|
        var r = this.y.toBigInteger().multiply(this.zinv);
 | 
						|
        this.curve.reduce(r);
 | 
						|
        return this.curve.fromBigInteger(r);
 | 
						|
    };
 | 
						|
 | 
						|
    ec.PointFp.prototype.equals = function (other) {
 | 
						|
        if (other == this) return true;
 | 
						|
        if (this.isInfinity()) return other.isInfinity();
 | 
						|
        if (other.isInfinity()) return this.isInfinity();
 | 
						|
        var u, v;
 | 
						|
        // u = Y2 * Z1 - Y1 * Z2
 | 
						|
        u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(this.curve.q);
 | 
						|
        if (!u.equals(BigInteger.ZERO)) return false;
 | 
						|
        // v = X2 * Z1 - X1 * Z2
 | 
						|
        v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(this.curve.q);
 | 
						|
        return v.equals(BigInteger.ZERO);
 | 
						|
    };
 | 
						|
 | 
						|
    ec.PointFp.prototype.isInfinity = function () {
 | 
						|
        if ((this.x == null) && (this.y == null)) return true;
 | 
						|
        return this.z.equals(BigInteger.ZERO) && !this.y.toBigInteger().equals(BigInteger.ZERO);
 | 
						|
    };
 | 
						|
 | 
						|
    ec.PointFp.prototype.negate = function () {
 | 
						|
        return new ec.PointFp(this.curve, this.x, this.y.negate(), this.z);
 | 
						|
    };
 | 
						|
 | 
						|
    ec.PointFp.prototype.add = function (b) {
 | 
						|
        if (this.isInfinity()) return b;
 | 
						|
        if (b.isInfinity()) return this;
 | 
						|
 | 
						|
        // u = Y2 * Z1 - Y1 * Z2
 | 
						|
        var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod(this.curve.q);
 | 
						|
        // v = X2 * Z1 - X1 * Z2
 | 
						|
        var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod(this.curve.q);
 | 
						|
 | 
						|
 | 
						|
        if (BigInteger.ZERO.equals(v)) {
 | 
						|
            if (BigInteger.ZERO.equals(u)) {
 | 
						|
                return this.twice(); // this == b, so double
 | 
						|
            }
 | 
						|
            return this.curve.getInfinity(); // this = -b, so infinity
 | 
						|
        }
 | 
						|
 | 
						|
        var THREE = new BigInteger("3");
 | 
						|
        var x1 = this.x.toBigInteger();
 | 
						|
        var y1 = this.y.toBigInteger();
 | 
						|
        var x2 = b.x.toBigInteger();
 | 
						|
        var y2 = b.y.toBigInteger();
 | 
						|
 | 
						|
        var v2 = v.square();
 | 
						|
        var v3 = v2.multiply(v);
 | 
						|
        var x1v2 = x1.multiply(v2);
 | 
						|
        var zu2 = u.square().multiply(this.z);
 | 
						|
 | 
						|
        // x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
 | 
						|
        var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q);
 | 
						|
        // y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
 | 
						|
        var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.q);
 | 
						|
        // z3 = v^3 * z1 * z2
 | 
						|
        var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q);
 | 
						|
 | 
						|
        return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
 | 
						|
    };
 | 
						|
 | 
						|
    ec.PointFp.prototype.twice = function () {
 | 
						|
        if (this.isInfinity()) return this;
 | 
						|
        if (this.y.toBigInteger().signum() == 0) return this.curve.getInfinity();
 | 
						|
 | 
						|
        // TODO: optimized handling of constants
 | 
						|
        var THREE = new BigInteger("3");
 | 
						|
        var x1 = this.x.toBigInteger();
 | 
						|
        var y1 = this.y.toBigInteger();
 | 
						|
 | 
						|
        var y1z1 = y1.multiply(this.z);
 | 
						|
        var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q);
 | 
						|
        var a = this.curve.a.toBigInteger();
 | 
						|
 | 
						|
        // w = 3 * x1^2 + a * z1^2
 | 
						|
        var w = x1.square().multiply(THREE);
 | 
						|
        if (!BigInteger.ZERO.equals(a)) {
 | 
						|
            w = w.add(this.z.square().multiply(a));
 | 
						|
        }
 | 
						|
        w = w.mod(this.curve.q);
 | 
						|
        //this.curve.reduce(w);
 | 
						|
        // x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
 | 
						|
        var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.q);
 | 
						|
        // y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
 | 
						|
        var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.square().multiply(w)).mod(this.curve.q);
 | 
						|
        // z3 = 8 * (y1 * z1)^3
 | 
						|
        var z3 = y1z1.square().multiply(y1z1).shiftLeft(3).mod(this.curve.q);
 | 
						|
 | 
						|
        return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
 | 
						|
    };
 | 
						|
 | 
						|
    // Simple NAF (Non-Adjacent Form) multiplication algorithm
 | 
						|
    // TODO: modularize the multiplication algorithm
 | 
						|
    ec.PointFp.prototype.multiply = function (k) {
 | 
						|
        if (this.isInfinity()) return this;
 | 
						|
        if (k.signum() == 0) return this.curve.getInfinity();
 | 
						|
 | 
						|
        var e = k;
 | 
						|
        var h = e.multiply(new BigInteger("3"));
 | 
						|
 | 
						|
        var neg = this.negate();
 | 
						|
        var R = this;
 | 
						|
 | 
						|
        var i;
 | 
						|
        for (i = h.bitLength() - 2; i > 0; --i) {
 | 
						|
            R = R.twice();
 | 
						|
 | 
						|
            var hBit = h.testBit(i);
 | 
						|
            var eBit = e.testBit(i);
 | 
						|
 | 
						|
            if (hBit != eBit) {
 | 
						|
                R = R.add(hBit ? this : neg);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        return R;
 | 
						|
    };
 | 
						|
 | 
						|
    // Compute this*j + x*k (simultaneous multiplication)
 | 
						|
    ec.PointFp.prototype.multiplyTwo = function (j, x, k) {
 | 
						|
        var i;
 | 
						|
        if (j.bitLength() > k.bitLength())
 | 
						|
            i = j.bitLength() - 1;
 | 
						|
        else
 | 
						|
            i = k.bitLength() - 1;
 | 
						|
 | 
						|
        var R = this.curve.getInfinity();
 | 
						|
        var both = this.add(x);
 | 
						|
        while (i >= 0) {
 | 
						|
            R = R.twice();
 | 
						|
            if (j.testBit(i)) {
 | 
						|
                if (k.testBit(i)) {
 | 
						|
                    R = R.add(both);
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    R = R.add(this);
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                if (k.testBit(i)) {
 | 
						|
                    R = R.add(x);
 | 
						|
                }
 | 
						|
            }
 | 
						|
            --i;
 | 
						|
        }
 | 
						|
 | 
						|
        return R;
 | 
						|
    };
 | 
						|
 | 
						|
    // patched by bitaddress.org and Casascius for use with Bitcoin.ECKey
 | 
						|
    // patched by coretechs to support compressed public keys
 | 
						|
    ec.PointFp.prototype.getEncoded = function (compressed) {
 | 
						|
        var x = this.getX().toBigInteger();
 | 
						|
        var y = this.getY().toBigInteger();
 | 
						|
        var len = 32; // integerToBytes will zero pad if integer is less than 32 bytes. 32 bytes length is required by the Bitcoin protocol.
 | 
						|
        var enc = ec.integerToBytes(x, len);
 | 
						|
 | 
						|
        // when compressed prepend byte depending if y point is even or odd 
 | 
						|
        if (compressed) {
 | 
						|
            if (y.isEven()) {
 | 
						|
                enc.unshift(0x02);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                enc.unshift(0x03);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            enc.unshift(0x04);
 | 
						|
            enc = enc.concat(ec.integerToBytes(y, len)); // uncompressed public key appends the bytes of the y point
 | 
						|
        }
 | 
						|
        return enc;
 | 
						|
    };
 | 
						|
 | 
						|
    ec.PointFp.decodeFrom = function (curve, enc) {
 | 
						|
        var type = enc[0];
 | 
						|
        var dataLen = enc.length - 1;
 | 
						|
 | 
						|
        // Extract x and y as byte arrays
 | 
						|
        var xBa = enc.slice(1, 1 + dataLen / 2);
 | 
						|
        var yBa = enc.slice(1 + dataLen / 2, 1 + dataLen);
 | 
						|
 | 
						|
        // Prepend zero byte to prevent interpretation as negative integer
 | 
						|
        xBa.unshift(0);
 | 
						|
        yBa.unshift(0);
 | 
						|
 | 
						|
        // Convert to BigIntegers
 | 
						|
        var x = new BigInteger(xBa);
 | 
						|
        var y = new BigInteger(yBa);
 | 
						|
 | 
						|
        // Return point
 | 
						|
        return new ec.PointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y));
 | 
						|
    };
 | 
						|
 | 
						|
    ec.PointFp.prototype.add2D = function (b) {
 | 
						|
        if (this.isInfinity()) return b;
 | 
						|
        if (b.isInfinity()) return this;
 | 
						|
 | 
						|
        if (this.x.equals(b.x)) {
 | 
						|
            if (this.y.equals(b.y)) {
 | 
						|
                // this = b, i.e. this must be doubled
 | 
						|
                return this.twice();
 | 
						|
            }
 | 
						|
            // this = -b, i.e. the result is the point at infinity
 | 
						|
            return this.curve.getInfinity();
 | 
						|
        }
 | 
						|
 | 
						|
        var x_x = b.x.subtract(this.x);
 | 
						|
        var y_y = b.y.subtract(this.y);
 | 
						|
        var gamma = y_y.divide(x_x);
 | 
						|
 | 
						|
        var x3 = gamma.square().subtract(this.x).subtract(b.x);
 | 
						|
        var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
 | 
						|
 | 
						|
        return new ec.PointFp(this.curve, x3, y3);
 | 
						|
    };
 | 
						|
 | 
						|
    ec.PointFp.prototype.twice2D = function () {
 | 
						|
        if (this.isInfinity()) return this;
 | 
						|
        if (this.y.toBigInteger().signum() == 0) {
 | 
						|
            // if y1 == 0, then (x1, y1) == (x1, -y1)
 | 
						|
            // and hence this = -this and thus 2(x1, y1) == infinity
 | 
						|
            return this.curve.getInfinity();
 | 
						|
        }
 | 
						|
 | 
						|
        var TWO = this.curve.fromBigInteger(BigInteger.valueOf(2));
 | 
						|
        var THREE = this.curve.fromBigInteger(BigInteger.valueOf(3));
 | 
						|
        var gamma = this.x.square().multiply(THREE).add(this.curve.a).divide(this.y.multiply(TWO));
 | 
						|
 | 
						|
        var x3 = gamma.square().subtract(this.x.multiply(TWO));
 | 
						|
        var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
 | 
						|
 | 
						|
        return new ec.PointFp(this.curve, x3, y3);
 | 
						|
    };
 | 
						|
 | 
						|
    ec.PointFp.prototype.multiply2D = function (k) {
 | 
						|
        if (this.isInfinity()) return this;
 | 
						|
        if (k.signum() == 0) return this.curve.getInfinity();
 | 
						|
 | 
						|
        var e = k;
 | 
						|
        var h = e.multiply(new BigInteger("3"));
 | 
						|
 | 
						|
        var neg = this.negate();
 | 
						|
        var R = this;
 | 
						|
 | 
						|
        var i;
 | 
						|
        for (i = h.bitLength() - 2; i > 0; --i) {
 | 
						|
            R = R.twice();
 | 
						|
 | 
						|
            var hBit = h.testBit(i);
 | 
						|
            var eBit = e.testBit(i);
 | 
						|
 | 
						|
            if (hBit != eBit) {
 | 
						|
                R = R.add2D(hBit ? this : neg);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        return R;
 | 
						|
    };
 | 
						|
 | 
						|
    ec.PointFp.prototype.isOnCurve = function () {
 | 
						|
        var x = this.getX().toBigInteger();
 | 
						|
        var y = this.getY().toBigInteger();
 | 
						|
        var a = this.curve.getA().toBigInteger();
 | 
						|
        var b = this.curve.getB().toBigInteger();
 | 
						|
        var n = this.curve.getQ();
 | 
						|
        var lhs = y.multiply(y).mod(n);
 | 
						|
        var rhs = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(n);
 | 
						|
        return lhs.equals(rhs);
 | 
						|
    };
 | 
						|
 | 
						|
    ec.PointFp.prototype.toString = function () {
 | 
						|
        return '(' + this.getX().toBigInteger().toString() + ',' + this.getY().toBigInteger().toString() + ')';
 | 
						|
    };
 | 
						|
 | 
						|
	/**
 | 
						|
	* Validate an elliptic curve point.
 | 
						|
	*
 | 
						|
	* See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive
 | 
						|
	*/
 | 
						|
    ec.PointFp.prototype.validate = function () {
 | 
						|
        var n = this.curve.getQ();
 | 
						|
 | 
						|
        // Check Q != O
 | 
						|
        if (this.isInfinity()) {
 | 
						|
            throw new Error("Point is at infinity.");
 | 
						|
        }
 | 
						|
 | 
						|
        // Check coordinate bounds
 | 
						|
        var x = this.getX().toBigInteger();
 | 
						|
        var y = this.getY().toBigInteger();
 | 
						|
        if (x.compareTo(BigInteger.ONE) < 0 || x.compareTo(n.subtract(BigInteger.ONE)) > 0) {
 | 
						|
            throw new Error('x coordinate out of bounds');
 | 
						|
        }
 | 
						|
        if (y.compareTo(BigInteger.ONE) < 0 || y.compareTo(n.subtract(BigInteger.ONE)) > 0) {
 | 
						|
            throw new Error('y coordinate out of bounds');
 | 
						|
        }
 | 
						|
 | 
						|
        // Check y^2 = x^3 + ax + b (mod n)
 | 
						|
        if (!this.isOnCurve()) {
 | 
						|
            throw new Error("Point is not on the curve.");
 | 
						|
        }
 | 
						|
 | 
						|
        // Check nQ = 0 (Q is a scalar multiple of G)
 | 
						|
        if (this.multiply(n).isInfinity()) {
 | 
						|
            // TODO: This check doesn't work - fix.
 | 
						|
            throw new Error("Point is not a scalar multiple of G.");
 | 
						|
        }
 | 
						|
 | 
						|
        return true;
 | 
						|
    };
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    // ----------------
 | 
						|
    // ECCurveFp constructor
 | 
						|
    ec.CurveFp = function (q, a, b) {
 | 
						|
        this.q = q;
 | 
						|
        this.a = this.fromBigInteger(a);
 | 
						|
        this.b = this.fromBigInteger(b);
 | 
						|
        this.infinity = new ec.PointFp(this, null, null);
 | 
						|
        this.reducer = new Barrett(this.q);
 | 
						|
    }
 | 
						|
 | 
						|
    ec.CurveFp.prototype.getQ = function () {
 | 
						|
        return this.q;
 | 
						|
    };
 | 
						|
 | 
						|
    ec.CurveFp.prototype.getA = function () {
 | 
						|
        return this.a;
 | 
						|
    };
 | 
						|
 | 
						|
    ec.CurveFp.prototype.getB = function () {
 | 
						|
        return this.b;
 | 
						|
    };
 | 
						|
 | 
						|
    ec.CurveFp.prototype.equals = function (other) {
 | 
						|
        if (other == this) return true;
 | 
						|
        return (this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b));
 | 
						|
    };
 | 
						|
 | 
						|
    ec.CurveFp.prototype.getInfinity = function () {
 | 
						|
        return this.infinity;
 | 
						|
    };
 | 
						|
 | 
						|
    ec.CurveFp.prototype.fromBigInteger = function (x) {
 | 
						|
        return new ec.FieldElementFp(this.q, x);
 | 
						|
    };
 | 
						|
 | 
						|
    ec.CurveFp.prototype.reduce = function (x) {
 | 
						|
        this.reducer.reduce(x);
 | 
						|
    };
 | 
						|
 | 
						|
    // for now, work with hex strings because they're easier in JS
 | 
						|
    // compressed support added by bitaddress.org
 | 
						|
    ec.CurveFp.prototype.decodePointHex = function (s) {
 | 
						|
        var firstByte = parseInt(s.substr(0, 2), 16);
 | 
						|
        switch (firstByte) { // first byte
 | 
						|
            case 0:
 | 
						|
                return this.infinity;
 | 
						|
            case 2: // compressed
 | 
						|
            case 3: // compressed
 | 
						|
                var yTilde = firstByte & 1;
 | 
						|
                var xHex = s.substr(2, s.length - 2);
 | 
						|
                var X1 = new BigInteger(xHex, 16);
 | 
						|
                return this.decompressPoint(yTilde, X1);
 | 
						|
            case 4: // uncompressed
 | 
						|
            case 6: // hybrid
 | 
						|
            case 7: // hybrid
 | 
						|
                var len = (s.length - 2) / 2;
 | 
						|
                var xHex = s.substr(2, len);
 | 
						|
                var yHex = s.substr(len + 2, len);
 | 
						|
 | 
						|
                return new ec.PointFp(this,
 | 
						|
                    this.fromBigInteger(new BigInteger(xHex, 16)),
 | 
						|
                    this.fromBigInteger(new BigInteger(yHex, 16)));
 | 
						|
 | 
						|
            default: // unsupported
 | 
						|
                return null;
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
    ec.CurveFp.prototype.encodePointHex = function (p) {
 | 
						|
        if (p.isInfinity()) return "00";
 | 
						|
        var xHex = p.getX().toBigInteger().toString(16);
 | 
						|
        var yHex = p.getY().toBigInteger().toString(16);
 | 
						|
        var oLen = this.getQ().toString(16).length;
 | 
						|
        if ((oLen % 2) != 0) oLen++;
 | 
						|
        while (xHex.length < oLen) {
 | 
						|
            xHex = "0" + xHex;
 | 
						|
        }
 | 
						|
        while (yHex.length < oLen) {
 | 
						|
            yHex = "0" + yHex;
 | 
						|
        }
 | 
						|
        return "04" + xHex + yHex;
 | 
						|
    };
 | 
						|
 | 
						|
	/*
 | 
						|
	* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
 | 
						|
	* Ported to JavaScript by bitaddress.org
 | 
						|
	*
 | 
						|
	* Number yTilde
 | 
						|
	* BigInteger X1
 | 
						|
	*/
 | 
						|
    ec.CurveFp.prototype.decompressPoint = function (yTilde, X1) {
 | 
						|
        var x = this.fromBigInteger(X1);
 | 
						|
        var alpha = x.multiply(x.square().add(this.getA())).add(this.getB());
 | 
						|
        var beta = alpha.sqrt();
 | 
						|
        // if we can't find a sqrt we haven't got a point on the curve - run!
 | 
						|
        if (beta == null) throw new Error("Invalid point compression");
 | 
						|
        var betaValue = beta.toBigInteger();
 | 
						|
        var bit0 = betaValue.testBit(0) ? 1 : 0;
 | 
						|
        if (bit0 != yTilde) {
 | 
						|
            // Use the other root
 | 
						|
            beta = this.fromBigInteger(this.getQ().subtract(betaValue));
 | 
						|
        }
 | 
						|
        return new ec.PointFp(this, x, beta, null, true);
 | 
						|
    };
 | 
						|
 | 
						|
 | 
						|
    ec.fromHex = function (s) { return new BigInteger(s, 16); };
 | 
						|
 | 
						|
    ec.integerToBytes = function (i, len) {
 | 
						|
        var bytes = i.toByteArrayUnsigned();
 | 
						|
        if (len < bytes.length) {
 | 
						|
            bytes = bytes.slice(bytes.length - len);
 | 
						|
        } else while (len > bytes.length) {
 | 
						|
            bytes.unshift(0);
 | 
						|
        }
 | 
						|
        return bytes;
 | 
						|
    };
 | 
						|
 | 
						|
 | 
						|
    // Named EC curves
 | 
						|
    // ----------------
 | 
						|
    // X9ECParameters constructor
 | 
						|
    ec.X9Parameters = function (curve, g, n, h) {
 | 
						|
        this.curve = curve;
 | 
						|
        this.g = g;
 | 
						|
        this.n = n;
 | 
						|
        this.h = h;
 | 
						|
    }
 | 
						|
    ec.X9Parameters.prototype.getCurve = function () { return this.curve; };
 | 
						|
    ec.X9Parameters.prototype.getG = function () { return this.g; };
 | 
						|
    ec.X9Parameters.prototype.getN = function () { return this.n; };
 | 
						|
    ec.X9Parameters.prototype.getH = function () { return this.h; };
 | 
						|
 | 
						|
    // secp256k1 is the Curve used by Bitcoin
 | 
						|
    ec.secNamedCurves = {
 | 
						|
        // used by Bitcoin
 | 
						|
        "secp256k1": function () {
 | 
						|
            // p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1
 | 
						|
            var p = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F");
 | 
						|
            var a = BigInteger.ZERO;
 | 
						|
            var b = ec.fromHex("7");
 | 
						|
            var n = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141");
 | 
						|
            var h = BigInteger.ONE;
 | 
						|
            var curve = new ec.CurveFp(p, a, b);
 | 
						|
            var G = curve.decodePointHex("04"
 | 
						|
                + "79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798"
 | 
						|
                + "483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8");
 | 
						|
            return new ec.X9Parameters(curve, G, n, h);
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
    // secp256k1 called by Bitcoin's ECKEY
 | 
						|
    ec.getSECCurveByName = function (name) {
 | 
						|
        if (ec.secNamedCurves[name] == undefined) return null;
 | 
						|
        return ec.secNamedCurves[name]();
 | 
						|
    }
 | 
						|
 | 
						|
    if (typeof exports !== 'undefined') {
 | 
						|
        exports = module.exports = {
 | 
						|
            default: ec,
 | 
						|
            EllipticCurve: ec,
 | 
						|
            BigInteger: BigInteger
 | 
						|
        };
 | 
						|
    } else {
 | 
						|
        this.ecbn = {
 | 
						|
            EllipticCurve: ec,
 | 
						|
            BigInteger: BigInteger
 | 
						|
        };
 | 
						|
    }
 | 
						|
 | 
						|
}).call(this); |