forked from Qortal/Brooklyn
111 lines
3.7 KiB
Python
111 lines
3.7 KiB
Python
|
# Copyright © 2020 Arm Ltd. All rights reserved.
|
||
|
# SPDX-License-Identifier: MIT
|
||
|
import os
|
||
|
|
||
|
import pytest
|
||
|
import pyarmnn as ann
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
@pytest.fixture()
|
||
|
def parser(shared_data_folder):
|
||
|
"""
|
||
|
Parse and setup the test network to be used for the tests below
|
||
|
"""
|
||
|
|
||
|
# create onnx parser
|
||
|
parser = ann.IOnnxParser()
|
||
|
|
||
|
# path to model
|
||
|
path_to_model = os.path.join(shared_data_folder, 'mock_model.onnx')
|
||
|
|
||
|
# parse onnx binary & create network
|
||
|
parser.CreateNetworkFromBinaryFile(path_to_model)
|
||
|
|
||
|
yield parser
|
||
|
|
||
|
|
||
|
def test_onnx_parser_swig_destroy():
|
||
|
assert ann.IOnnxParser.__swig_destroy__, "There is a swig python destructor defined"
|
||
|
assert ann.IOnnxParser.__swig_destroy__.__name__ == "delete_IOnnxParser"
|
||
|
|
||
|
|
||
|
def test_check_onnx_parser_swig_ownership(parser):
|
||
|
# Check to see that SWIG has ownership for parser. This instructs SWIG to take
|
||
|
# ownership of the return value. This allows the value to be automatically
|
||
|
# garbage-collected when it is no longer in use
|
||
|
assert parser.thisown
|
||
|
|
||
|
|
||
|
def test_onnx_parser_get_network_input_binding_info(parser):
|
||
|
input_binding_info = parser.GetNetworkInputBindingInfo("input")
|
||
|
|
||
|
tensor = input_binding_info[1]
|
||
|
assert tensor.GetDataType() == 1
|
||
|
assert tensor.GetNumDimensions() == 4
|
||
|
assert tensor.GetNumElements() == 784
|
||
|
assert tensor.GetQuantizationOffset() == 0
|
||
|
assert tensor.GetQuantizationScale() == 0
|
||
|
|
||
|
|
||
|
def test_onnx_parser_get_network_output_binding_info(parser):
|
||
|
output_binding_info = parser.GetNetworkOutputBindingInfo("output")
|
||
|
|
||
|
tensor = output_binding_info[1]
|
||
|
assert tensor.GetDataType() == 1
|
||
|
assert tensor.GetNumDimensions() == 4
|
||
|
assert tensor.GetNumElements() == 10
|
||
|
assert tensor.GetQuantizationOffset() == 0
|
||
|
assert tensor.GetQuantizationScale() == 0
|
||
|
|
||
|
|
||
|
def test_onnx_filenotfound_exception(shared_data_folder):
|
||
|
parser = ann.IOnnxParser()
|
||
|
|
||
|
# path to model
|
||
|
path_to_model = os.path.join(shared_data_folder, 'some_unknown_model.onnx')
|
||
|
|
||
|
# parse onnx binary & create network
|
||
|
|
||
|
with pytest.raises(RuntimeError) as err:
|
||
|
parser.CreateNetworkFromBinaryFile(path_to_model)
|
||
|
|
||
|
# Only check for part of the exception since the exception returns
|
||
|
# absolute path which will change on different machines.
|
||
|
assert 'Invalid (null) filename' in str(err.value)
|
||
|
|
||
|
|
||
|
def test_onnx_parser_end_to_end(shared_data_folder):
|
||
|
parser = ann.IOnnxParser = ann.IOnnxParser()
|
||
|
|
||
|
network = parser.CreateNetworkFromBinaryFile(os.path.join(shared_data_folder, 'mock_model.onnx'))
|
||
|
|
||
|
# load test image data stored in input_onnx.npy
|
||
|
input_binding_info = parser.GetNetworkInputBindingInfo("input")
|
||
|
input_tensor_data = np.load(os.path.join(shared_data_folder, 'onnx_parser/input_onnx.npy')).astype(np.float32)
|
||
|
|
||
|
options = ann.CreationOptions()
|
||
|
runtime = ann.IRuntime(options)
|
||
|
|
||
|
preferred_backends = [ann.BackendId('CpuAcc'), ann.BackendId('CpuRef')]
|
||
|
opt_network, messages = ann.Optimize(network, preferred_backends, runtime.GetDeviceSpec(), ann.OptimizerOptions())
|
||
|
|
||
|
assert 0 == len(messages)
|
||
|
|
||
|
net_id, messages = runtime.LoadNetwork(opt_network)
|
||
|
|
||
|
assert "" == messages
|
||
|
|
||
|
input_tensors = ann.make_input_tensors([input_binding_info], [input_tensor_data])
|
||
|
output_tensors = ann.make_output_tensors([parser.GetNetworkOutputBindingInfo("output")])
|
||
|
|
||
|
runtime.EnqueueWorkload(net_id, input_tensors, output_tensors)
|
||
|
|
||
|
output = ann.workload_tensors_to_ndarray(output_tensors)
|
||
|
|
||
|
# Load golden output file for result comparison.
|
||
|
golden_output = np.load(os.path.join(shared_data_folder, 'onnx_parser/golden_output_onnx.npy'))
|
||
|
|
||
|
# Check that output matches golden output to 4 decimal places (there are slight rounding differences after this)
|
||
|
np.testing.assert_almost_equal(output[0], golden_output, decimal=4)
|