forked from Qortal/Brooklyn
191 lines
6.4 KiB
Python
191 lines
6.4 KiB
Python
|
# Copyright © 2020 Arm Ltd. All rights reserved.
|
||
|
# SPDX-License-Identifier: MIT
|
||
|
import os
|
||
|
|
||
|
import pytest
|
||
|
import pyarmnn as ann
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def test_TfLiteParserOptions_default_values():
|
||
|
parserOptions = ann.TfLiteParserOptions()
|
||
|
assert parserOptions.m_InferAndValidate == False
|
||
|
assert parserOptions.m_StandInLayerForUnsupported == False
|
||
|
|
||
|
|
||
|
@pytest.fixture()
|
||
|
def parser(shared_data_folder):
|
||
|
"""
|
||
|
Parse and setup the test network to be used for the tests below
|
||
|
"""
|
||
|
parser = ann.ITfLiteParser()
|
||
|
parser.CreateNetworkFromBinaryFile(os.path.join(shared_data_folder, 'mock_model.tflite'))
|
||
|
|
||
|
yield parser
|
||
|
|
||
|
|
||
|
def test_tflite_parser_swig_destroy():
|
||
|
assert ann.ITfLiteParser.__swig_destroy__, "There is a swig python destructor defined"
|
||
|
assert ann.ITfLiteParser.__swig_destroy__.__name__ == "delete_ITfLiteParser"
|
||
|
|
||
|
|
||
|
def test_check_tflite_parser_swig_ownership(parser):
|
||
|
# Check to see that SWIG has ownership for parser. This instructs SWIG to take
|
||
|
# ownership of the return value. This allows the value to be automatically
|
||
|
# garbage-collected when it is no longer in use
|
||
|
assert parser.thisown
|
||
|
|
||
|
|
||
|
def test_tflite_parser_with_optional_options():
|
||
|
parserOptions = ann.TfLiteParserOptions()
|
||
|
parserOptions.m_InferAndValidate = True
|
||
|
parser = ann.ITfLiteParser(parserOptions)
|
||
|
assert parser.thisown
|
||
|
|
||
|
|
||
|
def create_with_opt() :
|
||
|
parserOptions = ann.TfLiteParserOptions()
|
||
|
parserOptions.m_InferAndValidate = True
|
||
|
return ann.ITfLiteParser(parserOptions)
|
||
|
|
||
|
|
||
|
def test_tflite_parser_with_optional_options_out_of_scope(shared_data_folder):
|
||
|
parser = create_with_opt()
|
||
|
network = parser.CreateNetworkFromBinaryFile(os.path.join(shared_data_folder, "mock_model.tflite"))
|
||
|
|
||
|
graphs_count = parser.GetSubgraphCount()
|
||
|
graph_id = graphs_count - 1
|
||
|
|
||
|
input_names = parser.GetSubgraphInputTensorNames(graph_id)
|
||
|
input_binding_info = parser.GetNetworkInputBindingInfo(graph_id, input_names[0])
|
||
|
|
||
|
output_names = parser.GetSubgraphOutputTensorNames(graph_id)
|
||
|
|
||
|
preferred_backends = [ann.BackendId('CpuAcc'), ann.BackendId('CpuRef')]
|
||
|
|
||
|
options = ann.CreationOptions()
|
||
|
runtime = ann.IRuntime(options)
|
||
|
|
||
|
opt_network, messages = ann.Optimize(network, preferred_backends, runtime.GetDeviceSpec(), ann.OptimizerOptions())
|
||
|
assert 0 == len(messages)
|
||
|
|
||
|
net_id, messages = runtime.LoadNetwork(opt_network)
|
||
|
assert "" == messages
|
||
|
|
||
|
|
||
|
def test_tflite_get_sub_graph_count(parser):
|
||
|
graphs_count = parser.GetSubgraphCount()
|
||
|
assert graphs_count == 1
|
||
|
|
||
|
|
||
|
def test_tflite_get_network_input_binding_info(parser):
|
||
|
graphs_count = parser.GetSubgraphCount()
|
||
|
graph_id = graphs_count - 1
|
||
|
|
||
|
input_names = parser.GetSubgraphInputTensorNames(graph_id)
|
||
|
|
||
|
input_binding_info = parser.GetNetworkInputBindingInfo(graph_id, input_names[0])
|
||
|
|
||
|
tensor = input_binding_info[1]
|
||
|
assert tensor.GetDataType() == 2
|
||
|
assert tensor.GetNumDimensions() == 4
|
||
|
assert tensor.GetNumElements() == 784
|
||
|
assert tensor.GetQuantizationOffset() == 128
|
||
|
assert tensor.GetQuantizationScale() == 0.007843137718737125
|
||
|
|
||
|
|
||
|
def test_tflite_get_network_output_binding_info(parser):
|
||
|
graphs_count = parser.GetSubgraphCount()
|
||
|
graph_id = graphs_count - 1
|
||
|
|
||
|
output_names = parser.GetSubgraphOutputTensorNames(graph_id)
|
||
|
|
||
|
output_binding_info1 = parser.GetNetworkOutputBindingInfo(graph_id, output_names[0])
|
||
|
|
||
|
# Check the tensor info retrieved from GetNetworkOutputBindingInfo
|
||
|
tensor1 = output_binding_info1[1]
|
||
|
|
||
|
assert tensor1.GetDataType() == 2
|
||
|
assert tensor1.GetNumDimensions() == 2
|
||
|
assert tensor1.GetNumElements() == 10
|
||
|
assert tensor1.GetQuantizationOffset() == 0
|
||
|
assert tensor1.GetQuantizationScale() == 0.00390625
|
||
|
|
||
|
|
||
|
def test_tflite_get_subgraph_input_tensor_names(parser):
|
||
|
graphs_count = parser.GetSubgraphCount()
|
||
|
graph_id = graphs_count - 1
|
||
|
|
||
|
input_names = parser.GetSubgraphInputTensorNames(graph_id)
|
||
|
|
||
|
assert input_names == ('input_1',)
|
||
|
|
||
|
|
||
|
def test_tflite_get_subgraph_output_tensor_names(parser):
|
||
|
graphs_count = parser.GetSubgraphCount()
|
||
|
graph_id = graphs_count - 1
|
||
|
|
||
|
output_names = parser.GetSubgraphOutputTensorNames(graph_id)
|
||
|
|
||
|
assert output_names[0] == 'dense/Softmax'
|
||
|
|
||
|
|
||
|
def test_tflite_filenotfound_exception(shared_data_folder):
|
||
|
parser = ann.ITfLiteParser()
|
||
|
|
||
|
with pytest.raises(RuntimeError) as err:
|
||
|
parser.CreateNetworkFromBinaryFile(os.path.join(shared_data_folder, 'some_unknown_network.tflite'))
|
||
|
|
||
|
# Only check for part of the exception since the exception returns
|
||
|
# absolute path which will change on different machines.
|
||
|
assert 'Cannot find the file' in str(err.value)
|
||
|
|
||
|
|
||
|
def test_tflite_parser_end_to_end(shared_data_folder):
|
||
|
parser = ann.ITfLiteParser()
|
||
|
|
||
|
network = parser.CreateNetworkFromBinaryFile(os.path.join(shared_data_folder, "mock_model.tflite"))
|
||
|
|
||
|
graphs_count = parser.GetSubgraphCount()
|
||
|
graph_id = graphs_count - 1
|
||
|
|
||
|
input_names = parser.GetSubgraphInputTensorNames(graph_id)
|
||
|
input_binding_info = parser.GetNetworkInputBindingInfo(graph_id, input_names[0])
|
||
|
|
||
|
output_names = parser.GetSubgraphOutputTensorNames(graph_id)
|
||
|
|
||
|
preferred_backends = [ann.BackendId('CpuAcc'), ann.BackendId('CpuRef')]
|
||
|
|
||
|
options = ann.CreationOptions()
|
||
|
runtime = ann.IRuntime(options)
|
||
|
|
||
|
opt_network, messages = ann.Optimize(network, preferred_backends, runtime.GetDeviceSpec(), ann.OptimizerOptions())
|
||
|
assert 0 == len(messages)
|
||
|
|
||
|
net_id, messages = runtime.LoadNetwork(opt_network)
|
||
|
assert "" == messages
|
||
|
|
||
|
# Load test image data stored in input_lite.npy
|
||
|
input_tensor_data = np.load(os.path.join(shared_data_folder, 'tflite_parser/input_lite.npy'))
|
||
|
input_tensors = ann.make_input_tensors([input_binding_info], [input_tensor_data])
|
||
|
|
||
|
output_tensors = []
|
||
|
for index, output_name in enumerate(output_names):
|
||
|
out_bind_info = parser.GetNetworkOutputBindingInfo(graph_id, output_name)
|
||
|
out_tensor_info = out_bind_info[1]
|
||
|
out_tensor_id = out_bind_info[0]
|
||
|
output_tensors.append((out_tensor_id,
|
||
|
ann.Tensor(out_tensor_info)))
|
||
|
|
||
|
runtime.EnqueueWorkload(net_id, input_tensors, output_tensors)
|
||
|
|
||
|
output_vectors = []
|
||
|
for index, out_tensor in enumerate(output_tensors):
|
||
|
output_vectors.append(out_tensor[1].get_memory_area())
|
||
|
|
||
|
# Load golden output file for result comparison.
|
||
|
expected_outputs = np.load(os.path.join(shared_data_folder, 'tflite_parser/golden_output_lite.npy'))
|
||
|
|
||
|
# Check that output matches golden output
|
||
|
assert (expected_outputs == output_vectors[0]).all()
|