forked from Qortal/Brooklyn
109 lines
3.7 KiB
Python
109 lines
3.7 KiB
Python
|
# Copyright © 2021 Arm Ltd and Contributors. All rights reserved.
|
||
|
# SPDX-License-Identifier: MIT
|
||
|
|
||
|
"""Contains helper functions that can be used across the example apps."""
|
||
|
|
||
|
import os
|
||
|
import errno
|
||
|
from pathlib import Path
|
||
|
|
||
|
import numpy as np
|
||
|
import pyarmnn as ann
|
||
|
|
||
|
|
||
|
def dict_labels(labels_file_path: str, include_rgb=False) -> dict:
|
||
|
"""Creates a dictionary of labels from the input labels file.
|
||
|
|
||
|
Args:
|
||
|
labels_file: Path to file containing labels to map model outputs.
|
||
|
include_rgb: Adds randomly generated RGB values to the values of the
|
||
|
dictionary. Used for plotting bounding boxes of different colours.
|
||
|
|
||
|
Returns:
|
||
|
Dictionary with classification indices for keys and labels for values.
|
||
|
|
||
|
Raises:
|
||
|
FileNotFoundError:
|
||
|
Provided `labels_file_path` does not exist.
|
||
|
"""
|
||
|
labels_file = Path(labels_file_path)
|
||
|
if not labels_file.is_file():
|
||
|
raise FileNotFoundError(
|
||
|
errno.ENOENT, os.strerror(errno.ENOENT), labels_file_path
|
||
|
)
|
||
|
|
||
|
labels = {}
|
||
|
with open(labels_file, "r") as f:
|
||
|
for idx, line in enumerate(f, 0):
|
||
|
if include_rgb:
|
||
|
labels[idx] = line.strip("\n"), tuple(np.random.random(size=3) * 255)
|
||
|
else:
|
||
|
labels[idx] = line.strip("\n")
|
||
|
return labels
|
||
|
|
||
|
|
||
|
def prepare_input_tensors(audio_data, input_binding_info, mfcc_preprocessor):
|
||
|
"""
|
||
|
Takes a block of audio data, extracts the MFCC features, quantizes the array, and uses ArmNN to create the
|
||
|
input tensors.
|
||
|
|
||
|
Args:
|
||
|
audio_data: The audio data to process
|
||
|
mfcc_instance: the mfcc class instance
|
||
|
input_binding_info: the model input binding info
|
||
|
mfcc_preprocessor: the mfcc preprocessor instance
|
||
|
Returns:
|
||
|
input_tensors: the prepared input tensors, ready to be consumed by the ArmNN NetworkExecutor
|
||
|
"""
|
||
|
|
||
|
data_type = input_binding_info[1].GetDataType()
|
||
|
input_tensor = mfcc_preprocessor.extract_features(audio_data)
|
||
|
if data_type != ann.DataType_Float32:
|
||
|
input_tensor = quantize_input(input_tensor, input_binding_info)
|
||
|
input_tensors = ann.make_input_tensors([input_binding_info], [input_tensor])
|
||
|
return input_tensors
|
||
|
|
||
|
|
||
|
def quantize_input(data, input_binding_info):
|
||
|
"""Quantize the float input to (u)int8 ready for inputting to model."""
|
||
|
if data.ndim != 2:
|
||
|
raise RuntimeError("Audio data must have 2 dimensions for quantization")
|
||
|
|
||
|
quant_scale = input_binding_info[1].GetQuantizationScale()
|
||
|
quant_offset = input_binding_info[1].GetQuantizationOffset()
|
||
|
data_type = input_binding_info[1].GetDataType()
|
||
|
|
||
|
if data_type == ann.DataType_QAsymmS8:
|
||
|
data_type = np.int8
|
||
|
elif data_type == ann.DataType_QAsymmU8:
|
||
|
data_type = np.uint8
|
||
|
else:
|
||
|
raise ValueError("Could not quantize data to required data type")
|
||
|
|
||
|
d_min = np.iinfo(data_type).min
|
||
|
d_max = np.iinfo(data_type).max
|
||
|
|
||
|
for row in range(data.shape[0]):
|
||
|
for col in range(data.shape[1]):
|
||
|
data[row, col] = (data[row, col] / quant_scale) + quant_offset
|
||
|
data[row, col] = np.clip(data[row, col], d_min, d_max)
|
||
|
data = data.astype(data_type)
|
||
|
return data
|
||
|
|
||
|
|
||
|
def dequantize_output(data, output_binding_info):
|
||
|
"""Dequantize the (u)int8 output to float"""
|
||
|
|
||
|
if output_binding_info[1].IsQuantized():
|
||
|
if data.ndim != 2:
|
||
|
raise RuntimeError("Data must have 2 dimensions for quantization")
|
||
|
|
||
|
quant_scale = output_binding_info[1].GetQuantizationScale()
|
||
|
quant_offset = output_binding_info[1].GetQuantizationOffset()
|
||
|
|
||
|
data = data.astype(float)
|
||
|
for row in range(data.shape[0]):
|
||
|
for col in range(data.shape[1]):
|
||
|
data[row, col] = (data[row, col] - quant_offset)*quant_scale
|
||
|
return data
|