Brooklyn/kernel/irq/affinity.c
Scare Crowe 2a709f28fa Auto exploit mitigation feature
* 0day explit mitigation
* Memory corruption prevention
* Privilege escalation prevention
* Buffer over flow prevention
* File System corruption defense
* Thread escape prevention

This may very well be the most intensive inclusion to BrooklynR. This will not be part of an x86 suite nor it will be released as tool kit. The security core toolkit will remain part of kernel base.
2021-11-13 09:26:51 +05:00

155 lines
3.7 KiB
C

#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/cpu.h>
static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
int cpus_per_vec)
{
const struct cpumask *siblmsk;
int cpu, sibl;
for ( ; cpus_per_vec > 0; ) {
cpu = cpumask_first(nmsk);
/* Should not happen, but I'm too lazy to think about it */
if (cpu >= nr_cpu_ids)
return;
cpumask_clear_cpu(cpu, nmsk);
cpumask_set_cpu(cpu, irqmsk);
cpus_per_vec--;
/* If the cpu has siblings, use them first */
siblmsk = topology_sibling_cpumask(cpu);
for (sibl = -1; cpus_per_vec > 0; ) {
sibl = cpumask_next(sibl, siblmsk);
if (sibl >= nr_cpu_ids)
break;
if (!cpumask_test_and_clear_cpu(sibl, nmsk))
continue;
cpumask_set_cpu(sibl, irqmsk);
cpus_per_vec--;
}
}
}
static int get_nodes_in_cpumask(const struct cpumask *mask, nodemask_t *nodemsk)
{
int n, nodes = 0;
/* Calculate the number of nodes in the supplied affinity mask */
for_each_online_node(n) {
if (cpumask_intersects(mask, cpumask_of_node(n))) {
node_set(n, *nodemsk);
nodes++;
}
}
return nodes;
}
/**
* irq_create_affinity_masks - Create affinity masks for multiqueue spreading
* @affinity: The affinity mask to spread. If NULL cpu_online_mask
* is used
* @nvecs: The number of vectors
*
* Returns the masks pointer or NULL if allocation failed.
*/
struct cpumask *irq_create_affinity_masks(const struct cpumask *affinity,
int nvec)
{
int n, nodes, vecs_per_node, cpus_per_vec, extra_vecs, curvec = 0;
nodemask_t nodemsk = NODE_MASK_NONE;
struct cpumask *masks;
cpumask_var_t nmsk;
if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
return NULL;
masks = kzalloc(nvec * sizeof(*masks), GFP_KERNEL);
if (!masks)
goto out;
/* Stabilize the cpumasks */
get_online_cpus();
/* If the supplied affinity mask is NULL, use cpu online mask */
if (!affinity)
affinity = cpu_online_mask;
nodes = get_nodes_in_cpumask(affinity, &nodemsk);
/*
* If the number of nodes in the mask is greater than or equal the
* number of vectors we just spread the vectors across the nodes.
*/
if (nvec <= nodes) {
for_each_node_mask(n, nodemsk) {
cpumask_copy(masks + curvec, cpumask_of_node(n));
if (++curvec == nvec)
break;
}
goto outonl;
}
/* Spread the vectors per node */
vecs_per_node = nvec / nodes;
/* Account for rounding errors */
extra_vecs = nvec - (nodes * vecs_per_node);
for_each_node_mask(n, nodemsk) {
int ncpus, v, vecs_to_assign = vecs_per_node;
/* Get the cpus on this node which are in the mask */
cpumask_and(nmsk, affinity, cpumask_of_node(n));
/* Calculate the number of cpus per vector */
ncpus = cpumask_weight(nmsk);
for (v = 0; curvec < nvec && v < vecs_to_assign; curvec++, v++) {
cpus_per_vec = ncpus / vecs_to_assign;
/* Account for extra vectors to compensate rounding errors */
if (extra_vecs) {
cpus_per_vec++;
if (!--extra_vecs)
vecs_per_node++;
}
irq_spread_init_one(masks + curvec, nmsk, cpus_per_vec);
}
if (curvec >= nvec)
break;
}
outonl:
put_online_cpus();
out:
free_cpumask_var(nmsk);
return masks;
}
/**
* irq_calc_affinity_vectors - Calculate to optimal number of vectors for a given affinity mask
* @affinity: The affinity mask to spread. If NULL cpu_online_mask
* is used
* @maxvec: The maximum number of vectors available
*/
int irq_calc_affinity_vectors(const struct cpumask *affinity, int maxvec)
{
int cpus, ret;
/* Stabilize the cpumasks */
get_online_cpus();
/* If the supplied affinity mask is NULL, use cpu online mask */
if (!affinity)
affinity = cpu_online_mask;
cpus = cpumask_weight(affinity);
ret = (cpus < maxvec) ? cpus : maxvec;
put_online_cpus();
return ret;
}