Brooklyn/kernel/time/timeconv.c
Scare Crowe 2a709f28fa Auto exploit mitigation feature
* 0day explit mitigation
* Memory corruption prevention
* Privilege escalation prevention
* Buffer over flow prevention
* File System corruption defense
* Thread escape prevention

This may very well be the most intensive inclusion to BrooklynR. This will not be part of an x86 suite nor it will be released as tool kit. The security core toolkit will remain part of kernel base.
2021-11-13 09:26:51 +05:00

129 lines
3.5 KiB
C

/*
* Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
* This file is part of the GNU C Library.
* Contributed by Paul Eggert (eggert@twinsun.com).
*
* The GNU C Library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* The GNU C Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with the GNU C Library; see the file COPYING.LIB. If not,
* write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/*
* Converts the calendar time to broken-down time representation
* Based on code from glibc-2.6
*
* 2009-7-14:
* Moved from glibc-2.6 to kernel by Zhaolei<zhaolei@cn.fujitsu.com>
*/
#include <linux/time.h>
#include <linux/module.h>
/*
* Nonzero if YEAR is a leap year (every 4 years,
* except every 100th isn't, and every 400th is).
*/
static int __isleap(long year)
{
return (year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0);
}
/* do a mathdiv for long type */
static long math_div(long a, long b)
{
return a / b - (a % b < 0);
}
/* How many leap years between y1 and y2, y1 must less or equal to y2 */
static long leaps_between(long y1, long y2)
{
long leaps1 = math_div(y1 - 1, 4) - math_div(y1 - 1, 100)
+ math_div(y1 - 1, 400);
long leaps2 = math_div(y2 - 1, 4) - math_div(y2 - 1, 100)
+ math_div(y2 - 1, 400);
return leaps2 - leaps1;
}
/* How many days come before each month (0-12). */
static const unsigned short __mon_yday[2][13] = {
/* Normal years. */
{0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365},
/* Leap years. */
{0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366}
};
#define SECS_PER_HOUR (60 * 60)
#define SECS_PER_DAY (SECS_PER_HOUR * 24)
/**
* time64_to_tm - converts the calendar time to local broken-down time
*
* @totalsecs the number of seconds elapsed since 00:00:00 on January 1, 1970,
* Coordinated Universal Time (UTC).
* @offset offset seconds adding to totalsecs.
* @result pointer to struct tm variable to receive broken-down time
*/
void time64_to_tm(time64_t totalsecs, int offset, struct tm *result)
{
long days, rem, y;
int remainder;
const unsigned short *ip;
days = div_s64_rem(totalsecs, SECS_PER_DAY, &remainder);
rem = remainder;
rem += offset;
while (rem < 0) {
rem += SECS_PER_DAY;
--days;
}
while (rem >= SECS_PER_DAY) {
rem -= SECS_PER_DAY;
++days;
}
result->tm_hour = rem / SECS_PER_HOUR;
rem %= SECS_PER_HOUR;
result->tm_min = rem / 60;
result->tm_sec = rem % 60;
/* January 1, 1970 was a Thursday. */
result->tm_wday = (4 + days) % 7;
if (result->tm_wday < 0)
result->tm_wday += 7;
y = 1970;
while (days < 0 || days >= (__isleap(y) ? 366 : 365)) {
/* Guess a corrected year, assuming 365 days per year. */
long yg = y + math_div(days, 365);
/* Adjust DAYS and Y to match the guessed year. */
days -= (yg - y) * 365 + leaps_between(y, yg);
y = yg;
}
result->tm_year = y - 1900;
result->tm_yday = days;
ip = __mon_yday[__isleap(y)];
for (y = 11; days < ip[y]; y--)
continue;
days -= ip[y];
result->tm_mon = y;
result->tm_mday = days + 1;
}
EXPORT_SYMBOL(time64_to_tm);