forked from Qortal/Brooklyn
118 lines
5.7 KiB
C++
118 lines
5.7 KiB
C++
//
|
|
// Copyright © 2021 Arm Ltd and Contributors. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
|
|
#include <armnn/ArmNN.hpp>
|
|
|
|
#include <iostream>
|
|
|
|
// A simple example application to show the usage of Memory Management Pre Importing of Inputs and Outputs. In this
|
|
// sample, the users single input number is added to itself using an add layer and outputted to console as a number
|
|
// that is double the input. The code does not use EnqueueWorkload but instead uses runtime->Execute
|
|
|
|
int main()
|
|
{
|
|
using namespace armnn;
|
|
|
|
float number;
|
|
std::cout << "Please enter a number: " << std::endl;
|
|
std::cin >> number;
|
|
|
|
// Turn on logging to standard output
|
|
// This is useful in this sample so that users can learn more about what is going on
|
|
armnn::ConfigureLogging(true, false, LogSeverity::Info);
|
|
|
|
armnn::IRuntime::CreationOptions options;
|
|
armnn::IRuntimePtr runtime(armnn::IRuntime::Create(options));
|
|
|
|
armnn::NetworkId networkIdentifier1 = 0;
|
|
|
|
armnn::INetworkPtr testNetwork(armnn::INetwork::Create());
|
|
auto inputLayer1 = testNetwork->AddInputLayer(0, "input 1 layer");
|
|
auto inputLayer2 = testNetwork->AddInputLayer(1, "input 2 layer");
|
|
auto addLayer = testNetwork->AddAdditionLayer("add layer");
|
|
auto outputLayer = testNetwork->AddOutputLayer(2, "output layer");
|
|
|
|
// Set the tensors in the network.
|
|
TensorInfo tensorInfo{{4}, armnn::DataType::Float32};
|
|
|
|
inputLayer1->GetOutputSlot(0).Connect(addLayer->GetInputSlot(0));
|
|
inputLayer1->GetOutputSlot(0).SetTensorInfo(tensorInfo);
|
|
inputLayer2->GetOutputSlot(0).Connect(addLayer->GetInputSlot(1));
|
|
inputLayer2->GetOutputSlot(0).SetTensorInfo(tensorInfo);
|
|
|
|
addLayer->GetOutputSlot(0).Connect(outputLayer->GetInputSlot(0));
|
|
addLayer->GetOutputSlot(0).SetTensorInfo(tensorInfo);
|
|
|
|
// Set preferred backend to CpuRef
|
|
std::vector<armnn::BackendId> backends = { armnn::Compute::CpuRef };
|
|
|
|
// To hold an eventual error message if loading the network fails
|
|
std::string er;
|
|
|
|
// Initialize network properties with asyncEnabled and MemorySources != MemorySource::Undefined
|
|
armnn::INetworkProperties networkProperties(true, MemorySource::Malloc, MemorySource::Malloc);
|
|
|
|
// Optimize and Load the network into runtime
|
|
runtime->LoadNetwork(networkIdentifier1,
|
|
Optimize(*testNetwork, backends, runtime->GetDeviceSpec()),
|
|
er,
|
|
networkProperties);
|
|
|
|
// Create structures for input & output
|
|
std::vector<float> inputData1(4, number);
|
|
std::vector<float> inputData2(4, number);
|
|
ConstTensor inputTensor1(tensorInfo, inputData1.data());
|
|
ConstTensor inputTensor2(tensorInfo, inputData2.data());
|
|
|
|
std::vector<float> outputData1(4);
|
|
Tensor outputTensor1{tensorInfo, outputData1.data()};
|
|
|
|
// ImportInputs separates the importing and mapping of InputTensors from network execution.
|
|
// Allowing for a set of InputTensors to be imported and mapped once, but used in execution many times.
|
|
// ImportInputs is not thread safe and must not be used while other threads are calling Execute().
|
|
// Only compatible with AsyncEnabled networks
|
|
|
|
// PreImport inputTensors giving pre-imported ids of 1 and 2
|
|
std::vector<ImportedInputId> importedInputVec = runtime->ImportInputs(networkIdentifier1,
|
|
{{0, inputTensor1}, {1, inputTensor2}});
|
|
|
|
// Create a new unique WorkingMemHandle object. Create multiple handles if you wish to have
|
|
// overlapped Execution by calling this function from different threads.
|
|
auto memHandle = runtime->CreateWorkingMemHandle(networkIdentifier1);
|
|
|
|
// Execute evaluates a network using input in inputTensors and outputs filled into outputTensors.
|
|
// This function performs a thread safe execution of the network. Returns once execution is complete.
|
|
// Will block until this and any other thread using the same workingMem object completes.
|
|
// Execute with PreImported inputTensor1 as well as Non-PreImported inputTensor2
|
|
runtime->Execute(*memHandle.get(), {}, {{2, outputTensor1}}, importedInputVec /* pre-imported ids */);
|
|
|
|
// ImportOutputs separates the importing and mapping of OutputTensors from network execution.
|
|
// Allowing for a set of OutputTensors to be imported and mapped once, but used in execution many times.
|
|
// This function is not thread safe and must not be used while other threads are calling Execute().
|
|
// Only compatible with AsyncEnabled networks
|
|
// Provide layerBinding Id to outputTensor1
|
|
std::pair<LayerBindingId, class Tensor> output1{2, outputTensor1};
|
|
// PreImport outputTensor1
|
|
std::vector<ImportedOutputId> importedOutputVec = runtime->ImportOutputs(networkIdentifier1, {output1});
|
|
|
|
// Execute with Non-PreImported inputTensor1 as well as PreImported inputTensor2
|
|
runtime->Execute(*memHandle.get(), {{0, inputTensor1}}, {{2, outputTensor1}}, {1 /* pre-imported id */});
|
|
|
|
// Clear the previously PreImportedInput with the network Id and inputIds returned from ImportInputs()
|
|
// Note: This will happen automatically during destructor of armnn::LoadedNetwork
|
|
runtime->ClearImportedInputs(networkIdentifier1, importedInputVec);
|
|
|
|
// Clear the previously PreImportedOutputs with the network Id and outputIds returned from ImportOutputs()
|
|
// Note: This will happen automatically during destructor of armnn::LoadedNetwork
|
|
runtime->ClearImportedOutputs(networkIdentifier1, importedOutputVec);
|
|
|
|
// Execute with Non-PreImported inputTensor1, inputTensor2 and the PreImported outputTensor1
|
|
runtime->Execute(*memHandle.get(), {{0, inputTensor1}, {1, inputTensor2}}, {{2, outputTensor1}});
|
|
|
|
std::cout << "Your number was " << outputData1.data()[0] << std::endl;
|
|
|
|
return 0;
|
|
}
|