forked from Qortal/Brooklyn
211 lines
8.0 KiB
C++
211 lines
8.0 KiB
C++
//
|
|
// Copyright © 2017 Arm Ltd. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
#pragma once
|
|
|
|
#include "InferenceTest.hpp"
|
|
#include "MobileNetSsdDatabase.hpp"
|
|
|
|
#include <armnn/utility/Assert.hpp>
|
|
#include <armnn/utility/IgnoreUnused.hpp>
|
|
#include <armnn/utility/NumericCast.hpp>
|
|
#include <armnnUtils/FloatingPointComparison.hpp>
|
|
|
|
#include <vector>
|
|
|
|
namespace
|
|
{
|
|
|
|
template<typename Model>
|
|
class MobileNetSsdTestCase : public InferenceModelTestCase<Model>
|
|
{
|
|
public:
|
|
MobileNetSsdTestCase(Model& model,
|
|
unsigned int testCaseId,
|
|
const MobileNetSsdTestCaseData& testCaseData)
|
|
: InferenceModelTestCase<Model>(model,
|
|
testCaseId,
|
|
{ std::move(testCaseData.m_InputData) },
|
|
{ k_OutputSize1, k_OutputSize2, k_OutputSize3, k_OutputSize4 })
|
|
, m_DetectedObjects(testCaseData.m_ExpectedDetectedObject)
|
|
{}
|
|
|
|
TestCaseResult ProcessResult(const InferenceTestOptions& options) override
|
|
{
|
|
armnn::IgnoreUnused(options);
|
|
|
|
// bounding boxes
|
|
const std::vector<float>& output1 = mapbox::util::get<std::vector<float>>(this->GetOutputs()[0]);
|
|
ARMNN_ASSERT(output1.size() == k_OutputSize1);
|
|
|
|
// classes
|
|
const std::vector<float>& output2 = mapbox::util::get<std::vector<float>>(this->GetOutputs()[1]);
|
|
ARMNN_ASSERT(output2.size() == k_OutputSize2);
|
|
|
|
// scores
|
|
const std::vector<float>& output3 = mapbox::util::get<std::vector<float>>(this->GetOutputs()[2]);
|
|
ARMNN_ASSERT(output3.size() == k_OutputSize3);
|
|
|
|
// valid detections
|
|
const std::vector<float>& output4 = mapbox::util::get<std::vector<float>>(this->GetOutputs()[3]);
|
|
ARMNN_ASSERT(output4.size() == k_OutputSize4);
|
|
|
|
const size_t numDetections = armnn::numeric_cast<size_t>(output4[0]);
|
|
|
|
// Check if number of valid detections matches expectations
|
|
const size_t expectedNumDetections = m_DetectedObjects.size();
|
|
if (numDetections != expectedNumDetections)
|
|
{
|
|
ARMNN_LOG(error) << "Number of detections is incorrect: Expected (" <<
|
|
expectedNumDetections << ")" << " but got (" << numDetections << ")";
|
|
return TestCaseResult::Failed;
|
|
}
|
|
|
|
// Extract detected objects from output data
|
|
std::vector<DetectedObject> detectedObjects;
|
|
const float* outputData = output1.data();
|
|
for (unsigned int i = 0u; i < numDetections; i++)
|
|
{
|
|
// NOTE: Order of coordinates in output data is yMin, xMin, yMax, xMax
|
|
float yMin = *outputData++;
|
|
float xMin = *outputData++;
|
|
float yMax = *outputData++;
|
|
float xMax = *outputData++;
|
|
|
|
DetectedObject detectedObject(
|
|
output2.at(i),
|
|
BoundingBox(xMin, yMin, xMax, yMax),
|
|
output3.at(i));
|
|
|
|
detectedObjects.push_back(detectedObject);
|
|
}
|
|
|
|
std::sort(detectedObjects.begin(), detectedObjects.end());
|
|
std::sort(m_DetectedObjects.begin(), m_DetectedObjects.end());
|
|
|
|
// Compare detected objects with expected results
|
|
std::vector<DetectedObject>::const_iterator it = detectedObjects.begin();
|
|
for (unsigned int i = 0; i < numDetections; i++)
|
|
{
|
|
if (it == detectedObjects.end())
|
|
{
|
|
ARMNN_LOG(error) << "No more detected objects found! Index out of bounds: " << i;
|
|
return TestCaseResult::Abort;
|
|
}
|
|
|
|
const DetectedObject& detectedObject = *it;
|
|
const DetectedObject& expectedObject = m_DetectedObjects[i];
|
|
|
|
if (detectedObject.m_Class != expectedObject.m_Class)
|
|
{
|
|
ARMNN_LOG(error) << "Prediction for test case " << this->GetTestCaseId() <<
|
|
" is incorrect: Expected (" << expectedObject.m_Class << ")" <<
|
|
" but predicted (" << detectedObject.m_Class << ")";
|
|
return TestCaseResult::Failed;
|
|
}
|
|
|
|
if(!armnnUtils::within_percentage_tolerance(detectedObject.m_Confidence, expectedObject.m_Confidence))
|
|
{
|
|
ARMNN_LOG(error) << "Confidence of prediction for test case " << this->GetTestCaseId() <<
|
|
" is incorrect: Expected (" << expectedObject.m_Confidence << ") +- 1.0 pc" <<
|
|
" but predicted (" << detectedObject.m_Confidence << ")";
|
|
return TestCaseResult::Failed;
|
|
}
|
|
|
|
if (!armnnUtils::within_percentage_tolerance(detectedObject.m_BoundingBox.m_XMin,
|
|
expectedObject.m_BoundingBox.m_XMin) ||
|
|
!armnnUtils::within_percentage_tolerance(detectedObject.m_BoundingBox.m_YMin,
|
|
expectedObject.m_BoundingBox.m_YMin) ||
|
|
!armnnUtils::within_percentage_tolerance(detectedObject.m_BoundingBox.m_XMax,
|
|
expectedObject.m_BoundingBox.m_XMax) ||
|
|
!armnnUtils::within_percentage_tolerance(detectedObject.m_BoundingBox.m_YMax,
|
|
expectedObject.m_BoundingBox.m_YMax))
|
|
{
|
|
ARMNN_LOG(error) << "Detected bounding box for test case " << this->GetTestCaseId() <<
|
|
" is incorrect";
|
|
return TestCaseResult::Failed;
|
|
}
|
|
|
|
++it;
|
|
}
|
|
|
|
return TestCaseResult::Ok;
|
|
}
|
|
|
|
private:
|
|
static constexpr unsigned int k_Shape = 10u;
|
|
|
|
static constexpr unsigned int k_OutputSize1 = k_Shape * 4u;
|
|
static constexpr unsigned int k_OutputSize2 = k_Shape;
|
|
static constexpr unsigned int k_OutputSize3 = k_Shape;
|
|
static constexpr unsigned int k_OutputSize4 = 1u;
|
|
|
|
std::vector<DetectedObject> m_DetectedObjects;
|
|
};
|
|
|
|
template <typename Model>
|
|
class MobileNetSsdTestCaseProvider : public IInferenceTestCaseProvider
|
|
{
|
|
public:
|
|
template <typename TConstructModelCallable>
|
|
explicit MobileNetSsdTestCaseProvider(TConstructModelCallable constructModel)
|
|
: m_ConstructModel(constructModel)
|
|
{}
|
|
|
|
virtual void AddCommandLineOptions(cxxopts::Options& options, std::vector<std::string>& required) override
|
|
{
|
|
options
|
|
.allow_unrecognised_options()
|
|
.add_options()
|
|
("d,data-dir", "Path to directory containing test data", cxxopts::value<std::string>(m_DataDir));
|
|
|
|
required.emplace_back("data-dir");
|
|
|
|
Model::AddCommandLineOptions(options, m_ModelCommandLineOptions, required);
|
|
}
|
|
|
|
virtual bool ProcessCommandLineOptions(const InferenceTestOptions& commonOptions) override
|
|
{
|
|
if (!ValidateDirectory(m_DataDir))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
m_Model = m_ConstructModel(commonOptions, m_ModelCommandLineOptions);
|
|
if (!m_Model)
|
|
{
|
|
return false;
|
|
}
|
|
std::pair<float, int32_t> qParams = m_Model->GetInputQuantizationParams();
|
|
m_Database = std::make_unique<MobileNetSsdDatabase>(m_DataDir.c_str(), qParams.first, qParams.second);
|
|
if (!m_Database)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
std::unique_ptr<IInferenceTestCase> GetTestCase(unsigned int testCaseId) override
|
|
{
|
|
std::unique_ptr<MobileNetSsdTestCaseData> testCaseData = m_Database->GetTestCaseData(testCaseId);
|
|
if (!testCaseData)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
return std::make_unique<MobileNetSsdTestCase<Model>>(*m_Model, testCaseId, *testCaseData);
|
|
}
|
|
|
|
private:
|
|
typename Model::CommandLineOptions m_ModelCommandLineOptions;
|
|
std::function<std::unique_ptr<Model>(const InferenceTestOptions &,
|
|
typename Model::CommandLineOptions)> m_ConstructModel;
|
|
std::unique_ptr<Model> m_Model;
|
|
|
|
std::string m_DataDir;
|
|
std::unique_ptr<MobileNetSsdDatabase> m_Database;
|
|
};
|
|
|
|
} // anonymous namespace
|